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TRAFs [tumor necrosis factor (TNF) receptor associated factors] are a family of signaling

molecules that function downstream of multiple receptor signaling pathways and play

a pivotal role in the biology of innate, and adaptive immune cells. Following receptor

ligation, TRAFs generally function as adapter proteins to mediate the activation of

intracellular signaling cascades. With the exception of TRAF1 that lacks a Ring domain,

TRAFs have an E3 ubiquitin ligase activity which also contributes to their ability to

activate downstream signaling pathways. TRAF-mediated signaling pathways culminate

in the activation of several transcription factors, including nuclear factor-κB (NF-κB),

mitogen-activated protein kinases (MAPKs; e.g., ERK-1 and ERK-2, JNK, and p38),

and interferon-regulatory factors (IRF; e.g., IRF3 and IRF7). The biological role of

TRAFs is largely due to their ability to positively or negatively regulate canonical

and non-canonical NF-κB signaling. While TRAF-mediated signaling regulates various

immune cell functions, this review is focused on the recent advances in our knowledge

regarding the molecular mechanisms through which TRAF proteins regulate, positively

and negatively, inflammatory signaling pathways, including Toll–IL-1 receptors, RIG-I

like receptors, and Nod-like receptors. The review also offers a perspective on the

unanswered questions that need to be addressed to fully understand how TRAFs

regulate inflammation.
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INTRODUCTION

The Tumor-Necrosis Factor (TNF) Receptor Associated Factor (TRAF) family is comprised of
cytoplasmic adaptor proteins involved in transducing downstream effects of a variety of receptors
(1). TRAF1 and TRAF2 were first discovered through their association with TNF-R2 (2). Since
then four other members have been identified, thus, a total of six known members exist
(TRAF1 to TRAF6) (3, 4). The TRAF domain can be divided into a N-terminal coiled-coil
region (TRAF-N) and a highly conserved C-terminal Beta-sandwich domain (MATH Domain)
(4, 5). It is the MATH domain which allows TRAF molecules to form dimers and recruit
downstream effectors to receptors (1). With the exception of TRAF1, all other TRAF members,
contain a N-terminal RING finger, followed by a variable number of zinc fingers (1, 4, 6). The
RING finger motif allows TRAF molecules to act as E3 ubiquitin ligases (5, 6). As adaptor
proteins and E3 ubiquitin ligases involved in several immune pathways, TRAFs ultimately lead
to the activation of transcription factors, such as nuclear factor-κB (NF-κB), mitogen-activated
protein kinases (MAPKs; e.g., ERK-1 and ERK-2, JNK, and p. 38), and interferon-regulatory
factors (IRF; e.g., IRF3 and IRF7) (5, 6). In addition, TRAF proteins play important roles
in embryonic development, tissue homeostasis, stress response, and bone metabolism (3, 6).
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Since being discovered in TNF receptor signaling, TRAFs’
role has expanded to include involvement in many other
inflammatory signaling pathways such as toll-like receptors
(TLRs), nucleotide binding-oligomerization domain (NOD)-like
receptors (NLRs), retinoic acid-inducible gene I (RIG-I)-like
receptors (RLRs), and cytokine receptors (4, 6). Aberrant and
prolonged activation of inflammation following the activation
of these receptors has been associated with debilitating
diseases including cancer, atherosclerosis, type II diabetes, and
autoimmune diseases (7). Therefore, a number of mechanisms
have evolved to negatively regulate these pathways (8). This
review is focused on recent studies that identified new roles
for TRAF proteins in activating and inhibiting TLR, RLR, and
NLR signaling, and emphasizes newly discovered mechanisms
of regulating these pathways by targeting TRAF expression and
function.

THE ROLE OF TRAFs IN TOLL-LIKE
RECEPTOR SIGNALING

Toll-like receptors (TLRs) are a family of transmembrane
receptors lining both cellular and endosomal membranes that
sense various pathogen-associated-molecular patterns (PAMPs),
and danger-associated molecular patterns (DAMPS) (6, 9–
11). There are 10 known TLRs in humans that either exist
as homo or heterodimers (11). TLRs are characterized by
an extracellular ectodomain comprised of leucine-rich repeats
(LRRs), which senses the corresponding PAMP or DAMP, a
transmembrane domain, and an intracellular Toll/IL-1 receptor
(TIR) domain, which induces the downstream response (9, 12).
Upon stimulation, TLRs oligomerize, and recruit MyD88, with
the exception of TLR3, which recruits TRIF through TIR domain
interaction (12). TLR4 can uniquely induce both MyD88-
dependent signaling when it’s on the plasma membrane and
TRIF-mediated signaling when translocated to the endosomal
compartment. Subsequently, a signaling cascade is initiated
which results in the activation of transcription factors like NF-
κB, MAPKs, and IRFs. This ultimately leads to the production
of chemokines, cytokines, and other inflammatory mediators,
which initiate the innate immune response and prime the
adaptive immune response (Figure 1) (6, 9, 13).

MyD88-dependent signaling is initiated with the recruitment
of the IL-1 receptor-associated kinase (IRAK) 4 which, in turn,
recruits and activates, through phosphorylation, IRAK1 and
IRAK2 (14). IRAK1/2 recruit TRAF6, which functions as an E3
ubiquitin ligase following its oligomerization via the CC domains
(15). This also allows TRAF6 to associate with the E2 ubiquitin
complex Uev1A:Ubc13, which together then catalyze the K63-
linked polyubiquitination to TRAF6 and other substrates,
including TAK1, TAB1, TAB2, and NEMO (IKKγ) (16). This
activates TAK1 which co-localizes with the IKK complex and
activate IKKβ via phosphorylation (9, 17). Importantly, optimal
activation of the IKK complex requires the linear ubiquitination
of NEMO (M1-linked) (18–20). This is mediated by a ubiquitin
ligase complex termed the Linear UBiquitin chain Assembly
Complex (LUBAC) and consists of heme-oxidized IRP2 ubiquitin

ligase-1 (HOIL-1), HOIL-1–interacting protein (HOIP), and
the Shank-associated RH domain interactor (SHARPIN) (21).
Activation of the IKK complex leads to phosphorylation and
subsequent degradation of the inhibitor of κB, IκBα, which
eventually leads to NF-κB activation (12, 13). TAK1 also induces
activation of MAPKs, such as ERK1/2, P38, and JNK, through
phosphorylation leading to activation of transcription factors like
AP-1 (Figure 1A) (12).

In TRIF-mediated signaling, TRIF recruits TRAF3, which
catalyzes its own K63-linked polyubiquitination. This leads to
the activation of the TBK1 and the non-canonical IKK, IKKε,
which in turn phosphorylates IRF3 resulting in its nuclear
translocation and the subsequent induction of type 1 IFNs
(IFN-Is) (22, 23). With slower kinetics (i.e., late phase), TRIF
can also form a complex with TRAF6 and RIP1, to induce
the TAK1/IKK axis and the subsequent activation of NF-κB
(Figure 1B) (11). IFN-Is can also be induced following TLR7
and TLR9 stimulation through the MyD88-dependent pathway.
MyD88 forms a complex with TRAF3 which then recruits and
activates an IRAK-IKKα complex, which in turn phosphorylates
IRF7 resulting in its translocation into the nucleus to induce
interferon production (Figure 1C) (9).

TRAFs Negatively Regulate TLR Signaling
In addition to activating TLRs, TRAFs can also function as
negative regulators of TLR signaling. TRAF3 negatively regulates
TLR-mediated MAPK activity, possibly by preventing the release
of the TRAF6:TAB1/2:TAK1 complex, but the negative regulation
is inhibited by cIAP1/2 which catalyze K48-polyubiquitinated
degradation of TRAF3 (Figure 1A) (11, 23, 24). Under
specific conditions, TRAF2 can dampen TLR mediated cytokine
production by causing proteasome-dependent degradation of c-
Rel, a member of the NF-κB family, in a mechanism that also
requires TRAF3 and cIAP1/2 (25). TRAF5 has also been shown
to inhibit TLR-stimulated cytokine production by preventing the
interaction between TRAF6 and TAB2 (26). TRAF4 associates
with p47phox, a component of cytosolic NADPH oxidase, to
negatively regulate TLR signaling by interacting with TRAF6
and TRIF and disrupting their functions (27). Recently, TRAF1
has been shown to attenuate TLR-induced NF-κB signaling
by interfering with LUBAC-mediated linear ubiquitination of
NEMO (Figure 1A) (28). Interestingly, downstream of TLR3
signaling, TRAF1 inhibits TRIF mediated activation of NF-κB,
ISRE, and the IFN-β promoter independent of IRF-3 (Figure 1B)
(29).

Negative Regulation of TLR Signaling by
Targeting TRAFs
TLR signaling can also be regulated by targeting the function,
expression, or catalytic activity of certain TRAF proteins. Several
deubiquitinases (DUB) have been shown to negatively regulate
TLR signaling by removing ubiquitin chains from TRAFs or their
targets. For instance, A20 is a key regulator of TLR signaling,
whereby it targets several aspects of the signaling cascade. It can
accomplish this, in part, by directly deubiquitinating TRAF6 (30).
Monocyte chemotactic protein-induced protein 1 (MCPIP1) is
another DUB that negatively regulates JNK and NF-κB signaling
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FIGURE 1 | TRAFs in TLR signaling pathways. (A) Domain organization of TRAF proteins. Domains shown include Ring, Zinc (Zn) finger, coiled-coil (CC; TRAF-N), and

MATH (TRAF-C) (B) Plasma membrane TLRs, upon ligand binding, recruit various intracellular signaling elements including TRAF6 to activate NF-κB and MAPK

pathways. TRAF1, TRAF3, TRAF4, and TRAF5 can negatively regulate this pathway by different means. (C) Following ligand binding, TLR4 translocates to the

endosomal compartment and recruits TRIF and TRAF3 to induce the TBK1/IKKε/IRF3 axis, or TRAF6 to induce NF-κB and AP-1 via late phase (slower) kinetics. TLR3

and RLRs can also induce the TBK1/IKKε/IRF3 axis by recruiting TRAF3.

by deubiquitinating TRAF2, TRAF3, and TRAF6 (31). Recently,
peroxiredoxin-1 (PRDX1) has been shown to directly interact
with TRAF6 ring finger motif and inhibit its ubiquitin-ligase
activity, which diminishes NF-κB activation downstream of TLR4
stimulation [(32), p. 1]. Several members of the NLR family,
discussed below, have been shown to regulate TLR signaling by
targeting TRAF proteins. NLRC3 can attenuate TLR-mediated
NF-κB activation by reducing K63-linked polyubiquitination
of TRAF6 (33). NLRX1 can interact with TRAF6 to reduce
canonical NF-κB activation through the TLR4 mediated pathway
[(34), p. 1]. Under normal conditions, NLRX1 associates with
TRAF6, but upon TLR4 stimulation, NLRX1 dissociates from
TRAF6 and binds to NEMO preventing TRAF6 recruitment of
the IKK complex, and subsequent NF-κB activation (35). It’s
important to note, however, that some of those findings have been
controversial in the field as other studies were not able to reach
a similar conclusion [(36, 37); (38), p. 1]. NLRP11 inhibits TLR
signaling by recruiting RNF19A, an ubiquitin ligase, to catalyze
K48-linked polyubiquitination and the subsequent degradation
of TRAF6 [(39), p. 11]. NLRP12 reduces non-canonical NF-κB
stimulation by interacting with TRAF3 and NIK causing NIK is
degraded preventing/reducing cleavage of p100 to p52 (40).

THE ROLE OF TRAFs IN NOD-LIKE
RECEPTOR SIGNALING

NOD-like receptors (NLRs) are a family of cytosolic
receptors that sample intracellular PAMPs and DAMPs

(41–44). These receptors participate in a plethora of cellular
processes including: inflammasome assembly, pyroptosis,
activation of NF-κB and MAPK pathways, autophagy, IFN
signaling, antigen processing and presentation, and ROS
production (6, 43, 45). These receptors are characterized
by a central nucleotide binding (NOD, also known as
NACHT) domain, which allows oligomerization, followed
by a C-terminal leucine-rich repeat (LRR) domain, which
detects PAMPs and DAMPs and a variable N-terminal
domains, which helps induce the downstream response
(41–44, 46).

NOD1 and NOD2 are the most studied members of
the NLR family [reviewed in Motta et al. (47)]. Upon
activation, these receptors oligomerize through their NACHT
domains and form a complex with RIPK2, through homotypic
CARD-CARD interactions (44). In this complex, RIP2 is
associated with multiple E3 ligases, including cIAP1/2, xIAP,
TRAF2, and TRAF5, but only cIAP1/2 catalyzes its K63-linked
polyubiquitination (44, 48–50). TRAF2 and TRAF5 serve as
adaptor molecules to facilitate interaction of cIAP1/2 with
RIP2 in this complex (48). RIPK2 then induces K63-linked
polyubiquitination of TAK1 and NEMO, which recruits the IKK
complex to the platform leading to IKKβ phosphorylation by
TAK1 (43, 44). TRAF6 and CARD9 serve as adaptors which allow
NOD1 and NOD2 to induce MAPKs and subsequently activate
AP-1 transcription factor (51, 52). In addition to NF-κB and
MAPK activation, NOD1 and NOD2, induce IFN-I production
by forming a complex with RIPK2. This results in the recruitment
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FIGURE 2 | TRAFs in NLR and RLR signaling pathways. (A) After ligand recognition, endosomal TLRs recruit TRAF6, either via TRIF (TLR3) or via

MyD88/IRAK1/IRAK4 (TLR7, 8 or 9) to activate NF-κB. Additionally, TLR 7, 8, or 9 can recruit MyD88, TRAF3, IRAK1, and IKKα to activate IRF7. (B) Ligand activated

NOD1 or NOD2 associate with RIPK2, which can then recruit either TRAF3 to activate the TBK1/IKKε/IRF7 axis, TRAF2, and TRAF5 to activate NF-κB or TRAF6 and

CARD9 to activate MAPK signaling. Viral RNAs activate RIG-I or MDA5, which then associate with the mitochondrial protein MAVS and activate NF-κB or MAPK

signaling by recruiting TRAF2/5 or TRAF6/CARD9, respectively.

of TRAF3 leading to the activation of TBK1/IKKε/IRF7 axis
(Figure 2) (42, 53).

A few NLR family members (e.g., NLRP1, NLRP3, NLRP6,
NLRC4, and NLRC5) are capable of activating inflammasomes
(41, 54). Inflammasomes are multimeric protein complexes that
play a key role in regulating the secretion of potent cytokines
like IL-1β and IL-18. Most inflammasomes are composed of
an NLR protein, the zymogen pro-caspase-1, and the adapter
protein, apoptosis-associated speck-like protein containing a
CARD (ASC) (55, 56). Intriguingly, TRAF3 has been recently
shown to play a role in NLRP3 inflammasome activation, as
it catalyzes K63-linked polyubiquitination of ASC in order to
induce ASC speck formation and inflammasome activation
(57). In addition, TRAF2, along with cIAP1/2, mediates
K63-linked polyubiquitination of caspase-1 for optimum
activity (58). However, TRAF2−/− bone marrow-derived
macrophages (BMDMs) show normal inflammasome activation,
suggesting that TRAF2 may not even be involved in this
pathway (59). Following TLR signaling, TRAF6 promotes
the non-transcriptional priming of NLRP3 by inducing its
oligomerization and association with ASC (60).

TRAFs Negatively Regulate NLR Signaling
TRAF4 has been shown to act as a negative regulator in NOD2-
mediated NF-κB signaling by direct interaction with NOD2. This

interaction then allows IKKα to phosphorylate TRAF4, which
results in its dissociation from NOD2 and inhibition of NOD2
signaling (61). NLRC3 has been shown to attenuate NLRP3
inflammasome by with ASC for pro-caspase-1 binding (62).

THE ROLE OF TRAFs IN RIG-I-LIKE
RECEPTOR SIGNALING

RIG-I-Like receptors (RLRs) are a family of DEAD box helicases
that play a crucial role in the innate immune response to viral
infections by detecting the presence of viral RNA in the cytosol.
RIG-I and MDA5 are the two prototypical members of the
RLR family (63). Upon sensing viral RNAs, RLRs dimerize and
interact with mitochondrial antiviral signaling adaptor (MAVS,
a.k.a. IPS-1, or VISA), with the subsequent formation of a
complex that includes among others TRAF2, TRAF3, TRAF5,
and TRAF6 [(64); (65), p. 3; (66)]. TRAF proteins then recruit
various downstream signaling proteins that culminate in the
activation of several transcription factors, including IRF3, NF-κB,
and MAPKs.

RIG-I/MDA5 employ TRAF3 to induce IRF3-mediated IFN-
I production. Mechanistically, TRAF3 is recruited by MAVS,
where it catalyzes its own K63 polyubiquitination followed
by recruitment and subsequent activation of TBK1 and IKKε

(Figure 1B) (67). TRAF2 and TRAF5 play a crucial role in
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mediating NF-κB activation after RLRs bind their viral PAMPs,
albeit the mechanism remains poorly understood (64, 68).
TRAF6 can also be recruited via MAVS, where it activates
the TBK1/IKKε/IRF7 as well as the MAPKs/AP-1 signaling
axes (Figure 2) (66, 69). Intriguingly, the RIG-I-MAVS-TRAF6
signaling axis leads to IKKβ-dependent phosphorylation of NF-
κB (70). Furthermore, RIG-I-MAVS-TRAF6 signaling induces
K63-ubiquitination of Beclin-1, a critical step for inducing
autophagy (71). Finally, TRAF6 interacts with Ubiquitin-specific
protease 4 (USP4) to induce NF-κB activation following RLR-
simulation (72). This is achieved via targeting of TRAF6 for
K48-linked deubiquitination.

Regulation of RLR Signaling by Modulating
TRAF Function or Its Interactions
During bacterial infections, the E3 ligase HCTD3 adds K63-
linked ubiquitin chains to TRAF3, which enhances the activation
of the TBK1/IKKε complex and subsequent production of
IFN-Is (73). Conversely, several deubiquitinases, including
OTUB1, OTUB2, DUBA, and HSCARG, have been shown to
downregulate RLR-mediated IFN-I production by removing
K63-linked polyubiquitin chains from TRAF3 or TRAF6
[(74, 75), p. 1; (76)]. MCPIP1, which is known to inhibit
JNK and NF-κB signaling by deubiquitinating several TRAFs
[see above; (31)], has been recently shown to negatively
regulate IFNβ production. Overexpression studies showed
that MCPIP1 disrupts the interaction between TRAF3, TBK1,
and IKKε, as shown by co-immunoprecipitation, and thereby
inhibiting the phosphorylation and translocation of IRF3 into
the nucleus (77). There was no evidence to show that this
process requires the deubiquitinase activity of MCPIP1. Another
deubiquitinase, OTU deubiquitinase 1 (OTUD1), has also
been demonstrated to attenuate IFN-I production following
RIG-I activation by viral RNAs (78). Mechanistically, OTUD1
deubiquitinates and stabilizes the ubiquitin ligase, Smurf1,
which then targets the MAVS/TRAF3/TRAF6 signalosome by
mediating K48-linked polyubiquitination and the subsequent
degradation of MAVS, TRAF3, and TRAF6 (78). Parkin
is another ubiquitin ligase that targets RLR signaling by
promoting K48-linked polyubiquitination of TRAF3 and
reducing its stability (79). An interesting study demonstrated
that linear ubiquitination of NEMO promotes its interaction
with TRAF3, which in turn, disrupts the recruitment of TRAF3
to the RIG-I/MAVS complex leading to diminished IFN-I
expression (80).

THE ROLE OF TRAFs IN STING SIGNALING

In addition to cytosolic sensors of RNA, DNA sensors in
the cytosol are equally crucial in detecting and mounting an
inflammatory response against viral and bacterial pathogens.
Stimulator of Interferon Genes (STING) is activated directly
by second messengers like bacterial cyclic dinucleotides
(e.g., c-diAMP and c-diGMP) (81–83) or by cellular cyclic
GMP-AMP (cGAMP), which is produced by cyclic guanosine
monophosphate (GMP)-adenosine monophosphate (AMP)

synthase (cGAS) upon sensing cytosolic DNA (84). Activation of
STING leads to an effective inflammatory response which include
the activation of the TBK-1/IRF3 and NF-κB axes. TRAF3 and
TRAF6 have been shown to enhance STING-mediated NF-
κB and IFN-β promoter activity, albeit in an overexpression
system in 293 cells (85). Both TRAF3 and TRAF6 appear to
interact with STING (85, 86). Recently, an alternative STING
pathway has been revealed in keratinocytes in response to DNA
damage. This alternative STING signaling complex includes the
tumor suppressor p53 and TRAF6, whereby TRAF6 catalyzes
K63-polyubiquitination of STING and activates NF-κB (87).
An elegant study by Genhong Cheng’s group recently showed
that the alternative NF-κB inducing kinase (NIK) can associate
with STING and enhance its activation via an alternative NF-κB
pathway-independent mechanism (88). Interestingly, they
showed that TRAF3, unlike its positive role in RNA-induced
IFN-I production, plays an opposite role in the DNA pathway
and inhibit IFN-I production by suppressing NIK expression
(88).

PERSPECTIVES AND FUTURE
DIRECTIONS

There continues to be a great interest in understanding how
TRAFs regulate innate immune signaling. Specifically, novel
mechanisms have been recently identified to regulate TLR, NLR,
and RLR pathways by modulating the ubiquitination status of
TRAFs, their stability or their function. However, as most of these
regulators seem to be non-redundant, investigating additional
novel regulators, and theirmechanism of action remains an active
area of investigation.

Each individual TRAF protein plays several, sometimes
contradictory, roles that are pathway and/or cell specific. For
example, a particular TRAF protein might induce lymphocyte
survival and maturation while inhibiting a certain inflammatory
pathway. Furthermore, most TRAFs function as E3 ligases as
well as adapter proteins. Therefore, TRAFs are poor candidates
for novel therapies since targeting a TRAF protein could lead
to unintended consequences. For these reasons, future studies
should focus on assessing the various roles of each TRAF
protein in isolation from its other functions. This is especially
important when designing therapies for complex inflammatory
and autoimmune diseases by targeting TRAFs.
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