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Abstract

Dendritic cells (DCs) are major antigen presenting cells that can efficiently prime and activate 

cellular immune responses. Delivering antigens to in vivo DCs has thus been considered as a 

promising strategy that could allow us to mount T cell-mediated therapeutic immunity against 

cancers in patients. Successful development of such types of cancer vaccines that can target in vivo 
DCs, however, requires a series of outstanding questions that need to be addressed. These include 

the proper selection of which DC surface receptors, specific DC subsets and DC activators that can 

further enhance the efficacy of vaccines by promoting effector T cell infiltration and retention in 

tumors and their actions against tumors. Supplementing these areas of research with additional 

strategies that can counteract tumor immune evasion mechanisms is also expected to enhance the 

efficacy of such therapeutic vaccines against cancers. After more than a decade of study, we have 

concluded that antigen targeting to DCs via CD40 to evoke cellular responses is more efficient 

than targeting antigens to the same types of DCs via eleven other DC surface receptors tested. In 

recent work, we have further demonstrated that a prototype vaccine (anti-CD40-HPV16.E6/7, a 

recombinant fusion protein of anti-human CD40 and HPV16.E6/7 protein) for HPV16-associated 

cancers can efficiently activate HPV16.E6/7-specific T cells, particularly CD8+ T cells, from the 

blood of HPV16+ head-and-neck cancer patients. Moreover, anti-CD40-HPV16.E6/7 plus 

poly(I:C) can mount potent therapeutic immunity against TC-1 tumor expressing HPV16.E6/7 

protein in human CD40 transgenic mice. In this manuscript, we thus highlight our recent findings 

for the development of novel CD40 targeting immunotherapeutic vaccines for HPV16-associated 

malignancies. In addition, we further discuss several of key questions that still remain to be 

addressed for enhancing therapeutic immunity elicited by our prototype vaccine against HPV16-

associated malignancies.
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Dendritic cells (DCs) are the major antigen presenting cells (APCs) that can efficiently 

cross-prime antigen-specific CD8+ T cells [1, 2]. Such functional specialty in turn makes DCs 

the ideal cellular targets for the rational design of vaccine against cancers. In line with these 

notions, Bonifaz et al. demonstrated that antigen targeting to in vivo DCs via DEC-205 

using conjugates of anti-DEC-205 and antigen is far more efficient than antigen alone at 

eliciting antigen-specific cellular immunity [3].

For more than a decade after the initial report on DC targeting vaccines [3], groups of 

scientists have been trying to optimize DC-targeting vaccines by delivering antigens to 

different DC surface receptors. These receptors include c-type lectins (e.g., DEC205, DC-

SIGN, CD207, LOX-1, DC-ASGPR, Dectin-1, DCIR, DCIR2, CLEC6, CLEC9A, and 

CLEC12A) [3–22], as well as non-lectin receptors, including CD40 [22–26], mannose 

receptor [27], and integrins [28]. Antigens delivered to DCs via these receptors have been 

shown to elicit certain levels of antigen-specific CD8+ CTL responses in vitro in humans 

and/or in vivo in mice or non-human primates (NHPs). However, it remains unclear which 

targeted receptors are the most efficient at priming and boosting antigen-specific CD8+ and 

CD4+ T cell responses. Finding a specific DC surface receptor through which potent T cell 

responses, particularly CD8+ T cell responses, can be elicited is fundamental for the rational 

design and development of effective DC-targeting vaccines against cancers.

In our previous study [29], we tested 11 different human DC surface receptors (CD40, 

LOX-1, Dectin-1, DEC-205, DC-ASGPR, DC-SIGN, DC-SIGN/L, DCIR, CLEC6, 

MARCO, and CD1d) for their ability to elicit antigen-specific CD8+ T cell responses. We 

found that CD40 was the most efficient at both priming and boosting antigen-specific 

functional CD8+T cell responses in a human in vitro system. Interestingly, however, lectin-

like receptors (LOX-1 and Dectin-1) were more efficient than CD40 at eliciting antigen-

specific CD4+ T cell responses in a human in vitro system. In vivo data generated in mice 

also showed that CD40 was more efficient than Langerin at eliciting antigen-specific CD8+ 

T cell responses; whereas Langerin, another lectin-like receptor, was more efficient than 

CD40 at eliciting antigen-specific CD4+ T cell responses. Although antigens fused to anti-

CD40 and anti-Langerin antibodies may not target the same subsets of DCs in mice, these 

data further support our conclusion that antigen targeting to DCs via CD40 is an efficient 

way to elicit antigen-specific CD8+ T cell responses.

We further investigated the functional differences between CD40 and lectins in antigen 

presentation to CD8+ and CD4+ T cells by examining the subcellular and intracellular 

trafficking of the three different receptor-bound mAbs in DCs. Anti-CD40 mAb was present 

mainly on the cell membrane and in early endosomal compartments, which likely 

contributed to the enhanced antigen cross-presentation to CD8+ T cells [23, 24]. On the other 

hand, anti-LOX-1 and anti-Dectin-1 localized to both the early and late endosomal 

compartments. These late endosomal compartments are less efficient for antigen cross-

presentation due to a higher concentration of lysosomal enzymes that degrade antigens 

before they can escape into the cytosol. They are still able to contribute to antigen cross-

presentation, especially when their proteolysis is inhibited [24]. We also found that a large 

fraction of anti-CD40 mAb remained at the plasma membrane, whereas the majority of both 
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anti-LOX-1 and anti-Dectin-1 mAbs were rapidly internalized into endosomal vesicles. Slow 

internalization to early endosomes or rapid antigen recycling, as described previously [23, 24], 

could result in increased antigen stability, followed by prolonged antigen presentation and 

enhanced CD8+ T cell responses. In line with this, we found that CD40 targeting leads to 

greater as well as prolonged antigen cross-presentation to CD8+ T cells compared to LOX-1 

or Dectin-1 targeting.

To move forward our efforts for the development of CD40-targeting vaccines against cancer, 

we generated multiple recombinant proteins of humanized anti-CD40 antibody carrying 

different tumor-associated antigens (TAAs), including prostate-specific antigens and 

HPV16.E6/7 protein, as prototype vaccines. In our recent studies [29, 30], we have further 

demonstrated the proof of concept that strongly support the clinical development of CD40-

targeting therapeutic vaccines for HPV16-associated cancers using our prototype vaccine, 

anti-CD40-HPV16.E6/7 protein.

Studies have shown that 79 million people are infected with HPV, with 14 million new cases 

of infections each year in the United States [31, 32]. Of the more than 150 different types of 

HPV [33], high-risk HPV strains (HPV16 and 18) are strongly associated with many cancers 

of the cervix, vagina, vulva, penis, and anus [34, 35]. Up to 22% of adults are HPV16-

seropositive, but most primary infections are cleared without sequelae [36–38]. However, in a 

small but significant proportion of individuals, their immune systems fail to eradicate the 

virus and it becomes latent. Such persistent infection can lead to cancers. A recent U.S. 

population-based study conducted by the Centers for Disease Control and Prevention shows 

that 66% of cervical cancers, 55% of vaginal cancers, 79% of anal cancers, and 62% of 

oropharyngeal cancers are attributable to HPV16 or 18. Among these cancers, HPV-

associated head-and-neck cancers, including oropharyngeal squamous cell carcinomas, have 

recently risen dramatically in men under 50 years old; whereas the incidence of HPV-

negative oropharyngeal cancers has decreased [39]. Although many of the HPV-positive 

tumors can be cured with modern multidisciplinary treatment approaches, development of 

new and effective therapeutic vaccines against HPV-associated malignancies is of 

importance to bring better clinical benefit to cancer patients. Currently available 

prophylactic vaccines with viral capsid proteins are not effective for the treatment of HPV-

associated cancer [40].

Malignant transformation of HPV-infected cells is driven by the products of HPV 

oncoproteins E6 and E7 (E6/7), which inactivate p53 and the retinoblastoma tumor 

suppressor genes [41]. All HPV-infected cells constitutively express TAAs of viral origin, 

such as HPV E6/7. As a result, E6/7 are fitting target TAAs for evoking HPV-specific 

cellular immune responses, particularly CD8+ cytotoxic T lymphocytes (CTLs), which are 

one of the major tumoricidal effector cell types. Multiple candidate vaccines targeting E6/7 

are currently under development, including E6- and/or E7-derived peptide [42–45], 

protein [46, 47], plasmid [48, 49] and live-vectored vaccines [50–53]. Nevertheless, potential 

safety concerns for some of these vaccine models, especially for immunocompromised 

individuals, and the overall weak CD8+ CTL-mediated immunity-remain major challenges 

in developing a safe and effective vaccine against HPV-associated malignancies [54–56].
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Critical findings in our recent study [30] with a prototype vaccine for HPV16-associated 

malignancies, anti-CD40-HPV16.E6/7, include that it can evoke HPV16.E6/7-specific CD8+ 

and CD4+ T cell responses in head-and-neck cancer patients in vitro and in human CD40 

transgenic (hCD40tg) mice in vivo. The combination of anti-CD40-HPV16.E6/7 and 

poly(I:C) efficiently primed HPV16.E6/7-specific T cells, particularly CD8+ T cells, in 

hCD40tg mice and could thus mount therapeutic immunity against challenged tumors. The 

observed therapeutic immunity evoked with the prototype vaccine was associated with the 

frequency of HPV16.E6/7-specific CD8+ T cells in the tumors but not in the blood. Taken 

together, these data suggest that CD40-targeting vaccines for HPV-associated malignancies 

can provide a highly immunogenic platform with a strong likelihood of clinical benefit. Data 

from this study offer strong support for the development of CD40-targeting vaccines for 

other cancers in the future.

To achieve our ultimate goals with this prototype therapeutic vaccine for HPV16-associated 

malignancies, however, we still need to consider several factors that could also determine the 

success or failure of clinical development of this prototype vaccine. These factors include 1) 

selection of proper adjuvant, 2) route of immunization, 3) finding strategies to promote 

effector CD8+ T cell migration into mucosal tissues, and 4) finding strategies to efficiently 

counteract tumor immune evasion mechanisms. Throughout our studies [30], we have used 

poly(I:C) as an adjuvant, and this decision was based on our human in vitro data [30] and 

mouse in vivo data from previous studies [57, 58]. Recent studies in NHPs and humans have 

also shown that poly(I:C) and it’s derivative poly-ICLC are safe [59] and can thus be used as 

an adjuvant for our prototype vaccine for HPV16-associated cancers. In our study [30], we 

also found that poly(I:C) in montanide resulted in significantly enhanced HPV16-E6/7-

specific CD4+ T cell responses, although there was no significant change in the magnitude 

of CD8+ T cell responses. If this is the case in humans, montanide might improve the 

efficacy of this vaccine model in patients because of the critical roles of CD4+ T cells in the 

maintenance of CD8+ CTLs [60–62]. Other DC activators, including toll-like receptor (TLR) 

7/8 ligands, particularly in the form of conjugates to the prototype vaccine, might also 

promote CD8+ T cell-mediated immunity, as described [63, 64].

Also, the route of immunization could be important in patients, although s.c., i.p., and i.m. 

delivery of anti-CD40-HPV16.E6/7 plus poly(I:C) resulted in similar outcomes in mice. 

Alternatively, an experimental protocol using NHPs may provide us with better insights for 

the selection of an optimal immunization route for evoking strong CD8+ T cell responses.

It will also be important to test whether this vaccine model is capable of evoking mucosal 

CD8+ CTL-mediated immunity. This might be one of the most important and relevant tasks 

for the successful development of vaccines against HPV-associated cancers in the mucosa. 

This question may need to be addressed in the context of selecting the optimal immunization 

route as well as choosing appropriate adjuvants.

Lastly, the efficacy of this vaccine model might be improved by harnessing tumor immune 

evasion mechanisms. Although HPV-induced tumors in different mucosal tissues might 

possess distinct inhibitory mechanisms in patients (and these need to be further studied), 

recent data suggest that antibodies specific for immune checkpoint inhibitors, including 
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CTLA-4, PD-1, and PD-L1 [65–68], might also improve the efficacy of this vaccine in 

patients with HPV-associated malignancies.

In summary, data from our recent studies [29, 30] strongly support the continued clinical 

development of a CD40-targeting therapeutic vaccine for HPV16-associated malignancies. 

However, it is also important to note that the chance of successful development of this 

vaccine will also be largely dependent on multiple factors that have been discussed in this 

manuscript. Nonetheless, data from our and other recent studies [22–24, 29] support the 

development of CD40-targeting vaccines against other cancers.
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Abbreviations

HPV human papillomavirus

TAA tumor-associated antigen

CTL cytotoxic T lymphocyte

DC dendritic cell

APC antigen-presenting cell

NHP non-human primate

mAb monoclonal antibody

MHC major histocompatibility complex

Poly(I:C) polyinosinic:polycytidylic acid

PBMC peripheral blood mononuclear cell

hCD40tg human CD40 transgenic

TLR toll-like receptor
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