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Mammary gland dysplasia and postpartum hypogalactia often occur in humans and in
the livestock breeding industry. However, their underlying mechanisms are not clear
yet. Mifepristone, which has a high affinity for progesterone (P4) and glucocorticoid
receptors, was exploited here to induce the disorders of mammary gland development
and lactation. Four strategies were devised for treating pregnant mice with mifepristone.
In the first strategy, mice were administered 1.20 mg mifepristone/kg body weight (BW)
on pregnancy day 4 (Pd4). In the second strategy, mifepristone was administered to
mice twice, with 1.20 mg/kg BW on Pd4 and 0.40 mg/kg BW on Pd8. In the third
strategy, mice were treated with a single dose of 0.40 mg mifepristone/kg BW on Pd8.
In the fourth strategy, mice were administered 0.40 mg mifepristone/kg BW on Pd8
and 0.20 mg mifepristone/kg BW on Pd12. The results suggested that mifepristone
administration at the dose of 1.20 mg/kg BW on Pd4 caused significant reduction in
milk production on lactation day 1 (Ld1), Ld2, and Ld3, as assessed using a weigh-
suckle-weigh assay. Mammary β-casein expression, milk yields, litter growth rates, gland
structure, and serum concentrations of 17-β estrogen (E2), P4, prolactin (PRL), growth
hormone (GH), corticosterone (CORT) and oxytocin (OT) as well as the receptors of
these hormones were determined during pregnancy or lactation after performing the first
(Pd4) strategy. The results demonstrated that mifepristone administration during early
pregnancy decreased β-casein expression, milk yields and litter growth rates, induced
fewer alveoli, enlarged alveolar lumina, and altered the levels of E2, P4, PRL, GH, CORT,
and OT as well as the mRNA expression of these hormonal receptors during pregnancy
or early lactation. The present study on pregnant mice treated with mifepristone offers an
innovative murine model to study the mechanism underlying mammary gland dysplasia
and postpartum hypogalactia.
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INTRODUCTION

Breast milk is the first and the ideal nutritional option for
infants (Czosnykowska-Lukacka et al., 2018). The insufficient
production of colostrum during the first 3 days of lactation after
parturition can seriously affect the nutrition and the growth
of infants. In pigs, the syndrome accompanied with a primary
clinical sign of the sow’s inability to produce sufficient milk
to meet the nutritional requirements of piglets was named
as postpartum dysgalactia syndrome (PDS) or postpartum
hypogalactia syndrome (PHS). These syndromes in sows are
observed almost within the first 3 days postpartum and can cause
decreased growth performance, depression, or diarrhea in piglets
(Marchant et al., 2000; Bilkei, 2005; Klopfenstein et al., 2006;
Preissler et al., 2012). In cows and goats, these phenomenon are
called early hypogalactia, which could induce the malnutrition
or even death of their neonates. Nowadays, more attention is
being paid to postpartum hypogalactia, due to its harm to the
neonates and the breeding industry. Some studies have explored
the mechanisms of postpartum hypogalactia. Milk insufficiency
in mothers of hospitalized infants is often blamed on stress,
which interferes with the release of oxytocin (OT) and milk
ejection reflex (Nissen et al., 1998). In pig herds, factors that
influence the occurrence of hypogalactia or agalactia include
infectious diseases (e.g., mastitis or metritis) (Backstrom et al.,
1984; Kemper and Gerjets, 2009), stress (e.g., abrupt transfer
of dams) (Bäckström et al., 1984), poor management (e.g.,
parturition induction, feed allowance or nutritional imbalance)
(Goransson, 1989; Foisnet et al., 2011), or endocrine disorders
(Foisnet et al., 2010). However, all the factors above are likely to
disturb the entire endocrine system, which may adversely affect
the mammary gland development and lactation.

Mice are a good model for studying mammary gland
development and lactation. Several hormones play a key role
in regulating mammary gland development and lactation
in mice (Neville et al., 2002; Arendt and Kuperwasser,
2015). The reproductive and metabolic hormones, such as
estrogen, progesterone (P4), placental lactogen, prolactin
(PRL), OT, growth hormone (GH), glucocorticoids, thyroid
hormone and insulin, well coordinate and dominate mammary
gland development including ductal branching, alveolar bud
development and secretion during pregnancy or lactation
(Neville et al., 2002; Macias and Hinck, 2012; McNally and Stein,
2017). Estrogen and GH primarily regulate ductal morphogenesis
by binding to their receptors during puberty and pregnancy
in mice (Kleinberg et al., 2000; McBryan and Howlin, 2017).
A balance between P4 and PRL controls alveolar morphogenesis
during pregnancy in mice (Neville et al., 2002; Leehy et al.,
2018), while PRL, GH, glucocorticoids, thyroid hormone, and
insulin govern milk secretion in mice or rats (Vonderhaar and
Ziska, 1989; Flint and Gardner, 1994; Menzies et al., 2010).
Nevertheless, any imbalance in the levels of these hormones may
be closely related to problems in mammary gland growth or milk
secretion in domestic animals (Barnes et al., 1985). For instance,
a previous study has reported greater plasma concentrations of
P4 and less of PRL in sows that produced a low yield of colostrum
compared to those produced a high yield of colostrum before

parturition (Foisnet et al., 2010). A lower PRL/P4 ratio 24 h
pre-partum, characterized by a higher P4 concentration and
a lower PRL concentration peripartum, led to the decreased
colostrum yield in primiparous sows, and vice versa (Loisel et al.,
2015). Higher concentrations of serum cortisol were reported in
sows with mastitis metritis agalactia (MMA) syndrome up to day
10 postpartum than that in healthy sows (Bilkei, 2005).

Mifepristone (RU486) is a synthetic steroid with a strong
affinity to P4 receptor (PR) and glucocorticoid receptor (GR)
and, to a lesser extent, to the androgen receptor (AR) (Philibert
et al., 1985). However, mifepristone interacts with PR and GR
in a different manner than P4, occupying the receptor without
stimulating P4-related gene transcription (Spitz and Bardin,
1993). It has been reported that short-term administration
of mifepristone decreased luteinizing hormone (LH) in the
follicular and luteal phases of the cycle, whereas long-term
administration of mifepristone (i.e., 3 months) increased the
secretion of LH in human (Shoupe et al., 1987; Garzo et al.,
1988; Permezel et al., 1989; Kettel et al., 1991). Researchers
found that mifepristone stimulated the secretion of PGF2α and
reduced its metabolism both in vitro and in vivo (Smith and
Kelly, 1987; Norman et al., 1991). As PGF2α could induce
functional regression and cell apoptosis of the corpus luteum in
rodents (Wang et al., 2003), and could reduce the number of
primary (growing) follicles of pregnant mice both in vivo and
in vitro (Peluso et al., 1980), this may directly decrease serum
levels of P4 and E2 after short-term mifepristone administration.
Since being discovered in 1980, mifepristone has generated
immense interest in clinical application and in research. Until
now, the clinical use of mifepristone was mainly confined to
termination of early pregnancy (Couzinet et al., 1986; Birgerson
and Odlind, 1987; Spitz et al., 1998; Sonalkar et al., 2019).
Lately, mifepristone is being extensively tested for induction of
labor (Jindal et al., 2019), treatment of endometriosis or uterine
leiomyomata (Kettel et al., 1996; Eisinger et al., 2003), ovarian
or prostate cancer (Goyeneche et al., 2007; Ligr et al., 2012),
Cushing’s syndrome and major psychotic depression (Blasey
et al., 2011). Toxicology studies on animal exposure up to
6 months suggested that mifepristone had no mutagenic potential
and no toxic effect up to 1000 mg/kg dose in acute administration
in several species (Baulieu, 2013). In sub-chronic toxicity studies
in rodents and monkeys, daily doses of mifepristone up to 200
or 125 mg/kg BW displayed no toxicity but antihormonal effects.
For example, the anti-progesterone effects were frequent estrus,
decrease in uterine weight, inadequate mammary development,
suppression of menstruation, and less serum progesterone in
monkeys; anti-glucocorticoid effects included increased kidney
and adrenal weights in rats and monkeys as well as higher serum
concentrations of adrenocorticotropic hormone (ACTH) and
cortisol in monkeys; while, anti-androgenic effects included a
lower weight of prostates and seminal vesicles weights in male
rats. However, the surviving fetuses of rats and mice showed no
anomaly when mifepristone was administered at a sub-abortive
dosage (Sitruk-Ware and Spitz, 2003; Baulieu, 2013).

It is difficult to retrospectively investigate the changes in
hormone profiles during gestation or lactation, and to investigate
their impact on mammary gland development and lactation
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in animals. Therefore, to clarify the mechanisms underlying
mammary gland dysplasia and postpartum hypogalactia, it is
imperative to establish an animal model, in which the endocrine
system is disrupted during pregnancy and early lactation. Several
murine hormone receptor knock-out models (e.g., receptors
of 17β-estrodiol (E2), P4, and glucocorticoids) were used
for studying the functions of hormones and their receptors.
However, these gene knock-out animals exhibited significant
defects in multiple tissues (e.g., ovary, uterus, mammary gland,
or lung), or had extremely low survivals rates (Cole et al.,
1995; Lydon et al., 1995; Bocchinfuso and Korach, 1997). Since
mifepristone treatment during early pregnancy decreased the
levels of 17 β-estradiol (E2) and P4 in mice and humans (Chen
et al., 2015; Baev et al., 2017), it was exploited in the present study
to disturb the hormone balance, and to establish a murine model
for mammary gland dysplasia and postpartum hypogalactia. The
milk yields, pup growth, mammary histology, serum hormones,
and hormone receptors were assessed to evaluate the model
and to explain the mechanisms of milk insufficiency after
mifepristone treatment. This murine model would be valuable
in investigating how alterations in several hormones lead to
hypogalactia during early lactation in livestock.

MATERIALS AND METHODS

Animals
Specific-pathogen-free (SPF) grade Kunming female virgin
mice aged approximately 7 weeks (Laboratory Animal Quality
Certificate Number: 42000600031575) were provided by
Hubei Provincial Center for Laboratory Animal Research,
Wuhan, Hubei Province, China. These mice were housed in
a temperature-controlled (22 ± 2◦C) room with a relative
humidity of 50–70%. They received food pellets and water
ad libitum. One week was allowed for their adaption to the
surrounding environment. Female mice (31 ± 1 g) were mated
with males, and the mating was confirmed by the presence of
a vaginal plug. The day when the vaginal plugs were observed,
was counted as day 1 of pregnancy (Pd1), and the day following
the parturition, was considered as day 1 of lactation (Ld1).
Females were caged individually during the perinatal period. All
experimental procedures were approved by Hubei Provincial
Center for Laboratory Animal Research, and were performed
strictly in accordance with the guidelines of Institutional Animal
Care and Use Committee of Huazhong Agricultural University.

Experimental Groups and Treatments
Mifepristone (≥95% purity) was purchased from Beijing Solarbio
Science & Technology Co., Ltd. (Beijing, China), and was
dissolved in 1, 3-propanediol to prepare a stock solution of
0.01 mg/mL. A previous study in mice reported that the ducts
from the nipples and buds were beginning to appear along
the smaller ducts on Pd2 or Pd3; on Pd6, alveoli formation
was taking place along all the ducts; from Pd7 to Pd12, the
growth and budding of mammary gland proceed steadily, and
the alveoli developed thickly along ducts until Pd12 (Cole,
1933). Researchers verified that administration of mifepristone

at doses of 1.25–2.50 mg/kg BW on Pd4 had little effect on the
litter size in mice (Huang et al., 2005; Lv et al., 2012; Chen
et al., 2015), whereas when mifepristone was administrated at
doses of 0.30–2.00 mg/kg and 0.401–2.50 mg/kg, respectively, on
Pd8.5 and on Pd14–19, it induced more than 60% of abortions
(Szekeres-Bartho et al., 1997; Lv et al., 2012). Based on the time
points of mammary gland development, and the dose range of
mifepristone that induce abortion in the studies described above,
we administrated mifepristone on Pd4 (0.80, 1.20, 1.60, 2.00, and
2.40 mg/kg BW), Pd8 (0.20, 0.40, 0.60, 0.80, and 1.00 mg/kg BW),
and Pd12 (0.10, 0.20, 0.30, 0.40, and 0.50 mg/kg BW) in a pilot
study to identify the optimum mifepristone dosage for these time
points. The results indicated that mifepristone treatment at doses
of 1.20, 0.40, and 0.20 mg/kg BW, respectively, on Pd4, Pd8, and
Pd12 were most suitable. As the ducts and alveoli were growing
on Pd4 and Pd8, while almost completely developed on Pd12, we
designed four strategies to evaluate the effect of mifepristone on
mammary gland development. These included Pd4, Pd4 + Pd8,
Pd8 and Pd8+ Pd12.

Using these strategies, pregnant mice were subjected to
mifepristone treatments (Figure 1). Each strategy was an
independent experiment. During each strategy, mated female
mice with the same pregnancy day were caged together and
were randomly divided into a control group and a mifepristone
group on the day first being treated with 1, 3-propanediol
or mifepristone, respectively. Control mice were treated on
the same day with mifepristone mice during each strategy.
All treatments were performed at a fixed time of a day (9:00
am–10:00 am). On the day of the experiment, control group
were injected subcutaneously with 0.10 mL of only solvent
(1, 3-propanediol), while mifepristone group received specific
dosage of mifepristone in the same volume of the solvent.
Briefly, for Pd4 treatment, control group and mifepristone group
were subcutaneously injected with 0.10 mL of 1, 3-propanediol
and 1.20 mg mifepristone/kg BW, respectively, on Pd4. For
Pd4+ Pd8 treatment, control mice were subcutaneously injected
with 0.10 mL of 1, 3-propanediol on Pd4 and on Pd8, respectively,
while mifepristone-treated mice were firstly subcutaneously
injected with 1.20 mg mifepristone/kg BW on Pd4, followed with
a second subcutaneous injection of 0.40 mg mifepristone/kg BW
on Pd8. For Pd8 treatment, control group and mifepristone group
were subcutaneously injected with 0.10 mL of 1, 3-propanediol,
and 0.40 mg mifepristone/kg BW, respectively, on Pd8. For
Pd8 + Pd12 treatment, control group were subcutaneously
injected with 0.10 mL of 1, 3-propanediol on Pd8 and on Pd12,
respectively, and mifepristone-treated mice were subcutaneously
injected with 0.40 mg mifepristone/kg BW on Pd8, followed
with a second subcutaneous injection of 0.20 mg mifepristone/kg
BW on Pd12. Each group had seven experimental replicates
during each strategy. On parturition, the litter sizes for dams
from control and mifepristone groups were recorded and were
compared as in Table 1.

Milk Yield Estimation
After parturition, body weights of dams were recorded on Ld1
(control, 44.84 g ± 1.21; mifepristone, 44.63 g ± 1.08) and the
dams received food pellets and water ad libitum. Each mother
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FIGURE 1 | The strategy of mifepristone administration to the pregnant mice on pregnancy day 4 (Pd4), Pd8, or Pd12. Pd4: mice were treated with 1, 3-propanediol
or mifepristone on Pd4; Pd4 + Pd8: mice were treated with 1, 3-propanediol or mifepristone on Pd4 and Pd8, respectively; Pd8: mice were treated with 1,
3-propanediol or mifepristone on Pd8; Pd8 + Pd12: mice were treated with 1, 3-propanediol or mifepristone on Pd8 and Pd12, respectively.

TABLE 1 | The effect of mifepristone on the litter size. Pd4, mice were treated with
1, 3-propanediol or mifepristone on Pd4; Pd4 + Pd8, mice were treated with 1,
3-propanediol or mifepristone on Pd4 and Pd8, respectively; Pd8, mice were
treated with 1, 3-propanediol or mifepristone on Pd8; Pd8 + Pd12, mice were
treated with 1, 3-propanediol or mifepristone on Pd8 and Pd12, respectively.

Groups n Pd4 Pd4 + Pd8 Pd8 Pd8 + Pd12

Control 7 14 ± 2.16 13 ± 1.67 13.67 ± 3.21 13.8 ± 2.95

Mifepristone 5 14 ± 2.44 14.2 ± 2.86 15.8 ± 1.83 11.0 ± 1.58

was adjusted with 10 pups on Ld1. To preclude the factors, such
as heredity and body weight of the litters, which may affect
the determination of the milk yields or growth rate of pups,
two dams (one from control group, another from mifepristone
group) that littered within a 6-h interval were assigned to cross-
foster their pups. Briefly, each dam in the control or mifepristone
group nursed five of her own young and five from another
dam in mifepristone or control group. In addition, comparable
mean litter weights (control, 18.24 ± 1.04 g; mifepristone,
18.15 ± 0.61 g) between the control group and mifepristone
group, were maintained when we assigned the 10 pups at birth.
Milk yields during early lactation (Ld1 to Ld18) were measured
using a weigh-suckle-weigh method, slightly modified from
previous reports (Simons et al., 1987; Travers et al., 1996). Briefly,
the mother was separated from her pups in a separate clean box
for 3 h. Then the pups were weighed, allowed to suckle for 1 h,
and were weighed again. This procedure was repeated three times
each day over a 12 h period (8:00 am–8:00 pm).

The growth rate of the litter from Ld1 to Ld18 was assessed to
evaluate the effect of milk yields on pup growth. For this reason,
10 pups were assigned to each mother on Ld1, as described in
milk yields determination above. Body weights of pups were

measured and recorded daily between 9:00 and 10:00 a.m. and for
a total of 18 days, according to previous methods (Knight et al.,
1986; Wilde et al., 1992).

qRT-PCR
The total RNA from mammary gland was prepared using TRIzol
reagent and was reverse transcribed into the first strand cDNA
using the TransScript First-Strand cDNA Synthesis SuperMix
kit (Transgen Biotech, Wuhan, China). Quantitative real-time
PCR was performed using a LightCycler 96 Real-Time PCR
system (Roche). SYBR Premix Ex TaqTM II was used to
detect gene expression of β-casein, E2 receptor α (ERα), P4
receptor (PR), PRL receptor (PRLR), GH receptor (GHR), CORT
receptor (CORTR), and OT receptor (OTR). Glyceraldehyde-
3-phosphate dehydrogenase (GAPDH) served as an internal
control (Kobayashi et al., 2017). The primer sequences for each
gene are listed in Table 2. To confirm that the primers are
amplifying the correct genes, all PCR products were cloned to
the PMD18-T vector (TaKaRa, Dalian, China) for sequencing
(Tsingke Biological Technology Co., Ltd., Wuhan, China).
Transcript levels of these genes in the mifepristone group relative
to the control group was quantified with the 2−1 1 Ct method,
where 11Ct = 1Ct (mifepristone group) – 1Ct (control group);
1Ct = Cttargetgene – CtGAPDH.

Western Blot Analysis
Mammary tissue was lysed in RIPA lysis buffer (1g:9 mL,
Beyotime, Beijing, China) containing 1% phenylmethylsulfonyl
fluoride (PMSF) protease inhibitor. Proteins were separated
using 12% SDS-PAGE gel and were transferred to 0.45 µm
polyvinylidene difluoride (PVDF) membrane (Millipore,
Billerica, MA, United States). Membranes were blocked in
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TABLE 2 | Primer sequences for real-time PCR in mouse mammary glands.

Gene Accession number Primers Product size (bp)

Forward Reverse

β-casein NM_009972.2 tccagcctattgctcaaccc aggaggggcatctgtttgtg 121

ERa NM_007956.5 tgtgccgtgtgcaatgacta gcaactcttcctccggttct 159

PR NM_008829.2 ctggctgtcactatggcgtg cttacgacctccaaggaccat 191

PRLR NM_011169.5 tgcacttgcttacatgctgc tggggccactggttttgtag 227

GHR NM_010284.3 gtttgaccgggattcgtgga cgttgtctggatctcacccg 217

CORTR DQ504162.1 tcaaggtttctgcgtcttcaccct ttccccatcacttttgtttcggtc 232

OTR NM_001081147.2 tgtgctgcacgcctttcttc ggcccgtgaagagcatgtag 147

GAPDH NM_008084 gagcgaccccactaacatc gcggagatgatgaccctttt 144

5% BSA for 2 h, incubated with primary antibody at 4◦C
overnight, washed in TBST, incubated with HRP-conjugated
secondary antibody at room temperature for 2 h, and were
finally visualized through ECL (Beyotime, Beijing, china).
Mouse primary anti-β-casein antibody (1:700, Santa Cruz
Biotechnology, United States), rabbit polyclonal primary
anti-β-actin antibody (1:200, Servicebio, Wuhan, China) and
HRP-conjugated goat anti-mouse or -rabbit secondary antibody
(1:2000, Servicebio, Wuhan, China) were used. Considering that
the use of primary mouse β-casein antibody detected with an
anti-mouse secondary antibody in mouse tissue may produce the
non-specific background of IgG (25 kD), mammary gland from
8-week old female virgin mice was used as a negative control
(Youth) for β-casein expression. There were seven replicates
for each group in the western blot assay. Quantification of the
integrated optical identity (IOD) was performed by Image-Pro
plus 6.0 software (Media Cybernetics, Inc., Silver Spring, MD,
United States). The absolute IOD of β-casein was obtained by
subtracting IOD of non-specific IgG, from the total IOD of
β-casein, and the relative scales were calculated on the basis of
β-actin expression.

Whole-Mounting and Histological
Analysis
For whole mount analysis, the fourth mammary gland was
excised and spread on glass slides and fixed in Carnoy’s fixative
(100% ethanol:chloroform:glacial acetic acid, 6:3:1) overnight at
room temperature. They were then washed in 70%, 35% and 15%
ethanol for 15 min each, rinsed through a graded series of alcohol
followed by a wash in distilled water for 5 min, stained in carmine
alum for 6 h, washed in 70, 95, and 100% ethanol for 15 min each,
cleared in xylene, and mounted. Branches and alveolar buds were
observed under an Olympus SZX 16 stereoscopic microscope
(Olympus, Tokyo, Japan). As it was difficult to count the number
of ductal branches on Pd7, Pd10, Pd16, and Ld3, and mammary
alveoli on Ld3 clearly, we did not analyze them on these days.

For hematoxylin and eosin (H&E) staining, the fourth
mammary glands were fixed in 4% neutral polyformaldehyde,
washed, dehydrated, cleared and embedded in paraffin. They
were cut into 5-µm sections, dewaxed in xylene and rehydrated
through a graded series of alcohol, followed by a wash in
distilled water for 5 min. The sections were finally stained with

H&E (Servicebio, Wuhan, China). The diameters of the alveolar
on Ld3 were analyzed with the Image-Pro plus 6.0 software
(Media Cybernetics).

Hormone Analysis
Blood was collected from dams on Pd7, Pd10, and Pd16 at
10:00 am, while on Ld3, blood was collected at 9:00 pm as
dams were used for determining milk yields from 8:00 am–
8:00 pm. Blood was collected from the retro-orbital sinus of
with a pyrogenic- and endotoxin-free tube. Serum was collected
through centrifugation and stored at −80◦C. Serum E2 and P4
were assayed with commercially ELISA kits for detecting Human
E2, P4 (Beijing North Institute of Biotechnology Co., Ltd., Beijing,
China). Serum PRL, GH, corticosterone (CORT) and OT were
measured with Mouse PRL, GH, CORT and OT ELISA kits
(Nanjing Jiancheng Bioengineering Institute, Nanjing, China),
respectively. For E2 and P4 detection, intra- and inter-assay
coefficients of variation (CV) were <15%. For PRL, GH, CORT
and the OT immunoassay, the intra- and inter-assay CVs were
<10 and <12%, respectively. Detection limits for E2 and P4 were
≤40 pg/mL and 0.2 ng/mL, respectively. The detection limits for
PRL, GH, CORT, and OT were 2–600 ng/mL, 0.10–30 ng/mL,
0.51–50 ng/mL, and 51–500 pg/mL, respectively.

Statistics
Data were analyzed using the SPSS 17.0. Differences in milk
yields, mammary gland weight, β-casein expression, alveolar size,
body weight of pups, hormone concentrations, and hormone
receptors mRNA expression between control and mifepristone-
treated groups were determined with Student’s t-tests. All data
were represented as means ± SD. A value of P < 0.05 was
considered statistically significant.

RESULTS

Mifepristone Treatment During
Pregnancy Induced Milk Yield Reduction
on Early Lactation Days
Four different strategies were adopted for treating the pregnant
mice with mifepristone. There were no differences in the litter
sizes of dams between control group and mifepristone group
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FIGURE 2 | The effect of four different treatments with mifepristone during pregnancy on milk yields. (A–D) illustrated the milk yields from lactation day 1 (Ld1) to Ld3
after performing pregnancy day 4 (Pd4), Pd4 + Pd8, Pd8, and Pd8 + Pd12 strategy, respectively. Data are represented as means ± SD, ∗ indicates the milk yields in
mifepristone group are different from that of control group, ∗P < 0.05, ∗∗P < 0.01, ∗∗∗P < 0.001.

in each strategy (Table 1). Milk yields were calculated on Ld1,
Ld2, and Ld3 after parturition. As shown in Figure 2A, Pd4
treatment caused a decrease in milk yields of the mifepristone
group on Ld1, Ld2 and Ld3 (P < 0.0001, P = 0.003, and P = 0.015,
respectively), compared with those from control group. In the
Pd4 + Pd8 strategy, milk yields from the mifepristone group
were less than those from the control group on Ld1 and Ld2
(P = 0.001 and P = 0.013, respectively), but no different in milk
yield was found between two groups on Ld3 (Figure 2B). In
the Pd8 strategy, mifepristone-treated mice showed no change
in milk yields on Ld1 and Ld2, but exhibited a significant
reduction on Ld3 (P = 0.04) compared to those from the
control group (Figure 2C). In the Pd8 + Pd12 strategy, milk
yields of the mifepristone group were less on Ld1 and Ld3
than (P = 0.002 and P = 0.01, respectively), but on Ld2,
the milk yields were comparable with those in the control
group (Figure 2D).

In these four strategies, milk production reduced on Ld1,
Ld2, and Ld3 in the mifepristone-treated group from the Pd4
strategy, whereas in the other three strategies, this occurred only
on one or two of these days after mifepristone treatment. Owing

to its better efficacy in decreasing milk production for three
consecutive days after parturition, we selected the Pd4 strategy
for subsequent experiments.

Mifepristone Administration on Pd4
Decreased Mammary Gland Weight, Milk
Yields and Pup Growth During
Pregnancy or Early Lactation
The weight of mammary glands in mice from the mifepristone
group decreased on Pd7, Pd10, and Ld3 (P < 0.0001, P < 0.0001,
and P = 0.009, respectively), compared to that of controls
(Figure 3A). However, on Pd16, this difference was not seen.
Mifepristone administration caused a significant decrease in
both mRNA and protein levels of β-casein (P = 0.003 and
P = 0.018, respectively), in mice mammary glands on Ld3,
compared to those in solvent controls (Figures 3B,C). From
Ld1 to Ld18, mice in the mifepristone group produced less
milk than those in the control group (P < 0.05) (Figure 3D).
Further, from Ld5 to Ld18, pups weight gain in the mifepristone
group was lower than that of the control (P < 0.01); However,
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FIGURE 3 | Effects of mifepristone administration on pregnancy day 4 (Pd4) on mammary glands weight, β-casein expression, milk yields and litter growth rates
during pregnancy and early lactation. (A) The weight of the fourth mammary glands on Pd7, Pd10, Pd16, and lactation day 3 (Ld3) after mifepristone administration.
(B) qRT-PCR analysis of β-casein mRNA on Ld3. This experiment was repeated at least three times. (C) Western blot analysis for β-casein expression on Ld3. The
evaluation of β-casein relative to β-actin in two groups were calculated with integrated optical identity (IOD). (D) Milk yields of dams from Ld1 to Ld18 after
parturition, determined via weigh-suckle-weigh method. (E) Body weight gain in pups from Ld1 to Ld18. Data are represented as means ± SD, ∗ indicates the
difference between mifepristone group and control group, ∗∗P < 0.01, ∗∗∗P < 0.001.
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this difference in both groups was not seen from Ld1 to
Ld4 (Figure 3E).

Mifepristone Administration on Pd4
Affected Mammary Alveoli Formation
During Pregnancy and Early Lactation
Whole-mount analysis showed that there was no difference
in the number of alveolar buds between the control and
mifepristone groups on Pd7 (Figure 4A), whereas on Pd10 and
Pd16, the number of alveolar buds reduced in mifepristone-
treated mice compared to controls (P = 0.009 and P = 0.044,
respectively) (Figure 4A).

No difference was found in the morphology of alveoli
between two groups on Pd7 and Pd10 as seen in H&E
staining (Figure 4B). However, on Pd16, the alveoli in
the mifepristone-treated mice were disorganized compared
with those from controls (Figure 4B). On Ld3, histology
of the mammary glands showed an enlarged alveolar
lumen within which a few cells were disseminated in
mifepristone-treated mice as compared to the control group
(P < 0.05) (Figures 4B,C).

Mifepristone Administration on Pd4
Altered Hormone Levels During
Pregnancy and Early Lactation
As shown in Figure 5A, on Pd7, concentrations of E2 in the
mifepristone group decreased significantly (P = 0.001), and then
showed an increase on Pd10 and Pd16 (P < 0.0001 and P = 0.005,
respectively), but did not change on Ld3, compared to controls
(Figure 5A). Compared to controls, P4 levels in mifepristone
group showed a reduction on Pd7 and Pd10 (P < 0.0001 and
P = 0.001, respectively), but rose on Pd16 (P = 0.011). However,
PRL concentrations in the mifepristone group increased on Pd7
and Pd10 (P = 0.047 and P = 0.02, respectively), but decreased
on Pd16 (P = 0.048) compared to those in the control group.
On Ld3, there was no difference in P4 or PRL concentrations
between two groups (Figures 5B,C). Both GH and CORT levels
in the mifepristone group remained steady on Pd7 and Pd10,
but increased on Pd16 and Ld3 compared to those in the
control group (P < 0.01) (Figures 5D,E). Levels of OT in the
mifepristone-treated mice were lower on Pd7 and Pd10 (P = 0.016
and P = 0.025, respectively), but were higher on Pd16 and Ld3
(P = 0.005 and P < 0.0001, respectively), compared to those in
controls (Figure 5F).

Mifepristone Administration on Pd4
Altered Mammary mRNA Expression of
Hormonal Receptors During Pregnancy
or Early Lactation
The ERa mRNA expression in mifepristone group increased on
Pd7, Pd10, and Ld3 (P = 0.005, P = 0.006, and P < 0.0001,
respectively), when compared to that in the control group;
However, on Pd16, this difference disappeared between two
groups (Figure 6A). Similarly, on Pd7, Pd10, and Ld3, the PR
and PRLR mRNA levels increased in the mifepristone group

(P < 0.05) compared to those in controls, but again on Pd16,
this difference vanished (Figures 6B,C). The GHR mRNA levels
in the mifepristone group increased on Pd10 (P = 0.001) and
decreased on Ld3 (P = 0.021), but remained unchanged on Pd7
and Pd16 compared to that in controls (Figure 6D). However, the
CORTR mRNA expression in the mifepristone group decreased
on Pd7 (P = 0.001), but increased on Pd10, Pd16, and Ld3
(P = 0.001, P = 0.022, and P = 0.049, respectively), as compared
to that in controls (Figure 6E). Similarly, mifepristone treatment
caused a reduction in the OTR mRNA expression on Pd7
(P = 0.005), but an increase on Pd10, Pd16, and Ld3 (P < 0.0001,
P = 0.004, and P < 0.0001, respectively), compared to that in
controls (Figure 6F).

DISCUSSION

The current study demonstrated that mifepristone treatment
on mice with early pregnancy decreased milk yields, reduced
β-casein expression, curtailed the growth rate of litters, enlarged
the alveolar lumen, and altered the serum levels of E2, P4, PRL,
GH, CORT, OT as well as their receptors during pregnancy
and lactation, indicating the mammary gland dysplasia and
postpartum hypogalactia in the murine model. Previous studies
demonstrated the effect of mifepristone as an anti-progestins on
PRL release and on specific gene expression during mammary
gland development and lactation in mice or rats in vitro
(Shiqing et al., 1990; Li et al., 1995), or in vivo (Deis et al.,
1989; Jahn et al., 1991; Michna et al., 1991; López-Fontana
et al., 2012). However, the current study showed differences
in two main points. Firstly, though postpartum hypogalactia
is still considered a major problem in human health and
in the livestock breeding industry, the researches regarding
its mechanisms are rarely reported. Here, we aim to explore
the mechanisms of postpartum hypogalactia by mimicking
mammary gland development and secretion during pregnancy
or lactation after several hormones disturbed by mifepristone.
Secondly, by carrying out the study in vivo, we have tracked
milk yields, weight of the mammary glands, ducts, alveolar, and
growth rate of pups as well as the changes in the six hormones
(E2, P4, PRL, GH, CORT, and OT) and their receptors, which are
closely related with mammary gland growth and lactation from
pregnancy to lactation.

Mifepristone is an effective drug for termination of early
pregnancy. Previous reports suggested that mifepristone
administration at doses of 1.25–2.50 mg/kg BW on Pd4 had no
impact on the reproduction of mice (Huang et al., 2005; Lv et al.,
2012; Chen et al., 2015; Yang et al., 2016). However, mifepristone
administration at doses of 0.30–2.00 mg/kg BW at approximately
Pd8.5 caused 60–100% of abortions in mice (Szekeres-Bartho
et al., 1997; Lv et al., 2012). Mifepristone treatment at doses
of 0.40–12.50 mg/kg BW during late pregnancy (Pd14–Pd19)
induced preterm labor in mice, with abortion rates of 66–
100%. These results demonstrate that the dosage and the
application time of mifepristone during pregnancy are closely
associated with abortion rates. Here, we applied 1.20, 0.40,
and 0.20 mg mifepristone/kg BW to mice on Pd4, Pd8, and
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FIGURE 4 | The effect of mifepristone administration on pregnancy day 4 (Pd4) on mammary branching and alveoli formation. (A) Whole-mount staining of
mammary glands of mice on Pd7, Pd10, and Pd16. Quantification of the number alveolar buds in mammary glands of controls and mifepristone-treated mice.
(B) Hematoxylin and eosin (H&E) staining of mice mammary glands on Pd7, Pd10, Pd16, and lactation day 3 (Ld3). (C) The quantification of alveolar diameters on
Ld3. Data are represented as means ± SD, ∗ indicates the difference between mifepristone group and control group,∗P < 0.05, ∗∗P < 0.01.

Pd12, respectively, and we found that these strategies did not
affect pregnancy rates and litter sizes of mice. However, the
efficacy of these four strategies were different to some extents
in reducing milk yields; mifepristone administration on early
pregnancy (Pd4) rather than that on middle or late pregnancy
(Pd8 or Pd12) was more efficient in decreasing the milk yields
from Ld1 to Ld3.

There are four main techniques for measuring milk yields
in mice. These include direct milking, the weigh-suckle-weigh
method, isotope transfer from mother to the young via milk,

and isotope dilution (Knight et al., 1986). The disadvantages of
the direct milking method are that it relies on the ability of
milkers to empty the glands, and that exogenous OT injection
and milking operation may easily induce stress, which inhibited
the milk ejection reflex in mice (DePeters and Hovey, 2009).
While the isotope transfer has its difficulty in controlling the
appropriate activity of isotope when measured. The isotope
dilution technique is also complicated since it contains the
recycling of the isotope through the mother drinking the pup’s
urine (Knight et al., 1986). For decades, the weigh-suckle-weigh
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FIGURE 5 | Effects of mifepristone treatment on pregnancy day 4 (Pd4) on serum hormones levels of mice on Pd7, Pd10, Pd16, and lactation day 3 (Ld3).
(A) Serum E2 levels. (B) Serum P4 levels. (C) Serum PRL levels. (D) Serum GH levels. (E) Serum CORT levels. (F) Serum OT levels. Data are represented as
means ± SD, ∗ indicates the difference between mifepristone group and control group, ∗P < 0.05, ∗∗P < 0.01, ∗∗∗P < 0.001.

FIGURE 6 | Effect of mifepristone treatment on pregnancy day 4 (Pd4) on mammary mRNA expression of hormone receptors on Pd7, Pd10, Pd16, and lactation
day 3 (Ld3). (A) ERα mRNA expression. (B) PR mRNA expression. (C) PRLR mRNA expression. (D) GHR mRNA expression. (E) CORTR mRNA expression. (F) OTR
mRNA expression. These experiments were repeated at least three times. Data are represented as means ± SD, ∗ indicates the difference between mifepristone
group and control group, ∗P < 0.05, ∗∗P < 0.01, ∗∗∗P < 0.001.
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method has been more acceptable for its simple and effective
evaluation of milk volume in mice (Boston et al., 2001; Liu
et al., 2017). This method is also widely used in ruminants such
as in goats or cattle (Mummed, 2012; Hogberg et al., 2016).
However, the disadvantage of this weigh-suckle-weigh method
is that milk secretion may be reduced after a separation period
over 4 h (Hanwell and Linzell, 1972). To avoid this problem,
the separation and the suckling periods were set as 3 and
1 h, respectively, in the present study, and for a total of 12 h
during a day. Moreover, the reduction in β-casein expression
and pup weight gain during early lactation in mifepristone group
mice further confirmed the milk insufficiency verified by weigh-
suck-weigh method. Nevertheless, the amount of milk produced
by each mouse was previously reported to be proportional to
lactation numbers, litter size, and maternal body weight (Knight
et al., 1986). To avoid these factors, all the mice used for
this study were 8 weeks old and with similar body weight
(31± 1 g) on Pd1.

Mammary gland development and lactation are tightly
regulated by hormones. Upon pregnancy, P4 and PRL initiate a
proliferation drive for secondary and tertiary ductal branching
and alveolar morphogenesis. In the latter stages of pregnancy,
approximately Pd18 in mice, CORT and OT are required
for individual alveoli differentiation from alveolar buds into
the secretory activation phase, in preparation for postpartum
secretion (Traurig, 1967; Brisken et al., 1998; Nguyen et al.,
2001). Thus, the decrease of the weight of the mammary
gland in mifepristone group on Pd7, Pd10, and Ld3 may be
a comprehensive effect of alterations in P4, PRL, CORT, and
OT profiles, whereas the absence of difference in mammary
gland weight on Pd16 between two groups may be caused by
preparation for parturition, long-term effect of mifepristone
on mammary growth and milk components in late pregnancy
in mice or rats (Cole, 1933; Deis et al., 1989; López-
Fontana et al., 2012). In addition, in the current study,
though it was difficult to count the secondary and tertiary
ductal branches of mammary glands during late pregnancy
and lactation, we observed an obvious decrease in alveolar
buds and enlarged alveolar lumina after mifepristone treatment.
Furthermore, an enlarged alveolar lumen after mifepristone
administration is in accordance with a previous report, showing
that that loss of mammary gland development associated
gene Numb or Numbl/l, leading to an enlarged lumen of
alveoli and failure in lactation during pregnancy in mice
(Zhang et al., 2016).

Mifepristone decreased P4 or E2 levels on Pd7, these results
were in agreement with previous reports, in which P4 or
E2 levels declined two days after mifepristone administration
in humans or mice (Somell et al., 1990; Chen et al., 2015).
However, subsequent increase of E2 concentrations on Pd10
and Pd16, and of P4 concentrations on Pd16 after mifepristone
administration may be attributed to ovarian response as reported
in humans (Somell et al., 1990). Studies have reported that
E2, P4 or CORT affected PRL levels in rats (Meites and
Nicoll, 1966; Caligaris et al., 1974), and this may explain the
reason why PRL increased on Pd7 and Pd10, but decreased
on Pd16. Increased P4 levels and the decreased PRL levels on

Pd16 in mice with reduced milk yields were consistent with
reports in low-colostrum-producing sows (Foisnet et al., 2010).
In our study, CORT and GH levels did not change during
early pregnancy, but rose on Pd16 and Ld3 after mifepristone
treatment; effects of these enhanced concentrations of GH and
CORT on late pregnancy or lactation may be due to self-
regulation in mice, or caused by the suckling stimulation by
pups in mifepristone-treated mice. These results were also
consistent with clinical reports in which the concentrations of
cortisol increased in sows with PDS, compared to those in
PDS negative sows (Kaiser et al., 2018), and that increase in
GH and CORT levels increased the milk yields of cows or rats
after prolonged lactation, and suckling was reported to increase
plasma GH levels in rats (Machlin, 1973; Miki et al., 1981;
Flint et al., 1984). Synthetic glucocorticoids (prednisolone or
dexamethasone) treatment raised plasma glucose and caused
a decrease in milk production in lactating cows (Maplesden
et al., 1960; Hartmann and Kronfeld, 1973; Kronfeld and
Hartmann, 1973). However, the glucose uptake and utilization
of the mammary gland were diminished after glucocorticoids
administration, which directly resulted in the reduction in
milk yields (Hartmann and Kronfeld, 1973). α-Lactalbumin is
a milk whey protein that can modify the substrate specificity
of galactosyltransferase to include glucose, thus enhancing the
synthesis of lactose and the milk production (Brodbeck et al.,
1967; Brew et al., 1968; Stacey et al., 1995). However, high
dose administration of cortisol in rats and mouse mammary
gland explants caused a lower lactose content or inhibition of
α-lactalbumin accumulation (Ono and Oka, 1980; Llopis et al.,
1990). Therefore, in the current study, the increases in CORT
and CORTR mRNA levels on Pd16 and on Ld3 may lead to
inhibition of α-lactalbumin accumulation, glucose uptake, and
lactose synthesis in mammary gland of mifepristone-treated
mice, which finally caused a decrease in milk production. In
addition, although decreased OT levels on Pd7 and Pd10 may be
directly induced by mifepristone, increased levels of OT on Pd16
and Ld3 may also be caused by the suckling stimulation of litters
to induce greater milk ejection from mifepristone-treated mice
(Bruckmaier and Blum, 1996).

Nevertheless, basal concentrations of the hormone levels
may be different from the previous reports in mice or
rats (McCormack and Greenwald, 1974; Parkening et al.,
1978; Higuchi et al., 1986), these may have been caused by
different detection methods (radioimmunoassay or ELISA),
different species or different strains of mice, or different
bleeding methods (Sinha et al., 1972). In conclusion,
mifepristone treatment during early pregnancy caused
alterations in serum levels of E2, P4, PRL, GH, CORT
and OT levels as well as in the mRNA expression profiles
of their receptors during pregnancy or lactation. This
may lead to mammary gland dysplasia and postpartum
hypogalactia in mice. However, hormones exert their
function mainly through their receptors. The defects
in mammary gland development and hypogalactia after
mifepristone treatment may be a comprehensive regulation
of E2, P4, PRL, GH, CORT, OT, hormone receptors, and
hormone-related signaling pathways. The current murine
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model offers a platform for further exploration of the
mechanisms underlying milk insufficiency on early lactation
days in mammals.
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