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Carrier thermometry of cold 
ytterbium atoms in an optical 
lattice clock
Chengyin Han, Min Zhou, Xiaohang Zhang, Qi Gao, Yilin Xu, Shangyan Li, Shuang Zhang & 
Xinye Xu

The ultracold atomic gas serving as the quantum reference is a key part of an optical lattice clock, and 
the temperature of atoms in the optical lattice affects the uncertainty and instability of the optical 
lattice clocks. Since the carrier spectrum of the clock transition in the lattices reflects the thermal 
dynamics of cold atoms, the temperature of atoms can be extracted from the carrier spectrum in a non-
magic wavelength lattice of ytterbium optical clocks. Furthermore, the temperatures obtained from 
the carrier spectra are in good agreement with the results obtained by the time-of-flight method and 
thermometry based on the sideband spectrum. In addition, the heating effects caused by the lattice 
laser are studied on the basis of the sample temperatures.

In the last decade, research in the field of optical lattice clocks has experienced a fast development, especially the 
clocks based on cold 87Sr atoms and 171Yb atoms1–9, which both surpass the performance of the best 133Cs pri-
mary standards10,11. The best 87Sr clock now achieves an instability of 2.2 × 10−16 at 1 s and a total uncertainty of 
2.1 × 10−18 in fractional frequency units12. These state-of-the-art clocks benefit from the great control of ultracold 
atoms that play the role of quantum references. They are confined in tight optical lattices with the ac Stark shift 
being eliminated by tuning the lattice laser to the “magic wavelength”13,14. Although the Doppler and recoil shifts 
can be reduced by confining the atoms in 1D optical lattices and probing along the lattice axis in the Lamb-Dicke 
and resolved sideband regimes15–17, for a finite temperature only a fraction of atoms occupy the motional ground 
state. The collisional shifts are directly related to this atomic temperature18,19. So the temperature as one of most 
important properties of a cold atom sample should be determined accurately. The conventional thermometry 
techniques of characterization of the cold atoms in optical lattices are time-of-flight (TOF) expansion imag-
ing20 and thermometry based on the sideband spectrum (TSS). The former is realized by measuring the ballistic 
expansion of atomic clouds released from the trap at different times, while the latter is based on the sideband 
spectrum, for which the areas of spectrum of blue and red sidebands are different16. TOF is a routine method to 
determine temperatures of cold atoms in many laboratories, while TSS is developed to determine temperatures of 
cold ensembles in an optical lattice. These methods have a precision varying from a few percent to several tens of 
percent which depends on the experimental condition and the signal-to-noise ratio16,20–25.

In this paper, we show another thermometry technique based on the carrier spectrum (TCS), which is consist-
ent with TOF and TSS. As is well known, TOF is no longer reliable due to low particle numbers or a lack of cycling 
transitions, and it needs two samples of cold atoms for probing different radii at different times, during which the 
cold atom samples are destroyed by the probe laser. TSS is based on the ratio of integrated sideband absorption 
and there is no contribution from the red sideband n n( 1)z z→ −  in the ground state (nz = 0). We assume the 
atoms are not cold enough to degenerate, so they still satisfy the Boltzmann distribution which results in the 
expression as16
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,σ  is the area of the integrated sideband absorption, kB is the Boltzmann constant. The longitudinal 
temperature Tz can be calculated directly from equation (1). However, the large relative uncertainty of 
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determining the area of a vanishingly small red sideband and the low signal-to-noise ratio at lower temperature 
make it unreliable. Temperature measurement with TCS, on the other hand, can be determined from the 
expression25
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where h is the Planck constant, ΓC is the full-width-at-half-maximum (FWHM) of the carrier line shape, α α′/  is 
the polarizability ratio of the excited and ground states which can be determined by the light shift due to the 
influence of the lattice laser. The broadened FWHM and the light shift caused by the lattice can be extrapolated 
from the carrier spectrum accurately due to the high signal-to-noise ratio of the carrier. This method is originally 
developed in ref.25 to map temperature of atoms or molecules in optical lattices via a differential spectroscopic 
light shift. TCS is limited to the narrow spectral lines of atoms or molecules confined tightly in optical lattices, 
which is suitable for the optical lattice clocks. We apply TCS to determine the temperature of cold ensembles in 
an ytterbium optical lattice clock. And we demonstrate the TCS method in an ytterbium optical lattice clock 
which is different from the experiment in ref.25. On the other hand, we show that the TCS method is an alternative 
method to map the temperature of cold ensembles in an optical lattice clock. From the accurately determined 
temperature it is possible to calculate the cold atom distributions and acquire such information as the light shift 
caused by thermal contributions and thermal line pulling. In this paper, we firstly present the clock transition 
spectrum including the carrier, the first-order and second-order sidebands spectrum. We then show the temper-
atures obtained by the three above mentioned methods. In conclusion the heating effects caused by the lattice 
laser are discussed.

Results
The clock transition spectrum.  After preparing ultracold ytterbium atoms and loading into the optical 
lattice (see Methods), the atoms are probed along the lattice axis in the Lamb-Dicke and resolved sideband 
regimes with the clock laser at 578 nm. As shown in Fig. 1(a), there are a series of possible transitions when the 
clock laser is tuned to a corresponding frequency. The transition for the same motional state is the carrier accom-
panied by the sideband transitions occurring at the different motional states13,16,17. Normally, the first-order side-
bands are easily observed when the motional state is excited to the increased and decreased motional state by 1. 
The relative size of the sidebands is not only proportional to the Rabi frequency but has also other factors that 
influence the sideband intensities. The effective Rabi frequency of the lth order sidebands is proportional to ηl, 
where η is the Lamb-Dicke parameter that can be expressed as f/rec

p
zη ν= . Here fz is the trap frequency and rec

pν  
is the probe recoil frequency26. In the Lamb-Dicke regime η < 1, the sideband intensity shrinks drastically with 
increasing sideband order, which makes their detection problematic. The atoms in the optical lattice are not cold 
enough to degenerate and still satisfy the Boltzmann distribution, so there are still a number of atoms that popu-
late a high motional state. This, in turn, means the second-order sidebands (motional state increases or decreases 
by 2) may be observed. Here we not only obtain the carrier and first-order sidebands spectrum, but also for the 
first time observe the second-order sidebands in the ytterbium optical lattice clock experiments, which is shown 
in Fig. 1(b). In ref.16, according to the harmonic approximation model, the first-order longitudinal energy gap is 
given as
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Figure 1.  The clock transitions of different motional states in optical lattices. (a) Five dominant spectral 
features: the central carrier (black arrow) where the motional state is conserved; the first-order and second-
order red sidebands (red arrows) where the motional state decreases; the first-order and second-order blue 
sidebands (blue arrows) where the motional state increases. (b) The spectrum including carrier, first-order 
sidebands and second-order sidebands.
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and the first-order blue sideband line shape is given as
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We can write the second-order longitudinal energy gap as
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and the second-order blue sideband line shape as
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2 . The expressions indicate that the sidebands have the same 
line shape and the sideband spectrum in Fig. 1(b) can be fitted by them. According to the model, the longitudinal 
energy gap between different motional states is dependent not only on the longitudinal but also the transverse 
motional states. We determine that the energy gap shrinks as the motional state increases, which means that the 
frequency (122 kHz in Fig. 1(b)) of the sharp edge in the second-order sideband is lower than double of that 
(69 kHz in Fig. 1(b)) in the first-order sideband.

The optical lattice clock is operated at the magic wavelength, where the polarizability of the excited and ground 
states is equal and the ac Stark shift is eliminated. When operating the optical lattice at a non-magic wavelength, 
the polarizability of the excited and ground state is no longer the same13,17,27,28, accordingly the lattice trap depth 
of the excited and ground state is different due to the linear relation to the polarizability. The different polarizabil-
ities lead to the ac Stark shift which can be expressed as ν α α γΔ = − ′ − − Δ +I I( )1

4
1

64
2



. For 171Yb in optical 
lattices, the polarizability of the excited state is larger than the polarizability of the ground state α α′ >( ) when the 
lattice frequency is higher than the magic frequency and the inverse relation (( )α α′ < ) is valid for the case when 
the lattice frequency is lower than the magic frequency14. Considering the polarizability as the dominant term, the 
light shift is positive for <f fOL magic and negative for >f fOL magic, which is shown in Fig. 2(a).

Due to different lattice trap depths of the excited and ground state at a non-magic wavelength, the carrier 
transition frequency of the nz motional state deviates from the nominal clock frequency ν0 by a value of nzdν. Here 
dν is the difference between the excited state and ground state trap frequencies. With the Boltzmann distribution 
of cold atoms in the lattice, the spectrum of the carrier can be considered as a superposition of all the motional 
states and the line shape of a single transition between two motional states is a Lorentzian form with the weight of 
the occupation probability p p e f/n n

hf k T
B1

/z B= =+
− . Also the light shift caused by the lattice laser includes two 

parts of the thermal and nonthermal light shift and can be expressed25 as ( )( )W U k T1 3 1 B0≈ − + −α
α
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The nonthermal light shift ( )U1 0− α
α

′  has no correlation with the temperature, and thus has the same value for 

all motional states. The thermal light shift ( )k T3 1 B−α
α

′  is linear with the temperature. The atoms with lower 
temperature populate lower motional states and experience a smaller light shift. The thermal and nonthermal 
light shifts are reversed in sign. With the Boltzmann distribution of atoms populating different motional states, 

Figure 2.  The carrier spectrum. (a) The central carrier transitions for different lattice frequencies. Far away 
from the magic frequency, the line is broadened and shifted due to the ac Stark effect. (b) The carrier spectra for 
different lattice frequencies, where the line shape is symmetric and narrow at the magic frequency accompanied 
by the asymmetric and broadened line shapes at non-magic frequencies.
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the carrier line shape is asymmetrical and broadened. The steep edge always faces the light shift direction as 
shown in Fig. 2(b).

Thermometry.  We measure the temperature of cold atoms in the lattice with a trap depth characterized by 
the recoil energy, λ=E h m/(2 )R L

2 2 , imparted to an atom of mass m by a lattice photon with wavelength λL. For the 
thermometry experiments, the trap depth U0 = 450ER is obtained from the spectrum including the carrier and 
first-order sidebands.

The cold atoms are imaged by an intensified CCD camera (ICCD, Andor iStar 334 T) at 5 ms and 10 ms after 
the lattice laser is shut and the atom clouds emit fluorescent light when the →S P1

0
1

1 transition at 399 nm is 
excited. The temperatures can be calculated according to
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where t1, t2 are the times after the lattice laser is shut, a(t1), a(t2) are the expansion radii of the atom clouds 
released from the optical lattice trap at time of t1 and t2, which can be directly read out from the images. The tem-
peratures are plotted for three different intensities of 556 nm laser (the second cooling laser) in Fig. 3, where each 
dot is averaged over four independent measurements. The temperatures obtained by TSS in Fig. 3 are measured 
in the vicinity of the magic wavelength8,29,30 as 394,798.33(0.01) GHz. The unbroadened carrier linewidth is about 
6.9 Hz, approaching the Fourier-limited linewidth with a 150 ms interrogation time31. The temperatures in Fig. 3 
are acquired from the first-order sideband spectrum. The temperatures also can be determined by the area ratio 
of the second-order sidebands, but the smaller excited state fraction and lower signal-to-noise ratio hinder the 
precision, and the visible second-order red sideband n n( 2)z z→ −  only appears when some atoms occupy the 
vibrational states of nz ≥ 2, which means a higher temperature32–34. Although only the longitudinal temperature is 
determined from the first-order sideband spectrum and equation (1), the spectroscopic line shape is determined 
by the coupling between the longitudinal and transverse degrees of freedom due to the Gaussian lattice beam 
profile, which results in dependency of the longitudinal transition frequency on the transverse motional state. By 
fitting the sideband line shape with equation (4), the transverse temperature can be extracted from the same data 
used for TSS. The data show a close value of the longitudinal and transverse temperatures, and there is no appar-
ent increase in transverse temperature.

The temperatures obtained by TCS in Fig. 3 are determined from the carrier spectrum (Fig. 2(b)) and equation 
(2). The two unknown parameters of equation (2) ΓC and α′/α can be determined from the carrier spectrum as 
shown in Fig. 2(b), for which the FWHM can be derived directly. The polarizability ratio of the excited and 
ground states α′/α can be extrapolated by the expression of ( )W m f/ 1 2 / L z0

2 2α α λ′ = − . W0 is the nonthermal 
light shift caused by the lattice laser25. It follows from equation (2) that for the case of operating the lattice at the 
magic frequency, the temperature of the atoms is infinite due to the polarizabilities of the excited and ground 
states being equal. This conclusion is obviously in conflict with reality, so the lattice laser has to be tuned far away 
from the magic frequency to obtain the light-shifted and broadened spectrum. The light shift value can be 
obtained from the fitting parameters (the insets of Fig. 4 are the fittings of the carrier spectra) which can yield the 
value of α′/α (see Methods). The theoretical spectroscopic line shape of equation (8) (see Methods) is a continu-
ous approximation of the discrete expression. Due to the narrow spectral line of carrier transition from discrete 
motional states, there is a discrepancy between the measured line shapes and the theoretical fits.

As shown in Fig. 4, the temperatures measured by TCS have no clear dependence on the lattice frequency, 
so they may represent the temperature at the magic frequency. The purple line in Fig. 4 indicates the average 

Figure 3.  The temperatures measured by three different methods. Temperatures measured by the three above 
mentioned methods, as a function of the 556 nm laser intensity (the second cooling laser). TCS 1 and TCS 2 are 
the measured temperatures at the lattice frequency of 395,372.29(0.01) GHz and 394,279.49(0.01) GHz. For a 
clear display, an offset is added to the 2nd cooling laser intensity of different methods. The inset sheet shows the 
temperature values. The error bar represents the 1σ uncertainty.
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temperature of the four circles. Although we can determine the temperature at any frequency except the magic 
frequency for a far-off-resonance trap, in consideration of the error bars in Fig. 4, it is better to measure the tem-
perature at the frequency further away from the magic frequency. In other words, the larger light shift makes the 
measurement more accurate. As shown in Fig. 3, the three methods are in good agreement, even though TOF and 
TCS yield 3D temperatures and TSS only yields the longitudinal temperature. In our experiment, TOF and TSS 
have about 40% uncertainties while TCS has an uncertainty below 10%. The error bars for TCS are smaller than 
TOF and TSS by roughly a factor of 5.

The parametric heating effects caused by the lattice.  The ultracold atoms in the optical lattice will be 
heated due to the spontaneous scattering of trap laser photons35 and the technical heating36,37 caused by the inten-
sity fluctuations and pointing instabilities of the trapping laser beams. Figure 5(c) shows the dependence of tem-
perature on the lattice laser power. It indicates that the temperature increases with increasing lattice power, which 

Figure 4.  Temperature measured by TCS. The temperatures measured by TCS at different lattice frequencies. 
Each circle represents a value averaged over four measurements. The purple line represents the average 
temperature value of the measurements. The insets are the fittings of the carrier spectra at the lattice frequency 
of 395,372.29(0.01) GHz and 393,761.48(0.01) GHz. The error bar represents the 1σ uncertainty.

Figure 5.  The heating and the dependence of temperature on the lattice power. (a) Intensity noise power 
spectrum and most of the intensity noise are distributed at frequencies of 178.5 kHz and 89.25 kHz. (b) The 
spectrum of atomic excitation at different lattice powers of 1.5 W and 1 W. The blue lines are at the detuning 
of ±89.25 kHz. (c) The dependence of the temperature on the lattice power. The error bar represents the 1σ 
uncertainty.
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can be explained by the proportional relation of the photon scattering rate to the laser intensity as ≈ Γ
Δ

Rs
U0


. The 
heating caused by intensity fluctuations is also in the linear relation with the trap potential as πΓ ≡ε εf S f(2 )2 2 . 
The increased energy caused by heating can be expressed by E R E2 s R=  and  = ΓεE E . Here Γ is the natural 
linewidth, Δ is the detuning of the lattice laser, Sε is the power spectrum of the fractional intensity noise, ER is the 
recoil energy and f is the trap energy gap frequency. In Fig. 5(c) the temperature at the lattice laser power of 1.5 W is 
high and does not follow the linear approximation. This can be explained by the relationship between the heating 
rate and the lattice laser intensity noise, which indicates that the heating rate is proportional to the noise power den-
sity at the second harmonic of the trap energy gap frequency. Figure 5(a) shows the intensity noise power spectrum 
of our lattice laser (Ti:Sa laser). In the experiment, most of the lattice laser intensity noise is distributed at frequencies 
of 178.5 kHz and 89.25 kHz. Therefore, the cold atoms in the lattice will be heated and the temperature will increase 
at the trap energy gap frequencies of 89.25 kHz and 49.125 kHz. Figure 5(b) shows the clock transition spectra at the 
lattice laser power of 1.5 W and 1 W, which yields the trap frequencies of 110 kHz and 90 kHz. Due to the Gaussian 
intensity distribution of the lattice laser and the coupling of the longitudinal and the transverse degrees of freedom, 
the frequency of the energy gap16,38 is expressed as f f e E n h( 1)/z

r w
R

/2
0
2

≈ − +− . The heating rate of a single atom 
has dependence linearly on the noise power density at the second harmonic of the trap energy gap frequency. The 
blue dashed lines of Fig. 5(c) indicate the clock laser detuning of ±89.25 kHz, which correspond to the values of the 
energy gap frequencies. At these frequencies a larger fraction of atoms are excited in the lattice of 1.5 W than 1 W. So 
the increased temperature occurs at the power of 1.5 W rather than 1 W and the trap depth must be far detuned from 
the peak intensity noise frequency when the optical lattice clock is in operation.

Discussion
The temperature of the ultracold atoms, which has a direct impact on the uncertainty and instability of atomic 
clocks, should be characterized at a high precision level. The carrier spectrum provides important information on 
the state of the system and the carrier spectrum at a non-magic wavelength can yield the temperature accurately. 
The heating caused by the lattice laser intensity fluctuation is observed in our experiment. For an optimal clock 
operation, the trap frequency should be set far from half the peak intensity noise frequency of the lattice laser.

Methods
Sample preparation and spectrum probe.  Figure 6 shows the simplified experimental setup, and the 
sequence of sample preparation and spectrum probe. The hot ytterbium atoms is first cooled to about 1 mK using 
a Zeeman slower, a 2D optical molasses and a 3D magneto-optical trap (MOT) on the →S P1

0
1

1 29 MHz transi-
tion at 399 nm. Then the atoms are further cooled to a few μK with the 3D MOT operating on the →S P1

0
3

1 
182 kHz transition at 556 nm. The atoms are subsequently loaded into the optical lattice where the clock transition 
is interrogated with a pulse at 578 nm. The spectrum is logged by the normalized detection with the repumping 
lasers on the →P S3

0
3

1 transition at 649 nm and the P S3
2

3
1→  transition at 770 nm. More details and the experi-

mental setup can be found in our previous works27,39–41. The maximum of the lattice laser power is about 2.5 W 
and the power is stabilized by using an acousto-optic modulator (AOM). Its frequency is locked to the build-in 
cavity and can be measured by a wavemeter with the 10-MHz uncertainty.

Thermometry based on carrier spectrum.  The line shape of the carrier can be expressed25 as

p u u e( ) 1
2

, (8)
u2= −

Figure 6.  Simplified experimental setup, and the sequence of the sample preparation and spectrum probe. 
ICCD: intensified CCD camera; PMT: photomultiplier; PD: photo-detector; AOM: acousto-optic modulator; 
BS: beam splitter; OI: optical isolator.
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where u E( ) 0i
E

k T 1
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′
 is a dimensionless function of the Boltzmann distribution, δEi is a differential 

light shift. The equation (2) is deduced from equation (8) as its FWHM is 3.395 and expressed by the form of 
Γ = . = =δ

−

Γ

−α
α

α
α

′ ′
3 395u

E

k T

h

k T( 1) ( )1

i

B

C

B

. The experimental data in Fig. 3(b) is fitted by the line shape function as 

= + − − −y y a b x c e( ) b x c
0

2 ( ). The parameter u is zero as δEi = 0, which corresponds to zero light shifts. So the 
nonthermal light shift is the zero point of the line shape function. The fitting parameters yield the nonthermal 
light shift as W0/h = c/b.
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