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Harnessing machine learning to guide
phylogenetic-tree search algorithms
Dana Azouri 1,2, Shiran Abadi 1, Yishay Mansour3, Itay Mayrose 1✉ & Tal Pupko 2✉

Inferring a phylogenetic tree is a fundamental challenge in evolutionary studies. Current

paradigms for phylogenetic tree reconstruction rely on performing costly likelihood optimi-

zations. With the aim of making tree inference feasible for problems involving more than a

handful of sequences, inference under the maximum-likelihood paradigm integrates heuristic

approaches to evaluate only a subset of all potential trees. Consequently, existing methods

suffer from the known tradeoff between accuracy and running time. In this proof-of-concept

study, we train a machine-learning algorithm over an extensive cohort of empirical data to

predict the neighboring trees that increase the likelihood, without actually computing their

likelihood. This provides means to safely discard a large set of the search space, thus

potentially accelerating heuristic tree searches without losing accuracy. Our analyses suggest

that machine learning can guide tree-search methodologies towards the most promising

candidate trees.
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One of the most fundamental goals in biology is to
reconstruct the evolutionary history of all organisms on
earth. The obtained phylogeny is of interest to many

downstream analyses concerning evolutionary and genomics
research. Until recently, most studies focused on a few to several
dozens of sequences. Current phylogenomic studies analyze
longer sequences (up to entire genomes) and include a greater
diversity (hundreds and even thousands of lineages), conse-
quently challenging the ability of computational resources to
handle these amounts of data.

Leading approaches for phylogeny reconstruction rely on
probabilistic evolutionary models that describe the stochastic
processes of nucleotide, amino-acid, and codon substitutions1.
Given an evolutionary model, a tree topology with its associated
branch lengths, and a multiple sequence alignment, the likelihood
of the data is efficiently computed using Felsenstein’s pruning
algorithm2. While the alignment is usually assumed to be known,
parameters of the evolutionary model, the tree topology, and its
associated branch lengths are often inferred by maximizing the
likelihood function. Thus, for a specific evolutionary model with
fixed parameter values, each tree inference algorithm visits a large
number of candidate tree topologies and for each such topology,
it searches for the optimal set of branch lengths. Notably, the
number of possible tree topologies increases super-exponentially
with the number of sequences. Moreover, the computational
search for the maximum-likelihood tree topology was shown to
be NP-hard3. Optimizing the set of branch lengths for each
candidate tree is computationally intensive, adding another layer
of complexity to this endeavor. Thus, all current algorithms for
phylogenetic tree reconstruction use various heuristics to make
tree inference feasible.

The general approach for a maximum-likelihood heuristic
search is to begin either with a random starting tree or with a
starting tree obtained by rapid and generally less accurate
methods such as Neighbor Joining4,5. The score of this initial
tree is its log-likelihood, which is based on the specified prob-
abilistic model. Next, a set of alternative topologies is con-
sidered, each of which is a small modification of the current tree
topology (each such topology is considered to be a “neighbor” of
the current topology). The neighbor with the highest score is
selected and used as an initial tree for the next step. The process
proceeds iteratively until none of the alternative trees produces a
higher score compared to the current one. Various algorithms
differ in their definition of a neighbor. In this study, we focus on
subtree pruning and regrafting (SPR)6. An SPR neighbor is
obtained by pruning a subtree from the main tree and regrafting
it to the remaining tree, as illustrated in Fig. 1. Several
improvements to the basic heuristic scheme described above
have been suggested. These improvements include better
exploration of the tree space and the introduction of shortcuts in
order to substantially reduce running time with little to no
influence on inference accuracy. Notable examples include: (1)
proceeding with the first neighbor that improves the likelihood
score without examining the remaining neighbors7; (2) avoiding
optimization of the entire branch lengths by optimizing only
those in the vicinity of the regrafted subtree7; (3) discarding
neighbors whose estimated sum of branch lengths highly devi-
ates from that of the current tree8; (4) genetic algorithms and
simulated annealing versions of the heuristic search9,10. In
addition, a common practice is to apply the bootstrap procedure
that provides a measure of confidence for each split in the
obtained tree. This is done by executing the tree search on
bootstrapped data at least 100 times. This time-consuming step
further emphasizes the need for efficient heuristics3,11. To our
knowledge, machine-learning tools have not been employed for
enhancing the heuristic tree search.

In this study, we use a diverse set of thousands of empirical
datasets to train a supervised machine-learning regression model,
specifically a random forest learning algorithm, in order to pre-
dict the optimal move for a single step in a phylogenetic tree
search. The output of this learner, trained on a succinct collection
of 19 features, is a numerical value for each possible SPR move
that represents its propensity to be the highest-scoring neighbor.
Our results show that this procedure yields very high agreement
between the true and inferred rankings, indicating the high pre-
dictive power of the developed machine-learning framework.
Furthermore, we demonstrate that using the learning frame-
work it is sufficient to evaluate the costly likelihood score for a
small subset of all possible neighbors. This study thus establishes
a comprehensive proof-of-concept that methodologies based on
artificial intelligence can substantially accelerate tree-search
algorithms without sacrificing accuracy.

Results
A machine-learning algorithm for accelerating the maximum-
likelihood tree search. Our goal was to rank all possible SPR
neighbors of a given tree according to their log-likelihood without
actually computing the likelihood function. To this end, we relied
on a set of features that can be efficiently computed and thus
capture essential information regarding the tree and the proposed
SPR rearrangements. Specifically, we trained a machine-learning
algorihm, random forest regression, to predict the ranking of all
possible SPR modifications according to their effect on the log-
likelihood score. The algorithm was trained on a large set of
known examples (data points). In our case, each data point is a
pair (V, L). V is an array that includes the starting tree, the
resulting tree following an SPR move, and the set of features,
while L is a function of the log-likelihood difference between the
starting and the resulting tree (see “Methods” section). The
regression model learns the association between V and L. Given a
trained algorithm and a starting tree topology, an array V is
computed for each possible SPR move. The trained machine-
learning algorithm provides the ranking of all possible SPR moves
according to their predicted L values. A perfect machine-learning
model would predict the optimal SPR neighbor and would thus
eliminate the need for expensive likelihood computations. A sub-
optimal predictor may also be highly valuable if the vast majority
of the SPR moves can be safely discarded without computing
their likelihoods.

The machine-learning algorithm was trained on 20,880,8151
data points, one data point for each possible SPR move of 4200
different empirical phylogenies. The empirical alignments varied
in terms of their attributes, e.g., the number of sequences (7 to
70), the number of positions (62 to 10,000), and the extent of
sequence divergence (Supplementary Fig. 1). The number of
neighbors of each tree is affected by the number of sequences and
by the tree topology and ranges between a few dozens to over ten
thousand. We chose to analyze empirical rather than simulated
data, as it is known that reconstructing the best tree is more
challenging for the former12–14. The learning was based on 19
features, extracted from each data point (Table 1). Some features
were extracted from the starting trees, e.g., the lengths of the
branches in the pruning and regrafting locations, while others
were generated based on the subtrees induced by the SPR move,
e.g., the sum of branch lengths of the pruned subtree (Fig. 1).

Performance evaluation. We evaluated the performance of our
trained learner in a ten-fold cross-validation procedure. Namely,
the empirical datasets were divided into ten subsets, such that in
each of the ten training iterations, the induced data points of nine
folds were used for training the model, and the remaining data
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points were used for testing. We first evaluated the accuracy of
the model in ranking alternative SPR moves. The Spearman rank
correlation coefficient (ρ) was thus computed between the true
ranking, inferred through a full likelihood-optimization, and the
predicted ranking, based on the machine-learning predictions.
The mean ρ, averaged over all 4200 samples, was 0.91 (Fig. 2a1),
suggesting that the machine-learning algorithm successfully dis-
criminates between beneficial and unfavorable SPR moves.

Notably, the Spearman correlation quantifies the prediction
performance when all SPR neighbors are considered. However, in
a typical hill-climbing heuristic, the single best SPR neighbor is
chosen as the starting tree for the next step. It is thus interesting
to estimate the ability of the algorithm to predict this best
neighbor. Accordingly, we measured the performance of the
trained algorithm by two additional metrics: (1) the rank of this
best move within the predicted ranking; (2) the rank of the
predicted best move within the true ranking, as obtained
according to the full likelihood optimization. In 81% and 95%

of the datasets, the best move was among the top 10% and 25%
predictions, respectively (Fig. 2a2). In 95% and 99% of the
datasets, the top-ranked prediction was among the top 10% and
25% SPR moves, respectively (Fig. 2a3). Moreover, in 99.99% of
the cases, the top prediction resulted in a higher likelihood
compared to the starting tree, suggesting that an improvement is
typically obtained. In contrast, a random move increased the
likelihood score in only 2.1% of the datasets. These results suggest
that the machine-learning algorithm can direct the tree search to
a narrow region of the tree space, thus avoiding numerous
expensive likelihood calculations.

We next evaluated the trained model on entirely different
datasets than the training data (see “Methods” section). Unlike the
training data, the machine-learning algorithm was not optimized
on these data, not even in cross-validation, thus negating possible
overfitting effects. When applied to these validation data, the
performance of the trained model was very similar to that
reported above using cross-validation (average ρ= 0.9; Fig. 2b1–3),

Fig. 1 The trees defined by an SPR move. For each data sample, two trees and four subtrees were considered: a an example of a starting tree; b, c the two
subtrees induced by the pruned branch of a tree a (in red), where b is the pruned subtree and c the remaining subtree; c1, c2 the regrafted branch (in blue)
also induces two subtrees, from both sides of the regrafted branch of subtree c; d the resulting tree following the SPR move.

Table 1 Features used in the machine-learning framework.

# Feature Feature name Details Represented action Tree considered

1 Total branch lengths The sum of branch lengths in the starting tree Shared for pruning and
regrafting

Initial tree
(a in Fig. 1)2 Longest branch The length of the longest branch in the starting tree

3–4 Branch length The length of the branch that was being pruned or
regrafted

Both pruning and regrafting

5 Topology distance from the
pruned node

The number of branches in the path between the
regrafting and the pruning branches, not including
these branches

Regrafting only

6 Branch length distance from
the pruned node

The sum of branches in the path between the
regrafting and the pruning branches, not including
these branches

7 New branch length The approximated length of the new branch formed
due to pruning (see Supplementary Note 1 for feature
extraction details)

8–11 Number of species The number of leaves in the four subtrees Both pruning and regrafting Each of the four
subtrees (b, c, c1, c2
in Fig. 1)

12–15 Total branch lengths The sum of branch lengths in the four subtrees
16–19 Longest branch The length of the longest branch in the four subtrees

The table lists the 19 features on which the machine-learning algorithm is based, extracted for each data point. Features 1-7 are extracted from the starting tree, while the remaining features are extracted
from the four subtrees in Fig. 1. Features 1 and 2 are not affected by SPR moves.
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suggesting that the machine-learning algorithm is well generalized
for various datasets, evolved under an array of evolutionary
scenarios.

To gain further insight into factors affecting the prediction
accuracy, we compared the accuracy across the six databases used
(four for training and two for validation). Among the six
databases, predictions were most accurate for Selectome, with a
mean ρ of 0.95, and least accurate for ProtDBs, with a mean ρ of
0.83 (Supplementary Fig. 1a). In addition, we analyzed whether
the prediction accuracy is affected by: (1) the number of taxa; (2)
the level of divergence as measured by the sum of branch lengths;
(3) the alignment length; (4) the percentage of gap characters
in the alignment; (5) the deviation from ultrametricity as
measured by the MAD score, which quantifies departures from
ultrametricity15. The most meaningful correlation (r2= 0.23) was
observed between ρ and the level of divergence: for trees with
more than 49 sequences in the validation set, the predictions
tended to be less accurate for highly diverged trees (Supplemen-
tary Fig. 1b–f). Finally, we tested whether increasing the number
of alignments analyzed within the training data could further
increase the prediction accuracy. Increasing the number of
trained samples from 4200 to 6000 did not significantly increase
the accuracy (P-value > 0.97 using one-way ANOVA; Supple-
mentary Fig. 2).

The effect of learning using an oversimplified model. We
repeated the above learning and testing procedure with the

Jukes and Cantor (JC) model, which assumes that all types of
substitutions are equally likely and ignores site rate variation.
Thus, this model is substantially simpler than the GTR+ I+ G
model used in the original model. When both learning and
testing were performed assuming the JC model, the accuracy of
the machine-learning model was high (average ρ= 0.89), similar
to the accuracy obtained for the GTR+ I+G model (average
ρ= 0.91). We also evaluated the performance when the training
was performed under the JC model, and the test data comprised
of log-likelihoods computed under the GTR+ I+G model.
Under these conditions, the accuracy was only slightly lower
(average ρ= 0.88; Supplementary Fig. 3a). The results obtained
when alternative accuracy metrics were considered are detailed
in Supplementary Table 1 and Supplementary Fig. 3b, c. These
results suggest that learning on an oversimplified substitution
model is not detrimental for discriminating among potential
neighboring trees, even when the underlying model is more
complex than that used for training.

Performance evaluation on an example dataset: protein-coding
genes in algae. We exemplify the application of the machine-
learning algorithm on a specific dataset, consisting of 28 algae
protein-coding genes (see “Methods” section). We reconstructed
a neighbor-joining starting tree, generated all its 2462 SPR
neighbors, and ranked them according to their log-likelihoods.
We then compared this ranking to the ranking predicted by
the trained machine-learning algorithm. The Spearman rank

Fig. 2 Performance evaluation scores on empirical datasets. A histogram of the three performance scores of the learning algorithm evaluated on: a the
4200 starting trees, using cross-validation; b the 1000 validation set starting trees. On the Y axis of both panels a and b are the percentages of empirical
datasets in each accuracy score bin: (1) accuracy is computed as the Spearman correlation coefficient between the predicted ranking and the true ranking
of neighboring trees; (2) accuracy is the rank (in percentile) of the empirically best neighbor within the predicted ranking; (3) accuracy is the rank (in
percentile) of the predicted best neighbor within the empirical ranking.
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correlation (ρ) between the true and the predicted rankings was
0.93, which is similar to the average ρ reported for both the
training and validation data. Indeed, the best move was among
the top four predictions, and the top SPR move predicted by the
model was the sixth-best possible move. Furthermore, the best
SPR move and the predicted best SPR move chose to prune the
same clade of the phylogenetic tree (i.e., they only differ in the
regrafting position).

While the ultimate goal is to predict the ranking of the possible
SPR moves in order to limit the search space, focusing on one
example enables the inspection of the actual predicted change in
log-likelihood between each potential resulting tree and the
starting tree. For this example, a Pearson correlation (r2) of 0.94
between the predicted and true change in log-likelihood was
observed (the full list of the predicted and true log-likelihood
differences for all 2462 single-step SPR moves is given in
Supplementary Data 1). The predicted best move improved the
initial tree by 25.6 log-likelihood points, whereas the improve-
ment obtained by the best SPR move was 31.23 log-likelihood
points. Moreover, according to our model, 19 and 2443 SPR
moves were predicted to increase and decrease the log-likelihood,
respectively, and these predictions were true for 95% and 98% of
these cases. These results corroborate the potential of the
machine-learning approach to correctly discard many irrelevant
SPR neighbors.

In addition, we measured the running time for evaluating the
2462 neighboring trees for this example. The computation of the
features and the application of the trained model for each
neighbor took 2 × 10−4 s on average. The likelihood computation
(with branch lengths optimization) took 0.15 s on average for
each neighbor, roughly 750 times longer compared to the
machine-learning algorithm.

We next examined whether the high performance of the
trained model is maintained when applied to other intermediate
trees in the chain towards the maximum-likelihood tree. When
applied to the second phase of the search, i.e., starting from the
best possible neighbor of the initial tree, the trained model yielded
results that are highly similar to those reported for the initial tree
(Spearman correlation coefficient of ρ= 0.9). The best move
according to the predictions increased the true log-likelihood
score by 25.9, implying that the likelihood improvement is
maintained following additional SPR steps. Finally, we examined
the algorithm performance when the initial tree is one step away
from the maximum-likelihood tree. To this end, we applied the
machine-learning algorithm for each of the 2492 SPR neighbors
of the maximum-likelihood tree. The model predicted the
maximum-likelihood tree to be among the top five predictions
in 98% of the cases.

We next studied the applicability of the machine-learning
algorithm within a straightforward tree-search heuristic. Starting
from the neighbor-joining tree, we evaluated the likelihood of all
top predicted 5% SPR moves and then moved to the highest
scoring tree. We repeated this process until no improvement in
log-likelihood was obtained. The log-likelihood increased and the
Robinson-Foulds (RF)16 distance monotonically decreased for 15
consecutive moves (Fig. 3). This procedure probably recovered
the global maximum-likelihood tree (the tree with the highest
likelihood obtained when running PhyML, RaxML-NG, and our
own implementation from multiple starting points).

Performance evaluation on more complex datasets. We further
validated that the accuracy of our model remains high when
applied to datasets that represent larger and more complex bio-
logical scenarios than the ones included within the data used to
train and test our model. To this end, we analyzed a partitioned

dataset, consisting of eight protein-coding genes belonging to 59
plant species, where each partition is characterized by a different
set of GTR+ I+G model parameters, and the branch lengths of
each partition are based on the proportional model17. In this case,
the best move was among the top three predictions (i.e., within
the top 0.025% predictions) and the best-predicted move was the
twelfth possible move (i.e., top 0.1% SPR moves); the overall
correlation between the predicted and true rankings was 0.74.

We next evaluated the performance of the machine learning
approach on a dataset with a much larger number of species (403)
than those used for training (spanning 7–70 species). For this
dataset, the starting neighbor-joining tree has 624,508 SPR
neighbors. In this case, the best move was among the seven top
predictions, which falls within the top 0.001% predictions, and
the best prediction was among the top 20 moves (within the top
0.003% possible SPR neighboring-trees); the overall correlation
between the predicted and true rankings was 0.69.

Feature importance. Feature importance analysis quantifies the
relative contribution of each feature to the prediction accuracy. In
our implementation, the feature that contributed most to the
prediction accuracy was the sum of branch lengths along the path
between the pruning and the regrafting locations, while the
second-best feature was the number of nodes along that path.
These findings provide some justification for the common prac-
tice of considering only local changes in various tree search
heuristics7,9,18. The next three features were the sum of branch
lengths of the starting tree, the length of the pruned branch, and
the length of the longest branch in the pruned subtree (for the
important values of all features, see Supplementary Table 2).

Many common tree-search heuristics utilize a single feature to
limit the scope of inspected neighbors. We thus exploited the
devised framework to examine whether the use of a single feature
leads to similar performance. To this end, we trained 19 random
forest models on the training set, such that each model accounted
for a single feature. The performance of each of these models
provided a measure of the predictive power of each feature,
independent of the others. The best single-feature model obtained

Fig. 3 Example of an iterative chain of moves. Evaluation metrics for the
convergence behavior of an iterative chain of trees towards the maximum-
likelihood tree. The chain was initiated with the Neighbor-Joining tree
reconstructed for the protein-coding algae dataset we used as an example
throughout the manuscript (iteration #0). The line plots represent the
Robinson-Foulds distance from the maximum-likelihood tree (in blue; left Y
axis), and the log-likelihood of the tree obtained in each iteration (in orange;
right Y axis).

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-22073-8 ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:1983 | https://doi.org/10.1038/s41467-021-22073-8 | www.nature.com/naturecommunications 5

www.nature.com/naturecommunications
www.nature.com/naturecommunications


a Spearman correlation coefficient of ρ= 0.69 on average across
the training set and was based on the number of nodes in the path
between the pruning and the regrafting locations, a feature that
was ranked second when the entire set of features was used for
training. The average ρ across the training set for all the other
features was below 0.28 (Supplementary Table 3). These
observations, together with the substantial increase in average ρ
when comparing the usage of a single feature to using the entire
set of features combined (average ρ of 0.91), highlights the benefit
of relying on a large set of features that together provide a more
informative prediction.

Discussion
Inferring a phylogenetic tree is of central importance in
numerous evolutionary studies. As follows, methods for tree
reconstruction are widely used by the biological research com-
munity. Still, since such methods incur complex computations,
all existing methods attempt to reduce running time at the
expense of accuracy, being dependent on heuristics to overcome
the feasibility problem. Here we developed a machine-learning
framework, trained to rank neighboring trees according to their
propensity to increase the likelihood. The evident high predictive
power of this framework demonstrates that the computationally-
intensive step of likelihood evaluation can be limited to a small
set of potential neighbors, substantially reducing the running
time without jeopardizing accuracy. By boosting tree inference,
our study directly impacts efforts of downstream analyses, such
as molecular dating19, inference of positive selection20, protein
fold recognition21, identification of functionally divergent pro-
tein residue22, recombination detection23, and ancestral sequence
reconstruction24. Furthermore, our research could grant the
development of richer and more realistic substitution models,
which are currently too computationally intensive to be con-
sidered within a tree-search procedure (e.g., a covarion model25

for codon characters). This hypothesis is based on the parti-
tioned dataset analyzed in our study, and on our experiment in
which high performance was still observed when we applied a
machine-learning model trained under the JC model26 to data
evaluated under the GTR+ I+G model.

Ranking of neighboring trees to speed up the tree search was
previously suggested, albeit with the use of a single attribute and
without learning from large training data. For example, Hordijk
and Gascuel8 proposed testing only neighbors for which their
estimated total sum of branch lengths does not substantially differ
from the starting tree. Our methodology advances over previous
approaches, as we use multiple features instead of one, and utilize
machine learning to optimally combine these features based on
extensive training. Notably, a recent study suggested the use of
deep neural networks to classify alignments as being either
Felsenstein-type or Farris-type27. Moreover, Suvorov et al.28 and
Zou et al.29 utilized convolutional and residual neural networks,
respectively, to infer unrooted four-taxa topologies from multiple
sequence alignments. While their devised methods perform well,
they can currently be applied to infer topologies of four taxa only.
In addition, in order to reconstruct the true generating topology,
they were required to rely on simulated datasets, which were
previously shown to be easier to interpret and infer12–14. The
objective of our study, narrowing the search space in a single step
towards a final, faster, convergence of the maximum likelihood,
enabled us to rely on empirical datasets for training and testing.

How can our machine-learning algorithm be used in practice?
One trivial application would be to start evaluating the neigh-
boring trees, starting from the top-ranked predicted neighbor. If
this neighbor obtains a log-likelihood score that is higher than
the starting tree, proceed with that tree as the starting tree,

iteratively repeating this procedure. If this neighbor obtains a
log-likelihood score that is lower than the starting tree, evaluate
the next ranked neighbor. End the iterative chain of tree search
when no improvement is obtained. A similar procedure could be
applied by evaluating the log-likelihoods of the set of 5% top
predictions and progressing with the best among it. Clearly,
more sophisticated tree search schemes can be considered. For
example, one could progress a few steps, based on the best
predictions only, without evaluating the likelihoods, expecting
the obtained tree to have a higher log-likelihood compared to the
starting tree. Furthermore, our approach can be integrated
within existing maximum-likelihood frameworks, which are
already implemented in the leading tree search algorithms, such
as, RAxML30, PhyML31, and IQtree32. For example, in IQtree a
set of trees is kept and the algorithm samples from this set. Such
an approach to sampling within a subset of more likely neighbors
can easily be combined with our machine-learning approach that
allows sampling the most promising trees while rapidly traver-
sing large regions of the tree space. Further developments of the
proposed methodology towards a complete search are possible.
For example, we have not put the effort into assessing the branch
lengths associated with the inferred topology or in predicting
log-likelihoods of trees under different parameters-optimization
schemes. It is also interesting to further study how our approach
generalizes to additional substitution models of evolution, such
as amino-acid models codon models, and additional partition
models33,34. Furthermore, the convergence behavior in regions of
the tree space with high likelihood requires more robust inves-
tigation than the anecdotal evidence we provided in this study. In
addition, our algorithm was implemented using SPR moves only.
The benefit of using additional types of tree rearrangement
moves, such as nearest-neighbor interchange (NNI)35,36 and tree
bisection and regrafting (TBR)37 should be evaluated.

To conclude, we provide a methodology that can substantially
accelerate tree-search algorithms without sacrificing accuracy. We
believe that harnessing artificial intelligence to the task of phy-
logenomics inference has the potential to substantially increase
the scale of the analyzed datasets and, potentially, the level of
sophistication of the underlying evolutionary models.

Methods
Empirical and validation data. We assembled training data composed of 4200
empirical alignments from several databases: 3894 from TreeBase38, 151 from
Selectome39, 45 from protDB40, and 110 from PloiDB41. TreeBase is a repository of
user-submitted phylogenies; Selectome includes codon alignments of species within
four groups (Euteleostomi, Primates, Glires, and Drosophila); protDB includes
genomic sequences that were aligned according to the tertiary structure alignments
of the encoded proteins published in BALIBASE42; and PloiDB contains align-
ments with sequences belonging to a single plant genus and a potential outgroup.
We randomly selected datasets with 7 to 70 sequences and more than 50 sites,
excluding alignments containing sequences that are entirely composed of gapped
or missing characters.

To test the predictive power of our model also over unseen validation data that
were neither used for training our model nor for cross-validation, we gathered a
database encompassing 1000 multiple sequence alignments, collected from two
databases that were not used to generate the training set: 500 datasets from
PANDIT43, which includes alignments of coding sequences, and 500 datasets from
OrthoMaM44, a database of orthologous mammalian markers. Next, we verified
that our validation set is composed of a variety of biological data attributes
(Supplementary Fig. 1).

Example datasets. The example dataset that we used to exemplify the main results
of our study was composed of 28 Algae protein-coding plastid sequences, com-
posed of four genes (psaA, psaB, psbC, and rbcL), as obtained in Lewis et al.45.
Next, we used an additional example dataset as one that reflects a more complex
model. This empirical multi-gene alignment was composed of eight partitions of 59
plant sequences (one partition for each gene), as obtained in Kobert et al.46. The
partitioned model assigned a distinct GTR+ I+G substitution model for each
partition, assuming the proportional (namely “scaled”) branch linkage model.
Finally, we used a dataset with 403 species as additional validation for our
machine-learning model robustness in terms of the number of species in the

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-22073-8

6 NATURE COMMUNICATIONS |         (2021) 12:1983 | https://doi.org/10.1038/s41467-021-22073-8 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


alignments used for training the model. This alignment was obtained from
PANDIT43.

Starting trees reconstruction, SPR neighbors generation, and likelihood estimation.
The starting tree for each alignment was reconstructed using BioNJ47 as imple-
mented in PhyML 3.031, assuming the GTR+ I+G model. We optimized the
branch lengths for each starting tree and all its SPR neighbors using RAxML-NG48.
The substitution rate parameters were optimized for the starting tree and were
fixed for all neighbors, i.e., we recorded the log-likelihoods of the neighboring trees
assuming the GTR+ I+G optimized parameters of the starting tree.

A machine-learning algorithm for ranking neighboring trees. Random forest for
regression, as implemented in Python Scikit-learn module49, was applied using 70
decision trees. In each split of the tree, a random subset of one-third of the total
number of features was considered. The target value of the machine-learning

training was computed as target ¼ LLneighbor�LLstarting tree
LLstarting tree

, namely, the log-likelihood

difference between the neighbor and its starting tree, divided by the log-likelihood
of the starting tree. Notably, these ratios are log distributed across the training set
and may lead to unbalanced decision trees in the random-forest training. There-
fore, the training outcomes were transformed according to f target

� � ¼ 2targetþ1 to
generate a distribution that is more uniform (Supplementary Fig. 4). The reversed
transformation was applied to the predicted values accordingly.

The learning scheme we implemented in this study is a random forest
regression algorithm. This model was chosen over four other alternative
supervised-machine-learning regression algorithms we implemented, as it
outperformed all others: Support vector machine, Bayesian Ridge, Lasso, and K-
Nearest-Neighbors (Supplementary Table 4).

Predictive features. The learning was based on extracting 19 features from each
data point (Table 1). The computation of all features was implemented in Python and
required O(nlogn) operations for all the pruning and regrafting locations of a single
tree, n being the number of sequences (see Supplementary Note 1 for feature
extraction details). The first seven features were extracted from the starting trees
(Fig. 1, Table 1; features 1–7). The remaining features rely on the following definition
of four intermediate subtrees: the two subtrees induced by splitting the starting tree at

the pruning location and the two subtrees induced by splitting the remaining subtree
at the regrafting location (Fig. 1). For each of these four subtrees, we calculated three
features, resulting in a total of twelve features (Table 1; features 8–19).

To examine whether the feature set could be reduced to enhance computational
performance, we applied a backward stepwise elimination procedure50. To this end,
we began with the full set of 19 features. We then removed the feature with the
minimal importance score and trained the random forest algorithm for the
remaining features, to compute the ρ metric. We repeated this procedure,
successively eliminating an additional feature with the minimal importance score
(Fig. 4). The best ρ value was obtained when all the features were included. Only
when using 14 or fewer features, a statistically significant reduction in accuracy was
detected (P-value < 0.02 and P-value > 0.49, for one-sided t-test for the means
when using 14 and 15 features to 19, respectively). The results across the entire
analyses are presented using the entire set of features.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The datasets contained within the empirical set have been deposited in Open Source
Framework (OSF) with the identifier DOI 10.17605/OSF.IO/B8AQJ51. These datasets
were assembled from the following databases: TreeBase (https://treebase.org/treebase-
web/urlAPI.html); Selectome (https://selectome.org/); protDB (https://protdb.org/);
PloiDB (https://doi.org/10.3732/ajb.1500424); PANDIT (https://www.ebi.ac.uk/research/
goldman/software/pandit); OrthoMaM (https://orthomam.mbb.cnrs.fr/).

Code availability
The code that supports the findings of this study was written in Python version 3.6 and
has been deposited in Open Source Framework (OSF) with the identifier DOI 10.17605/
OSF.IO/B8AQJ51. Computation of likelihoods and parameter estimates were executed
using the following application versions: PhyML 3.031, RAxML-NG 0.9.048.

Received: 23 July 2020; Accepted: 26 February 2021;

Fig. 4 Feature selection following a backward stepwise elimination procedure. The mean Spearman correlation coefficient obtained when using a
decreasing number of features for training the algorithm on the 4200 starting trees. The box shows the quartiles of the dataset (thus the center is the
median) while the whiskers extend to show the 1.5 × IQR past the low and high quartiles. The table at the bottom elaborates the feature composition within
each set of features, as determined by the backward stepwise elimination procedure.
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