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Abstract

attention to predict MDAs by computational approaches.

algorithm is proposed to solve the optimization problem.

Background: Biological evidence has shown that microRNAs(miRNAs) are greatly implicated in various biological
progresses involved in human diseases. The identification of miRNA-disease associations(MDAS) is beneficial to
disease diagnosis as well as treatment. Due to the high costs of biological experiments, it attracts more and more

Results: In this work, we propose a novel model MTFMDA for miRNA-disease association prediction by matrix
tri-factorization, based on the known miRNA-disease associations, two types of miRNA similarities, and two types of
disease similarities. The main idea of MTFMDA is to factorize the miRNA-disease association matrix to three matrices, a
feature matrix for miRNAs, a feature matrix for diseases, and a low-rank relationship matrix. Our model incorporates
the Laplacian regularizers which force the feature matrices to preserve the similarities of miRNAs or diseases. A novel

Conclusions: We evaluate our model by 5-fold cross validation by using known MDAs from HMDD V2.0 and show
that our model could obtain the significantly highest AUCs among all the state-of-art methods. We further validate
our method by applying it on colon and breast neoplasms in two different types of experiment settings. The new
identified associated miRNAs for the two diseases could be verified by two other databases including dbDEMC and
HMDD V3.0, which further shows the power of our proposed method.

Keywords: micoRNA-disease association prediction, Matrix tri-factorization

Background

MicroRNAs(miRNAs), a class of small, endogenous, non-
coding RNAs including approximately 22 nucleotides,
could regulate post-transcription of gene expression and
RNA silencing by binding specific target messenger RNAs
through base-pairing interactions [1, 2]. Since the first
miRNA named lin-4 was found twenty years ago by Vic-
tor Ambros [3], with the development of technology, an
increasing number of studies found that miRNAs play
important roles in various stages of biological processes
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(3], such as cell development [4], proliferation [5] and viral
infection [6]. Meanwhile, biological experiments indicate
that miRNAs are involved in close relationships with the
emergence and development processes of various human
diseases [7]. For example, the study in [8] showed that a
chromosomal translocation at 12q5 could influence the
expression of let-7 and finally could cause the repress of
the oncogene High Mobility Group A2(Hmga2). Another
example is that mir-7 could influence epidermal growth
factor receptor (EGFR) expression and protein kinase
B activity in head and neck cancer(HNC) [9]. Further-
more, the work in [10] showed that mir-15a is a potential
marker to differentiate between benign and malignant
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renal tumors in biopsy and urine samples. It is very impor-
tant to identify miRNA-disease associations (MDAs) for
the research on disease mechanism and discovering dis-
ease biomarkers. Due to the high costs of the current bio-
logical technologies, computational methods are useful by
prioritizing candidate miRNAs for specific diseases.

The main information used for predicting MDAs mainly
includes miRNA similarities, disease similarities and the
known MDAs. Generally, miRNA similarities could be
computed by using functional or sequence information of
miRNAs, disease similarities could be obtained by using
the phenotype terms, and the known MDAs could be
obtained from databases such as HMDD [11]. The main
challenge in MDA prediction is how to optimally utilize
these information and predict MDAs with a high accuracy.
Based on these information, many computational models
are proposed to predict new MDAs.

The existing methods follow two lines. The first line is to
determine the link probabilistically by using random walk.
For example, RWRMDA [12] adopts random walk on the
miRNA functional similarity network. It first gives each
miRNA an initial probability in the miRNA functional
similarity network(MFSN), and then use a random walk
algorithm until the probability get stable. However, this
method cannot predict new disease without any known
related miRNAs. Thus Shi et al. [13] use the random
walk algorithm on miRNA target and disease genes at the
same time to map the protein-protein interaction (PPI)
network, and then they construct a bipartite miRNA-
disease network by using p-values in the PPI network and
identify co-regulated modules by hierarchical clustering
analysis. Later Xuan et al. [14] develop the MIDP method
by using the prior information of nodes. They first divide
the diseases related to the miRNAs into labeled nodes
and unlabeled nodes, and establish the transition matri-
ces for the two categories of nodes. Then by using the
random walk algorithm on the two weighted transition
matrices, the final miRNA ranking could be obtained. Liu
et al. [15] proposed a random walk method to predict the
associations by combining the multiple data sources.

The second line is to formulate the problem as machine
learning problems such as classification, matrix comple-
tion. For classification formulation, examples include the
RLSMDA [16] and the MTDN [17] methods. RLSMDA
[16] develops Regularized Least Squares algorithm by
training two classifiers from the miRNA space and the
disease space. However, how to choose the parameter of
RLSMDA and how to combine the classifiers need to be
studied furthermore. Xu et al. [17] introduce the MTDN
approach based on miRNA target-dysregulated network
to prioritize novel disease miRNAs. The method first con-
structs the network by combining computational target
prediction with miRNA and mRNA expression profiles in
tumor and non-tumor tissues, and then applies a support
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vector machine classifier to distinguish positive miRNA-
disease associations from negative ones by extracting the
feature of network topologic information. However, it is
hard to obtain the negative miRNA-disease associations.
Another option using machine learning is matrix comple-
tion such as MCLPMDA [18], IMCMDA [19], CMFMDA
[20] and PMAMCA [21]. MCLPMDA [18] constructs new
miRNA and disease similarity matrices by matrix com-
pletion algorithm firstly, and then uses label propagation
algorithm to predict miRNAs. Chen et al. [19] propose a
method named IMCMDA based on nonnegative matrix
factorization, whose main idea is to complete the missing
miRNA-disease association based on the known associa-
tions and miRNA and disease similarity. CMFMDA [20]
and PMAMCA [21] both factorize the association matrix
into two matrices which representing the features for
miRNAs and diseases, respectively.

In this study, we propose a novel computational
method MTEMDA to predict new MDAs by matrix tri-
factorization, to follow the idea of matrix completion. The
main idea of MTFMDA is that we factorize the complete
MDA matrix to three matrices, a feature matrix P for
miRNAs, a feature matrix Q for diseases, and a low-rank
matrix D representing relationships between miRNA fea-
tures and disease features. Laplacian regularizers are used
for the feature matrices P and Q by using two types of
miRNA similarities, and two types of disease similarities,
respectively. Optimal matrices P,D and Q are learnt by
using the known MDAs and the Laplacian regularizers,
and then the MDA matrix is completed by PDQT and thus
new MDAs can be identified.

The contributions in this work are listed as follows:

1. We propose a new MDA prediction model by matrix
tri-factorization model, which combines the two
types of miRNA similarities, two types of disease
similarities, and the known miRNA-disease
associations, and predict new MDAs by completing
the MDA matrix. We develop an algorithm for
solving the optimization problem.

2. We evaluate our MTFMDA model by 5-fold
cross-validation and obtain higher accuracies than
other state-of-art methods.

3. We apply our method on two diseases to identify
related miRNAs, and our prediction results could be
supported by other databases. This further validates
the effectiveness of our model MTFMDA.

Materials and methods

Datasets

Human miRNA-disease associations

We collect the known human miRNA-disease associations
from HMDD V2.0 database (June, 2014) [11], and obtain
3693 associations among 368 miRNAs and 383 diseases.
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MiRNA functional similarity and sequence similarity

The functional similarities among miRNAs can be cal-
culated by the method proposed in [22], and we down-
load the similarity data from http://www.cuilab.cn. Since
miRNA’s function is closely relevant to the miRNA
sequence [23], we also obtain the miRNA sequence sim-
ilarity from http://www.mirbase.org/ftp.shtml. The inte-
grated similarities among miRNAs are defined as the
average of the functional similarity and the sequence sim-
ilarity, and the integrated similarity matrix for miRNAs is
denoted as S,,.

Two disease semantic similarities

To calculate disease semantic similarities, Wang [22] and
Xuan [24] propose two methods based on the Medi-
cal Subject Headings (MeSH) descriptors which could
be downloaded from the National Library of Medicine
(http://www.nlm.nih.gov/).

Wang’s method [22] first calculates the semantic value
and contribution value of a disease, and then uses these
two values to compute the semantic similarity between
two diseases. Unlike Wang’s method, Xuan et al. [25]
improves the calculation method of semantic value. It also
uses semantic value and contribution value to calculate
the semantic similarity. We use the integrated similarity
in our work by averaging the two types of semantic sim-
ilarities, and denote the integrated similarity matrix for
diseases as S.

Our proposed method via matrix tri-factorization

Problem statement and notations

We are now given the integrated similarity matrix S, €
R'n>*"m among n,, miRNAs {ml, ce My, }, and the inte-
grated similarities S; € R"*" among n,; diseases
{dl, <o dpy } We are also given the miRNA-disease asso-
ciation (MDA) indicator matrix A € R"™*"d defined as
follows

AG)) 1, i-th miRNA m; is associated with j-th disease dj,
ij) =

0, association between i-th miRNA m; and j-th disease d; is unknown.

We denote Q = {(i,j) |[Aj = 1} to be the indices for the
miRNA-disease pairs which are known to be associated,
and Q° = {(i,j) |A; = O} to be all the pairs whose associ-
ations are unknown. For any matrix M, we denote Rq (M)
by only keeping its €2 part and forcing its Q¢ part to be
zeros, that is,
Mi]'r lf(l’]) € Q
0, if(i,j) € Q°.

Our aim in this work is to complete the Q€ part in matrix
A, and recover the complete matrix A.

RaM); = {

MTFMDA model
We propose our MTFMDA method by considering the
following three aspects. First, the unknown complete
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miRNA-disease association (MDA) matrix A can be fac-
torized into three matrices, a feature matrix for miRNAs
P € R">Tm 3 feature matrix for diseases Q € R"4*"d, and
the feature relationship matrix D € R"*'4. The factoriza-
tion A = PDQT implies that the column vectors in A lie in
the subspace spanned by the column vectors in P, and the
row vectors in A lie in the subspace spanned by the col-
umn vectors in Q. D is generally required to be low rank,
and P and Q are orthonormal matrices satisfying PTP = I
and QTQ = I. Second, the complete A should recover
the known associations between miRNAs and diseases,
i.e, the Q2 part of the difference matrix (A — A) should be

zero or as small as possible. Third, the feature vectors in
P and Q should preserve the similarity information hid-
den in the S;, and S, respectively, and thus two Laplacian
regularizers should be used for preserving the geomet-
ric structure. By considering the above three aspects, we
propose the following MTFMDA model

min HRQ (A - PDQT) Hi T At (PTLmP) ¥ oty (QTLdQ) + 231Dl

st. PTp=1,0TQ=1,
(1)

where A1, 1y and A3 are the regularization parameters to
control the trade-offs. The first term is to recover the
known MDAs in A. In the second term, L,, = D,,, — S, is
the Laplacian matrix for the miRNAs, where D,, is a diag-
onal matrix with the i-th diagonal element being the sum
of i-th row in Sj,. In the third term, L; is the Laplacian
matrix for diseases, defined in the same way as L,,. Once
the optimal P,D and Q are solved in the optimization
problem, the completed MDA matrix A can be obtained
by A = PDQT. The flowchart of our method is shown in
Fig.1.

Optimization algorithm
In order to solve optimization problem above, we develop
an alternate iteration algorithm to update P, D and Q
alternately.

Step 1: Fix P and Q, solve D
By fixing P and Q in the optimization problem (1), the sub-
problem to solve D can be obtained as follows:

min |Ro (4~ PDQ")| " + 251Dl @)

The sub-problem can be solved by an accelerated gradient
descent algorithm [26] with the following iterations,

Vi =D+ (i = 1) (D = i),

D

Djy1 = argminp A3

)

+2||p- (n—%vﬂm)‘ 2

F
Vi1 = <\/yk4 + 4y} — yﬁ) /2,

®3)


http://www.cuilab.cn
http://www.mirbase.org/ftp.shtml
http://www.nlm.nih.gov/
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Fig. 1 Flowchart of MTFMDA model to infer the potential miRNA-disease associations

where s is a proximal parameter for estimating the second-
order gradient of f(Y). The second equation in (3) can
be solved by using the linearized Bregman iteration as a
special form of Uzawa’s algorithm proposed in Cai et al.
[27].

Step 2: Fix D and Q, solve P.

By fixing D and Q in optimization problem (1), we
obtain the sub-problem of P as follows:

2
min HRQ (A _ PDQT> HF + ot (PTLmP) . @)

Similarly to solving D in step 1, we could also use the
accelerated gradient descent (APG) model to update P as
follows:

Vi = Pe+ (Vkill - 1) (Px — Px-1),
2

. T N A 1 ~
Pyy1 = argminp Aytr (P LmP> + 3 P—\Yr—-vf (Yk)
s

Vit = <\/V,f + 4y} — V;f) /2.

F

(5)

Wen'’s algorithm proposed in [28] is used to solve the
second Eq. in (5).

Step 3: Fix D and P, solve Q.

By fixing D and P in optimization problem (1), we obtain
the sub-problem of Q as follows:

. T\ | T
min HRQ (A —PDQ ) HF T dotr (Q LdQ) . ®)

It can be seen that the sub-problem (6) to solve for Q is
the same with the sub-problem (4) to solve for P. Thus we
skip the details.

Overall, the framework of our algorithm is shown as
follows:

)

Results

In this section, we will first evaluate our method on the
known associations collected from HMDD V2.0 database
by 5-fold cross validation. Then we further evaluate our
method by using the probability of recovering a true asso-
ciation in the top-t predictions for new diseases. We
also estimate the contribution of the performance for the
known association matrix, integrated miRNA and disease
similarity.

Comparing methods
We compare our MTFMDA method with the following
seven methods.

Algorithm 1 Algorithm MTFMDA

Inputs:
MiRNA-disease association matrix A € R"m*"d;
MiRNA similarity matrix S, € R"m>"n;
Disease similarity matrix S; € R">"d;
Parameters A; = 10,19 = 10, A3 = 1.

Outputs:;l = PDQT.

1. Construct Laplacian matrices L,,, = Dy, — Sy,

L;=Dg—S,.

2. Initialize P, Q, D.

3. while 4, P, Q and D not converged

4. Fixed P and Q, update D by using Eq. (3);

5. Fixed D and Q, update P by using Eq. (5);

6. Fixed P and D, update Q by using the same way

with updating P;
7. A= PDQT;
8. end
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e RLSMDA [16].The model is a semi-supervised
learning method, and it develops a Regularized Least
Squares algorithm by training two classifiers from the
miRNA space and the disease space (we use
parameter w = 0.9).

o RWRMDA [12]. The model is a random walk
method which infers potential miRNA-disease
interactions by implementing random walk on the
miRNA-miRNA functional similarity network (we
use parameters r = 0.2, threshold = 107°).

e IMCMDA [19]. The method is a matrix completion
model by nonnegative matrix factorization using the
same datasets with our method (we use parameter
r=100).

e NCPMDA [29]. The method is a non-parametric
universal network-based method that combines
miRNA space and disease space.

e KBMFMDA [30]. The model combines kernel-based
nonlinear dimensionality reduction, matrix
factorization and binary classification. The main idea
of the method is to project miRNAs and diseases into
a subspace and estimate the association network in
the subspace.

e CMFMDA [20]. The model factorizes the association
matrix into two parts which represent miRNA and
disease information, respectively. SVD factorization
is used to initialize the two parts.

e PMAMCA [21]. The method divides the association
matrix into two latent matrices, and solve the matrix
factorization by using the recommend system. Note
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that this method doesn’t use miRNA and disease
similarity matrices.

Evaluating our method by cross-validation

We first evaluate the performance of our MTFMDA
method by the 5-fold cross validation framework. We use
the data with 3693 associations between 368 miRNAs and
383 diseases collected from the HMDD V2.0 database. For
the 5-fold cross validation, we divide 368 miRNAs into five
folds. We take one fold as the test set, and take the rest
as the training set. Each fold is taken as the test set once
in turn. After obtaining the complete MDA matrix A, we
rank the scores for all the test pairs of miRNA-diseases. If
the rank of an miRNA-disease pair exceeds a given thresh-
old, then the pair is considered to have an association. In
our method, we set the parameters as A; = Ay = 10 and
A3 = 1. The dimension parameters r,, and r; are set as the
one sixth of n,, and ny, respectively.

We first plot Receiver Operation Characteristics (ROC)
curves for all the methods to check the true positive
rates and false positive rates. In the ROC curve, the x-
axis is the true positive rate (TPR) and the y-axis is the
false positive rate (FPR). The ROC curves for the all
the methods are plotted in Fig. 2. We can see that our
MTEFMDA could obtain the best ROC curve. We then
perform 50 runs of 5-fold cross validation, and calculate
the AUC (area under curve) values. The average AUC
values of MTFMDA, RLSMDA, RWRMDA, IMCMDA,
NCPMDA, KBMFMDA, CMFMDA and PMAMCA are
reported in Table 1. The results show that our method

09

0.8

0.7 [

0.5

True positive rate

0.3

0.2
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Fig. 2 Performance comparisons between our method MTFMDA and baseline methods(IMCMDA, KBMFMDA, NCPMDA, RLSMDA, RWRMDA,

CMFMDA, PMAMCA) in terms of AUC based on 5-fold cross validation
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Table 1 Performance comparisons between our method MTFMDA and baseline methods in terms of AUCs based on 5-fold cross
validation and paired t-test p-values which compare our method with other methods

IMCMDA KBMFMDA NCPMDA RLSMDA RWRMDA CMFMDA PMAMCA MTFMDA
AUC 08114 0.5110 0.6263 0.7657 0.7778 0.7502 0.6061 0.8484
p-value 8.43e-94 7.87e-196 1.36e-167 7.76e-125 1.88e-119 8.11e-046 2.99e-57

achieves the highest AUC value and performs better than
other methods. We further analyze the differences of
inference capability between our method and others. Note
that for each method we obtain 50 AUC values for the
50 runs of 5-fold cross validation. Thus, the paired t-test
can be used to check whether our method is significantly
better than other methods. The p-values between our
method and other five methods are reported in Table 1.
The results show that our method MTFMDA performs
significantly better than other methods. We further plot
the Precision-Recall curves in Fig. 3 for all the methods,
and we can also see that our method performs better than
all the other comparing methods.

Probability to recover true associated miRNAs for new
diseases

We further evaluate our MTFMDA method by the prob-
ability of recovering a true association in the top-t pre-
dictions for a new disease. The probability can measure
whether the method can predict potential related miRNA
for a new disease. The measurement has been used in
many other publications such as [19, 31, 32]. In detail,
for each test disease, we first mask its known associated

miRNAs as zero in matrix A, and then apply our model to
obtain the ranks of the masked true associated miRNAs.
Thus for all the 383 diseases, we could obtain the ranks
of the true associated miRNAs among all the miRNAs.
We could then plot the cumulative distribution function
(CDF), where x-axis represents the top-t predicted miR-
NAs, and y-axis represents the probability of recovering
a true association in the top ¢ predictions. Other meth-
ods could also plot the curves, except the RWRMDA,
which cannot predict the new diseases. The CDFs for the
five methods are shown in Fig. 4. From the figure, we
can see that though NCPMDA performs better than ours
for the top 13 miRNAs, the probability of recovering a
true association in the top ¢ predictions does not change
much when ¢ from 13 to 40. When ¢ is from 13 to 40,
our method could recover true associated miRNAs with
highest probabilities.

Contributions of different data sources

We use three data sets in our model, miRNA similarity
Sm, disease similarity S; and known miRNA-disease asso-
ciation matrix A. To examine their contributions to the
performance of our model, we first change each of the

1 T T T T T T T T T
IMCMDA
0.9 KBMFMDA |
NCPMDA
0.8 RLSMDA |
RWRMDA
0.7 {] CMFMDA | A
PMAMCA
c 06 MTFMDA | -
Rl
8 05 - 4
4
[a
0.4 | .
0.3 .
0.2 .
0.1F .
N ——
0 L 1 1 1 1 1 1 1 i |
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Recall
Fig. 3 Performance comparisons between MTFMDA and baseline methods(IMCMDA, KBMFMDA, NCPMDA, RLSMDA RWRMDA, CMFMDA,
PMAMCA) in terms of PR curve
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predicting potential miRNAs for new diseases

three matrices to a random matrix, and then apply our
MTEMDA model to check the AUC values based on 5-
fold cross validation. If one data type contributes the most,
then the corresponding AUC should decrease a lot when
changing to the data to be random. We change S,,, Sy
and A to be random in turn, and the resulting AUCs are
reported in Table 2. As shown in Table 2, the average AUC
value based on the random miRNA similarity matrix is
much lower than the other two types in our model, and
thus the miRNA similarity contributes the most to the
performance of our model. We also see that the disease
similarity contributes the least in our MTFMDA model.

Discussion

We apply two diseases including colon and breast neo-
plasms to verify the effectiveness of the MTFMDA for
miRNA-disease association prediction. For each disease,
we apply our MTFMDA model to predict the top-¢ associ-
ated miRNAs, and then examine these predictions by two
datasets: dbDEMC [33] and HMDD V3.0 [34].

Table 2 AUCs of our model by changing one of the three data
sources to be random in turn

Randomized Data sources Average value of AUCs

Known miRNA-disease associations 0.5025
MiRNA similarities 0.1951
Disease similarities 0.8360

Table 3 shows the predicted top 50 miRNAs for the
colon neoplasms using our MTFMDA model. Colon neo-
plasms is an out-of-control cell growth, and it is the
second leading cause of death in cancer and the most com-
mon tumor in the gastrointestinal tract [35, 36]. Many fac-
tors will cause the neoplasms, such as old age, unhealthy
lifestyle and heredity [37]. Recently, more and more evi-
dence proved that some miRNAs are related to the colon
neoplasms. For example, Zhang et al. [38] showed that
mir-21, mir-17 and mir-19a promote the metastasis and
spread of colon neoplasms. Coincidentally, the expres-
sion levels of miR-106a of normal human are higher than
colon cancer patients [39]. Shi et al. [40] found that mir-
145 could down-regulate the IRS-1 protein in the colon
neoplasms cells and inhibit cells growth through target-
ing the IRS-1 3’-untranslated region. From our prediction
results shown in Table 3, we can see that all the predicted
top 10 miRNAs by our method can be confirmed by both
the dbDEMC and HMDD V3.0 databases, and 46 among
the top 50 miRNAs can be confirmed by dbDEMC and
HMDD V3.0 databases. This validates the effectiveness of
our MTFMDA method.

For the breast neoplasms, we evaluate our method in
another way. We mask all the known associated miRNAs
with breast neoplasms and apply our MTFMDA method
to obtain the predicted top 50 associated miRNAs for the
breast neoplasms, shown in Table 4. From this table, we
can see that, all the top 10 miRNAs are confirmed by
the two databases, and 49 of the top 50 miRNAs can be
confirmed by the two databases. Through the Table 4,
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Table 3 The predicted top 50 miRNAs associated with colon
neoplasms and the evidence from databases HMDD V3.0 and
dbDEMC
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Table 4 The predicted top 50 miRNAs associated with breast
neoplasms and the evidence from databases HMDD V3.0 and
dbDEMC

miRNA Evidence miRNA Evidence miRNA Evidence mMiRNA Evidence
hsa-mir-155 dbDEMCHMDD hsa-let-7b dbDEMCGHMDD hsa-mir-155 dbDEMCGHMDD hsa-mir-106b dbDEMCHMDD
hsa-mir-146a dbDEMCHMDD hsa-mir-143 dbDEMCHMDD hsa-mir-146a dbDEMCHMDD hsa-mir-143 dbDEMCHMDD
hsa-mir-328 dbDEMCHMDD hsa-mir-200a HMDD hsa-mir-328 dbDEMCHMDD hsa-let-7¢ dbDEMCHMDD
hsa-mir-29a dbDEMC,HMDD hsa-mir-195 dbDEMCHMDD hsa-mir-29a dbDEMCHMDD hsa-mir-195 dbDEMC,HMDD
hsa-mir-17 dbDEMC;HMDD hsa-let-7¢ dbDEMC:HMDD hsa-mir-15a dbDEMCHMDD hsa-mir-326 dbDEMCHMDD
hsa-mir-34a dbDEMC;HMDD hsa-mir-326 dbDEMC:HMDD hsa-mir-17 dbDEMCHMDD hsa-mir-141 dbDEMCHMDD
hsa-mir-20a dbDEMCHMDD hsa-mir-23a dbDEMCHMDD hsa-mir-20a dbDEMCHMDD hsa-let-7i dbDEMCHMDD
hsa-mir-15a dbDEMCHMDD hsa-mir-210 dbDEMCHMDD hsa-mir-145 dbDEMCHMDD hsa-let-7d dbDEMCHMDD
hsa-mir-221 dbDEMCHMDD hsa-mir-141 dbDEMCHMDD hsa-mir-34a dbDEMCGHMDD hsa-mir-23a dbDEMCHMDD
hsa-mir-145 dbDEMCHMDD hsa-mir-320a dbDEMC hsa-mir-221 dbDEMCHMDD hsa-mir-210 dbDEMCHMDD
hsa-mir-19a dbDEMCHMDD hsa-let-7i dbDEMCHMDD hsa-mir-19a dbDEMCHMDD hsa-mir-34b dbDEMCHMDD
hsa-mir-206 dbDEMC hsa-mir-214 dbDEMC hsa-mir-206 dbDEMC:HMDD hsa-let-7e dbDEMC,HMDD
hsa-mir-29¢ dbDEMC hsa-let-7d dbDEMC:HMDD hsa-mir-29¢ dbDEMCHMDD hsa-mir-335 dbDEMC,HMDD
hsa-mir-593 unconfirmed hsa-mir-34b unconfirmed hsa-mir-150 dbDEMCHMDD hsa-mir-146b HMDD
hsa-mir-150 dbDEMCHMDD hsa-mir-133b dbDEMCHMDD hsa-mir-18a dbDEMCHMDD hsa-mir-214 dbDEMCHMDD
hsa-mir-18a dbDEMCHMDD hsa-mir-146b dbDEMC hsa-mir-142 HMDD hsa-mir-200c dbDEMCHMDD
hsa-mir-222 dbDEMCHMDD hsa-let-7e dbDEMCHMDD  hsa-mir-15b dbDEMCHMDD hsa-mir-320a dbDEMCHMDD
hsa-mir-15b dbDEMCHMDD hsa-mir-663a dbDEMC hsa-mir-200b dbDEMCHMDD hsa-let-7g dbDEMCHMDD
hsa-mir-142 HMDD hsa-mir-200c HMDD hsa-mir-222 dbDEMCHMDD hsa-mir-133b dbDEMCHMDD
hsa-mir-223 dbDEMC,HMDD hsa-mir-148a dbDEMCHMDD hsa-mir-223 dbDEMCHMDD hsa-mir-106a dbDEMCHMDD
hsa-mir-200b dbDEMC,HMDD hsa-mir-193a unconfirmed hsa-let-7b dbDEMCHMDD hsa-mir-451a dbDEMCHMDD
hsa-mir-483 HMDD hsa-mir-574 dbDEMC hsa-mir-34c dbDEMCHMDD hsa-mir-193a dbDEMCHMDD
hsa-mir-30b dbDEMCHMDD hsa-mir-106a dbDEMCHMDD hsa-mir-30b dbDEMCHMDD hsa-mir-663a HMDD
hsa-mir-34c unconfirmed hsa-let-7g dbDEMCHMDD hsa-mir-200a dbDEMCHMDD hsa-mir-152 dbDEMCHMDD
hsa-mir-106b dbDEMCHMDD hsa-mir-335 dbDEMCHMDD hsa-mir-483 unconfirmed hsa-mir-92b dbDEMCHMDD

we found that hsa-mir-155 ranks the first, and it has
been found that this miRNA could affect many cancers in
recent studies, such as breast neoplasms, colon neoplasms
and esophageal neoplasms [41-43].

Overall, the case studies on colon and breast neo-
plasms further validate the effectiveness of our MTFMDA
method for predicting miRNA-disease associations.

Conclusion

Identifying potential miRNA-disease associations could
help understand the pathogenesis of the disease from a
genetic perspective. In this work, we propose a com-
putational method MTFMDA to predict new MDAs by
using an idea of matrix tri-factorization. Different from
other matrix completion methods, we factorize the com-
plete MDA matrix to three matrices including a feature
matrix for miRNAs, a feature matrix for diseases and a
low-rank matrix representing the relationships between
miRNA features and disease features. Experiments show

that our method performs better for predicting miRNAs
associated with new diseases. As we have shown, based
on the 5-fold cross validation, the comparisons on the
ROC curves, AUCs and Precision-Recall curves show that
our MTFMDA performs better than the other methods.
Furthermore, the experiments to predict associated miR-
NAs for colon and breast neoplasms also demonstrate the
effectiveness of our method. However, this research only
takes the average of two types of similarities of miRNAs
and diseases, but not consider how to combine the two
similarities optimally. This could be our future topic to
work on.
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