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Simple Summary: Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver
disease, and it is an increasing factor in the cause of hepatocellular carcinoma (HCC). The incidence
of NAFLD has increased in recent decades, accompanied by an increase in the prevalence of other
metabolic diseases, such as obesity and type 2 diabetes. However, current treatment options are
limited. Both genetic factors and non-genetic factors impact the initiation and progression of NAFLD-
related HCC. The early diagnosis of liver cancer predicts curative treatment and longer survival.
Some key molecules play pivotal roles in the initiation and progression of NAFLD-related HCC,
which can be targeted to impede HCC development. In this review, we summarize some key factors
and important molecules in NAFLD-related HCC development, the latest progress in HCC diagnosis
and treatment options, and some current clinical trials for NAFLD treatment.

Abstract: Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer, followed
by cholangiocarcinoma (CCA). HCC is the third most common cause of cancer death worldwide, and
its incidence is rising, associated with an increased prevalence of obesity and nonalcoholic fatty liver
disease (NAFLD). However, current treatment options are limited. Genetic factors and epigenetic
factors, influenced by age and environment, significantly impact the initiation and progression of
NAFLD-related HCC. In addition, both transcriptional factors and post-transcriptional modification
are critically important for the development of HCC in the fatty liver under inflammatory and fibrotic
conditions. The early diagnosis of liver cancer predicts curative treatment and longer survival. How-
ever, clinical HCC cases are commonly found in a very late stage due to the asymptomatic nature of
the early stage of NAFLD-related HCC. The development of diagnostic methods and novel biomark-
ers, as well as the combined evaluation algorithm and artificial intelligence, support the early and
precise diagnosis of NAFLD-related HCC, and timely monitoring during its progression. Treatment
options for HCC and NAFLD-related HCC include immunotherapy, CAR T cell therapy, peptide
treatment, bariatric surgery, anti-fibrotic treatment, and so on. Overall, the incidence of NAFLD-
related HCC is increasing, and a better understanding of the underlying mechanism implicated in
the progression of NAFLD-related HCC is essential for improving treatment and prognosis.

Keywords: hepatocellular carcinoma; nonalcoholic fatty liver diseases; genetic and epigenetic factors;
transcriptional and post-transcriptional factors; diagnosis; treatment

1. Introduction

Primary liver cancer was the sixth most commonly diagnosed and the third most
common cause of cancer-related death worldwide in 2020 [1]. Hepatocellular carcinoma
(HCC) comprises approximate 80% of primary liver cancer (PLC) cases [2], whereas cholan-
giocarcinoma (CCA) represents 10% to 15% of PLC cases [1]. Combined hepatocellular-
cholangiocarcinoma (CHC) is a rare case in PLC [3,4]. Multiple factors contribute to the
development of HCC, such as diet [5,6], infection with hepatitis viruses [7,8], alcohol
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abuse [9,10], and bioactive compounds [11,12]. Recent studies show that hepatitis C viral
infection is the most common causal factor for HCC but that it shows a declining trend,
whereas nonalcoholic fatty liver disease (NAFLD) or its advanced subtype, nonalcoholic
steatohepatitis (NASH), is the most rapidly growing factor contributing to HCC develop-
ment in the United States [13]. Myers et al. reported that in a study performed in western
Switzerland, NAFLD or metabolic-associated fatty liver disease (MAFLD) was found to
be an increased inducing factor for HCC incidence, being especially higher in women
than in men, whereas other etiologies remained stable [14]. The early diagnosis of liver
cancer is critically important for curative treatment, since early-stage HCC can be locally
ablated or resected. Surgery such as laparoscopic surgery is recommended as the first-line
therapy for HCC patients with an early diagnosis [15]. Unfortunately, NAFLD-related
HCC progression does not have obvious clinical symptoms, which means that most cases
are found in the late stage of the disease [16]. Furthermore, the increasing prevalence of
NAFLD worldwide and limited therapeutic options may raise the incidence of HCC [17].

The development of HCC is associated with age, sex, geography, and etiology [2]. Men
have a much higher chance of developing HCC than women. Furthermore, the diagnosis
of HCC in men aged ≥60 years has dramatically increased, and milder changes have been
observed in women. The sex-induced difference in the incidence of HCC is dependent not
only on the hormone estrogen [18], but also on other factors, such as gut microbiota, bile
acids (BAs), and microRNAs (miRNAs) [19]. Factors causing the development of NAFLD-
related HCC (Figure 1), including epigenetic and genetic factors and transcriptional and
post-transcriptional factors, as well as their diagnosis and treatment, are discussed in
this study.

Cancers 2021, 13, x FOR PEER REVIEW 2 of 22 
 

 

development of HCC, such as diet [5,6], infection with hepatitis viruses [7,8], alcohol 
abuse [9,10], and bioactive compounds [11,12]. Recent studies show that hepatitis C viral 
infection is the most common causal factor for HCC but that it shows a declining trend, 
whereas nonalcoholic fatty liver disease (NAFLD) or its advanced subtype, nonalcoholic 
steatohepatitis (NASH), is the most rapidly growing factor contributing to HCC develop-
ment in the United States [13]. Myers et al. reported that in a study performed in western 
Switzerland, NAFLD or metabolic-associated fatty liver disease (MAFLD) was found to 
be an increased inducing factor for HCC incidence, being especially higher in women than 
in men, whereas other etiologies remained stable [14]. The early diagnosis of liver cancer 
is critically important for curative treatment, since early-stage HCC can be locally ablated 
or resected. Surgery such as laparoscopic surgery is recommended as the first-line therapy 
for HCC patients with an early diagnosis [15]. Unfortunately, NAFLD-related HCC pro-
gression does not have obvious clinical symptoms, which means that most cases are found 
in the late stage of the disease [16]. Furthermore, the increasing prevalence of NAFLD 
worldwide and limited therapeutic options may raise the incidence of HCC [17]. 

The development of HCC is associated with age, sex, geography, and etiology [2]. 
Men have a much higher chance of developing HCC than women. Furthermore, the diag-
nosis of HCC in men aged ≥60 years has dramatically increased, and milder changes have 
been observed in women. The sex-induced difference in the incidence of HCC is depend-
ent not only on the hormone estrogen [18], but also on other factors, such as gut microbi-
ota, bile acids (BAs), and microRNAs (miRNAs) [19]. Factors causing the development of 
NAFLD-related HCC (Figure 1), including epigenetic and genetic factors and transcrip-
tional and post-transcriptional factors, as well as their diagnosis and treatment, are dis-
cussed in this study. 

 
Figure 1. Factors causing the development and progression of NAFLD-related HCC and other 
etiologies causing HCC aside from NAFLD. Abbreviations: DEN: diethylnitrosamine; ECM: extra-
cellular matrix proteins; HCC: hepatocellular carcinoma; HSC: hepatic stellate cell; NAFLD: nonal-
coholic fatty liver disease; NASH: nonalcoholic steatohepatitis. 

2. Genetic Factors 
Genetic factors, such as patatin-like phospholipase domain-containing protein 3 

(PNPLA3) [20,21], transmembrane-6 superfamily member 2 (TM6SF2) [22], and pro-
grammed cell death-1 (PDCD1) encoding PD-1, are associated with NAFLD-related HCC 
initiation and progression [23]. 

The allele alteration of rs7421861 A > G in PDCD1 gene is associated with a decreased 
frequency of NAFLD-HCC progression, since the wild-type A allele has been observed 

Figure 1. Factors causing the development and progression of NAFLD-related HCC and other etiolo-
gies causing HCC aside from NAFLD. Abbreviations: DEN: diethylnitrosamine; ECM: extracellular
matrix proteins; HCC: hepatocellular carcinoma; HSC: hepatic stellate cell; NAFLD: nonalcoholic
fatty liver disease; NASH: nonalcoholic steatohepatitis.

2. Genetic Factors

Genetic factors, such as patatin-like phospholipase domain-containing protein 3 (PN-
PLA3) [20,21], transmembrane-6 superfamily member 2 (TM6SF2) [22], and programmed
cell death-1 (PDCD1) encoding PD-1, are associated with NAFLD-related HCC initiation
and progression [23].

The allele alteration of rs7421861 A > G in PDCD1 gene is associated with a decreased
frequency of NAFLD-HCC progression, since the wild-type A allele has been observed
more in patients with NAFLD-HCC [23]. In contrast, the allele alteration of rs10204525
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C > T in PDCD1 gene increased the progression of NAFLD-HCC compared to the wild-
type C allele. In silico analysis showed that the rs7421861 A allele in PDCD1 gene was
associated with the higher expression of PD-1 compared to the G allele, which suggests that
the G allele decreases PD-1-mediated immune exhaustion to suppress HCC growth [23]. In
addition, a mutation of the rs7421861 allele in PDCD1 gene, located in intron 1 with richness
in regulatory and splicing sites, may cause splicing disruption, translational inhibition, and
a change in the mRNA secondary structure [24].

Patients with the rs58542926 C > T genetic variant of the TM6SF2 gene, encoding
the E167K amino acid substitution, showed a lower serum lipid content, but had more
severe hepatic steatosis, inflammation, ballooning, and fibrosis, and were more susceptible
to develop NASH [25,26]. The T allele was shown to be associated with the reduction of
TM6SF2 gene and protein expression in the liver [26]. A meta-analysis study showed that
the rs58542926 T allele in TM6SF2 gene had a significant association with HCC development
compared to the C allele [27]. This effect may be mediated by regulating the cell cycle [28]
and upregulating inflammatory cytokines, such as IL-2 and IL-6 [29].

The rs599839 A > G variant, localized in the genetic cluster of cadherin EGF LAG seven-
pass G-type receptor 2 (CELSR2)-proline/serine-rich coiled-coil protein 1 (PSRC1)- sortilin
1 (SORT1), was associated with reduced severity of dyslipidemia in NAFLD patients with a
higher risk of cardiovascular comorbidities [30]. This variant was associated with increased
hepatic expression of CELSR2, PSRC1, and SORT1 in NAFLD patients. In addition, the data
from The Cancer Genome Atlas (TCGA) showed that PSRC1-overexpression promoted
HCC development [30]. However, this variant was not significantly correlated with hepatic
steatosis, ballooning, lobular inflammation, or fibrosis.

In addition, the rs641738 C > T variant, near two genes encoding membrane-bound O-
acyltransferase domain-containing 7 (MBOAT7) and transmembrane channel-like 4 (TMC4),
was shown to be associated with the progression of NAFLD and liver fibrosis [31]. The
loss of function of MBOAT7 is identified to be a factor contributing to NAFLD progression.
Another study also reported that the rs641738 T allele of MBOAT7 gene is associated with
NAFLD-related HCC in non-cirrhotic patients [32]. However, the rs641738 C > T variant in
TMC4 gene was not found to be a genetic risk in relation to increasing the development of
NAFLD [33]. Similarly, in this study, the protein level of MBOAT7 was found to be lower
in the liver of NAFLD patients. The rs641738 C allele has been shown to be associated
with a high expression of MBOAT7 that localizes into the membranes, which helps deliver
membrane metabolites into intracellular compartments. In contrast, the T risk allele is
associated with the reduction of MBOAT7, which is favorable for the increase of saturated
phospholipids and triglyceride (TG) synthesis [34]. More evidence is needed to support
the role of the rs641738 variant of MBOAT7/TMC4 in the susceptibility of NAFLD and
NAFLD-related HCC progression.

3. Epigenetic Factors

Instead of a change in DNA sequence, epigenetic changes modulated by factors
such as age and environment can also impact the progression of NAFLD-related HCC.
Epigenetic factors, including DNA methylation, long non-coding RNAs (lncRNAs), and
miRNAs, are considered to have profound effects on NAFLD-related HCC progression.

3.1. DNA Methylation

DNA methylation is implicated in liver fibrosis, cirrhosis, and HCC. Hypermethy-
lation of CpG islands in genes such as CELSR1 and collapsin response mediator protein
1 (CRMP1), and hypomethylation of CpG loci in small proline-rich protein 3 (SPRR3)
and tumor necrosis factor ligand superfamily member 15 (TNFSF15) genes were found in
HCC and cirrhotic liver tissues compared to noncirrhotic control liver tissues [35]. Hyper-
methylation in promoters of genes such as Ras association domain-containing protein 1
(RASSF1A) and docking protein 1 (DOK1) was associated with the pathogenesis of hep-
atocarcinogenesis [36]. DNA methylation at specific CpGs within genes known to affect
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fibrogenesis, such as peroxisome proliferator-activated receptor alpha (PPARα), transform-
ing growth factor-beta 1 (TGF-β1), and platelet-derived growth factor alpha (PDGFα) genes,
was observed in patients with NAFLD or alcoholic liver disease (ALD) associated with the
progression of fibrosis [37]. In addition to the dysregulation of DNA methylation, histone
acetylation or methylation-mediated epigenetic changes can lead to cell apoptosis in the
development of NAFLD and HCC. This specific subject has been well-reviewed in another
published paper [38], and is thus not discussed in this paper.

3.2. Long Non-Coding RNAs

LncRNAs, defined as RNAs with a length of ≥200 nucleotides that are not translated
into functional proteins, play an important role in endoplasmic reticulum (ER) stress and
oxidative stress. The expression of more than 3000 lncRNAs was observed to be changed in
the liver tissues of db/db mice fed with a NASH diet, and the expression of 381 lncRNAs
was significantly increased during NAFLD progression to NASH [39]. Among these,
LncRNA gm9795 can upregulate ER stress molecules and the nuclear factor kappa B
(NF-κB)/c-Jun N-terminal kinase (JNK) signaling pathway to increase proinflammatory
cytokine production, such as that of TNF-α, interleukin-6 (IL-6), and IL-1β. Increased
expression of LncRNA SNHG20 was observed in the livers of NAFLD-related HCC-bearing
mice and human patients with NALFD-related HCC [40]. Silencing SNHG20 can delay
the progression of NAFLD to HCC [40]. In addition, lncRNAs (e.g., MYLK-AS1) can act
as competitive endogenous RNA, inducing miRNAs (e.g., miR-424-5) to regulate tumor
angiogenesis in HCC [41].

3.3. MicroRNAs

MiRNAs contribute to the progression of NAFLD, liver fibrosis, and HCC develop-
ment. For example, microRNA-21 (miR-21) has been shown to impair lipid metabolism in
mice with NAFLD and human liver cancer cell line HepG2 cells, and to inhibit the progres-
sion of xenograft tumors induced by HepG2 cells, as miR-21 knockdown can impair lipid
accumulation and tumor growth by targeting HMG-Box transcription factor 1 (HBP1)-p53,
part of the sterol regulatory element-binding protein 1c (SREBP1c) signaling pathway [42].
In addition, hepatic miR-21 expression has been shown to be upregulated in a methionine-
choline-deficient (MCD) diet-induced mouse NASH model and in human patients with
NASH [43]. Suppressing miR-21 function with antagomir-21 can reduce liver injury, in-
flammation, and fibrosis in low-density lipoprotein (LDL) receptor-deficient mice, but not
in PPARα-deficient mice [43]. A recent study using a doxycycline-inducible transgenic
zebrafish model (LmiR21) with hepatic overexpression of miR-21 showed that miR-21 over-
expression contributed to liver steatosis, inflammation, and fibrosis, the broad spectrum
of NAFLD [44]. Moreover, LmiR21 zebrafishes showed the NAFLD-HCC phenotype at
10 months post-fertilization, and they also showed a higher percentage of chemical-induced
liver fibrosis and HCC compared to wild-types under the chemical stimuli.

Hepatocyte-specific miR-122a accounts for 70% of the total miRNAs in the liver and is
downregulated in about 70% of human HCC and all HCC-derived cell lines [45]. MiR-122a-
deficient mice develop reversible steatohepatitis, fibrosis, and HCC [46]. In addition, the
incidence of HCC shows a sexual disparity, being 3.9 times higher in male mice compared
to female mice.

The expression of miR-223 in hepatocytes is highly increased in mice when feeding
on a high-fat diet (HFD) and in the liver samples of patients with NASH. Feeding with an
HFD significantly enhanced the expression of proinflammatory and cancer-related genes
in miR-233-knockout mice compared to that in wild-type mice [47].

In addition, some chemical RNA modifications are emerging factors of epigenetic regu-
lation. For example, N6-methyladenosine (m6A), the most abundant chemical modification
of eukaryotic mRNA, plays a critical role in regulating adipogenesis [48]. Methyltransferase-
like 3 (METTL3)-mediated m6A modification can inhibit the suppressor of cytokine signal-
ing 2 (SOCS2) to promote HCC progression [49].
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4. Transcriptional Factors

Transcriptional factors, such as E2Fs transcriptional factors, hypoxia-inducible factors
(HIFs), Forkhead box (FOXO), and PPARs, modulate NAFLD progression through different
signaling pathways (Figure 2). For example, PPARγ can regulate lipid metabolism by
regulating the Toll-like receptor 4 (TLR4)/NF-κB signaling pathway [48].
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HCC. Abbreviations: AKT: protein kinase B; ApoB: apolipoprotein B; A1CF: catalytic polypeptide 1
complementation factor; DR5: death receptor 5; FOXO: Forkhead box; HIF-2α: hypoxia-inducible
factor-2 alpha; HuR: human antigen R; LPIN: lipin; mTOR: mechanistic target of rapamycin; PI3K:
phosphoinositide 3-kinase; PPARs: peroxisome prolifera-tor-activated receptors; SFR10: splicing
factor, arginine/serine-rich 10; SREBP-1: sterol regulatory element-binding transcription factor-1;
TGF-β: transforming growth factor-beta.

4.1. E2F1 and E2F2

The expression of transcription factors E2F1 and E2F2 is positively correlated and
increased in NAFLD-related HCC. Their deficiency decreased hepatocarcinogenesis in-
duced by HFD plus diethylnitrosamine (DEN) administration, with a reduction of lipid
accumulation [50]. The molecular mechanism shows that E2F1 reversely modulates car-
nitine palmitoyltransferase 2 (CPT2), an essential enzyme for fatty acid oxidation, the
downregulation of which promotes HCC development via acylcarnitine accumulation in
a lipid-rich environment [51]. E2F1 is upstream of the transcription factor of ribosome
binding protein 1 (RRBP1), which can be upregulated by high glucose. Inhibiting E2F1
expression decreased the expression of RRBP1, remarkedly reducing the proliferation and
metastasis of HepG2 cells [52].

4.2. FOXOs

FOXO transcriptional factors play important roles in regulating hepatic glucose [53]
and lipid homeostasis [54], cell growth and apoptosis [55], and liver inflammation and
fibrosis [56]. FOXOs are the downstream signaling of protein kinase B (AKT), which can
phosphorylate the serine or threonine of FOXOs to regulate multiple cellular functions.
FOXO3 can activate the promoter of SREBP1c to aggravate liver TG and intrahepatic
lipid accumulation [54]. However, feeding with an HFD induced more severe hepatic
steatosis and fibrogenesis in Foxo1/3/4 triple knockout mice compared to wild-type mice
via upregulating profibrotic genes such as C-C motif chemokine ligand 2 (CCL2), alpha-1
type I collagen (Col1A1), and TGF-β [56].
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4.3. HIFs

HIFs, such as HIF-1α and HIF-2α, are transcription factors induced in response to
a hypoxic environment, which plays a pivotal role in liver inflammation [57] and tumor
growth [58]. Hypoxia also affects NAFLD-HCC progression, since HIF-2α was found to
be increased in HCC tissues from NAFLD-HCC patients compared to tissues from non-
NAFLD-HCC subjects [59]. The upregulation of HIF-2α was negatively associated with
the overall survival (OS) of HCC patients and was positively associated with hepatic lipid
accumulation and activation of the phosphoinositide 3-kinase (PI3K)-AKT-mechanistic
target of rapamycin (mTOR) signaling pathway [59].

4.4. KLF6

As a transcription factor, Krüppel-like factor 6 (KLF6) plays essential roles in cellular
processes, including cell proliferation, differentiation, and cell death [60]. In NAFLD,
KLF6 regulates liver glucose and lipid metabolism by regulating the activity of PPARα
and PPARα-regulated genes such as phosphoenolpyruvate carboxykinase (PEPCK) [61]. In
addition, KLF6 binds the promoter of glucokinase (GCK) in NAFLD, which can regulate
insulin resistance and the glucose level in the blood [62]. A mutation of a polymorphism,
KLF6 intervening sequence (IVS) 1–27 G > A, was found to be positively associated with
liver fibrosis in NAFLD patients [63]. Accumulating studies show that KLF6 is a tumor
suppresser gene against HCC [64–66].

4.5. PPARs

PPARs are important transcriptional factors in modulating liver inflammation [67], lipid
metabolism [68], and cancer growth [69]. All three PPAR subtypes, including PPARα [70],
PPARβ/δ [71], and PPARγ [72], play important roles in lipid metabolism, either in the
liver or adipose tissues. For example, hepatocyte-specific PPARα deficiency mice showed
a significant increase in oleic acid and linoleic acid compared with wild-type mice in
fasting, partly due to a fasting-induced increase in fibroblast growth factor 21 (FGF21)
expression [73]. Metabolic syndrome, such as insulin resistance and hepatic steatosis,
can be induced by activating JNK to suppress PPARα function. However, long-term
JNK deficiency can result in CCA by interrupting cholesterol metabolism and bile acid
homeostasis [74]. In contrast, metabolites such as 3-hydroxybutyric acid, induced by
treatment with the antiangiogenic agent apatinib, can induce PPARα activation in the liver
tissue to inhibit tumor growth [75].

Additionally, PPARβ/δ [76] and PPARγ [77] are implicated in liver homeostasis
by regulating glucose and fatty acid metabolism. PPAR-γ agonists (e.g., pioglitazone)
show clinical effects in the reduction of hepatic or visceral fat and necroinflammation in
human patients [78]. PPARβ/δ activator GW501516 can prevent HFD-induced hyper-
triglyceridemia and hepatic fatty acid oxidation, and increase the production of 16:0/18:1-
phosphatidylcholine, an endogenous ligand for PPARα in the liver [79]. A bioinformatic
study showed that PPARγ was overexpressed in the livers of human patients with HCC,
which was associated with poor OS [80]. However, the exact roles of PPARs in the progres-
sion of NAFLD-related HCC need to be illustrated.

4.6. SREBP-1

SREBP-1 is a transcriptional factor and plays a pivotal role in the proliferation and
metastasis of liver cancer cells by regulating fatty acid synthesis and [81] and suppress-
ing liver inflammation [82]. Other factors, such as long-chain acyl CoA synthetase 4
(ACSL4) [83], caveolin-1 (Cav1) [84], and zinc fingers and homeoboxes 2 (ZHX2) [85],
can regulate lipid metabolism via the SREBP1 signaling pathway. Lipid metabolism is
correlated tightly with glucose metabolism in HCC. Inhibition of SREBP-1 expression can
suppress glucose metabolism in HCC cells, resulting in a synergistic anti-tumor effect
combined with immunotherapy with Sorafenib on HCC in vivo [81].
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Furthermore, there are some other transcriptional factors implicated in NAFLD-
related HCC in murine models and clinical studies, such as apoptosis antagonizing tran-
scription factor (AATF) [86,87] and carbohydrate responsive element-binding protein
(ChREBP) [88,89].

5. Post-Transcriptional Modification

Post-transcriptional factors (Figure 2) such as RNA-binding proteins (RBPs) and RNA
splicing factor (SF) contribute to liver damage, NAFLD development, and HCC progres-
sion [90]. Novel anti-HCC therapies can be developed based on post-transcriptional regu-
lation, such as the administration of adenovirus-mediated trans-splicing ribozymes [91,92].
The underlying mechanism of post-transcriptional modification in NAFLD-related HCC
progression needs to be investigated further.

5.1. RNA Splicing Factor

Dysregulation of RNA splicing factors contributes to the development of steatosis
and NAFLD progression [93]. Silencing of some splicing machinery components in vitro,
such as RNA binding motif protein 45 (RBM45) and staphylococcal nuclease domain
containing 1 (SND1), can inhibit fat accumulation by modulating the expression of key de
novo lipogenesis enzymes [93]. Dysregulation of RBM45 and SND1 has been associated
with the progression of cancers, including HCC [94]. A splicing factor, arginine/serine-rich
10 (SFRS10) in the liver, directly regulates the splicing of lipin 1 encoded by the LPIN gene,
a key regulator of lipid metabolism. SFRS10 has been shown to be downregulated in obese
human livers and livers in HFD-fed mice [95]. Reducing or inhibiting SFRS10 expression
can increase lipid accumulation in hepatocytes and plasma TG and very-low-density
lipoprotein (VLDL) secretion by increasing the lipogenic β isoform of LPIN1 [95].

5.2. RNA-Binding Proteins

Sirtuin 1, encoded by the SIRT1 gene, can deacetylate an RNA-binding protein quaking
5 (QKI 5), which inhibits TG synthesis in vivo and in vitro via the PPARα/FoxO1 signaling
pathway and suppresses NAFLD progression in mice [96]. Another study showed that a
broadly expressed RNA-binding protein human antigen R (HuR) can accelerate NASH
progression by increasing death receptor 5 (DR5)/caspase 8/caspase 3-mediated hepatocyte
death and liver injury [97].

Aberrant expression of RBPs has been shown across many malignant tumors, includ-
ing HCC [98,99]. A high score based on the expression of these RBPs was associated with
poor overall survival of HCC [99]. Another study showed that aberrant expression of four
key RBPs, including mitochondrial ribosomal protein L54 (MRPL54), enhancer of zeste
homolog 2 (EZH2), PPARγ coactivator 1 alpha (PPARGC1A), and eukaryotic translation
initiation factor 2-alpha kinase 4 (EIF2AK4), can be applied to HCC prognosis [100].

5.3. RNA Editing

The inactivation or low activity of apolipoprotein B (ApoB) is associated with poor
prognosis of HCC, upregulation of oncogenic and metastatic factors, and the inhibition of
tumor suppressor genes [101,102], such as p53 and phosphatase and tensin homolog (PTEN).
The ApoB mRNA editing enzyme, catalytic polypeptide 1 (APOBEC1) complementation
factor (A1CF) regulates posttranscriptional ApoB mRNA editing (C > U). Aged hepatocyte-
specific A1CF-transgenic mice can spontaneously develop hepatic fibrosis and HCC, and
disease can be accelerated when those mice are fed a high-fructose high-fat diet [103]. In
addition, the expression of A1CF was associated with advanced fibrosis and low survival
in NAFLD-related HCC patients [103].

Overall, both genetic and epigenetic factors play critical roles in NAFLD-related HCC
progression. Furthermore, recent studies show that NAFLD/NASH modulates intrahepatic
immune responses to inhibit anti-tumor immunity, resulting in the progression of HCC.
For example, Tim Greten et al. reported that dysregulation of lipid metabolism, specifically
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for linoleic acid, causes more oxidative damage in mitochondria during NAFLD, resulting
in a dramatic reduction of CD4+ T cells and promoting hepatocarcinogenesis [104]. Their
further study showed that NASH can impair the effects of M3-RNA vaccine and anti-
OX40 antibody treatment against mouse liver tumors induced by intrahepatic injections
of B16 melanoma and CT26 colon cancer cells [105]. In contrast, the administration of N-
acetylcysteine in NASH mice restored CD4+ T cells and resulted in improved effects of the
M3-RNA vaccine and anti-OX40 antibody. Moreover, immunotherapy including anti-PD-1
or anti-PD-L1 treatment reduced the overall survival of NASH-HCC patients compared to
HCC patients induced with other etiologies [106]. Preclinical mouse model study showed
that anti-PD-1 expanded the exhausted and unconventionally activated T cells, such as
CXCR6+PD-1+CD8+ T cells, which lost the immune surveillance function and promoted
NASH-HCC progression. PD-1+CD8+ T cells have been reported to be correlated with a
poor clinical outcome in HCC patients [107,108]. Thus, the development of NAFLD/NASH
modulates intrahepatic immunity to impair the anti-HCC immune response.

6. Potential Diagnosis of NAFLD-Related HCC

The development of NAFLD-related HCC is caused by multiple factors. For clinical
diagnosis, liver biopsy is still considered the gold standard for clinical decisions. However,
it is invasive and may not represent the tumor heterogeneity due to the sample size of
the biopsy [109]. In addition, it is not appropriate to be applied to monitor the dynamic
progression of HCC. Moreover, the diagnosis of liver fibrosis and cirrhosis may not be
helpful in predicting all cases of NAFLD-related HCC, since some patients have developed
HCC in the background of NAFLD/NASH without the progression of liver fibrosis and
cirrhosis [110,111]. Currently, imaging techniques are essential for the diagnosis of chronic
liver disease and HCC. Dynamic multiphase contrast-enhanced computed tomography
(CT) scanning and magnetic resonance imaging (MRI) are the most commonly used meth-
ods to detect HCC in clinical diagnosis [112,113]. Still, there are some challenges, such as
the lack of standardization in image acquisition protocols and optimization of the radiomics
analysis procedure [114]. Additional non-invasive or less harmful diagnostic methods,
such as biomarkers, score systems, and algorithms, have been investigated to improve
the diagnosis of HCC, including its initiation, progression, and potential recurrence. In
Table 1, we summarize some developed biomarkers and imaging techniques that provide
assistance in the diagnosis of NAFLD-HCC. The combination of different markers and
detection methods is helpful in order to provide a precise diagnosis and to make clinical
decisions relating to treatment.

Table 1. The potential HCC diagnostic methods.

Methods Target Disease References

Imaging techniques 1

Various data in clinical records, including images from
abdominal ultrasonography, computed tomography,

magnetic resonance imaging, electronic health records, liver
pathology, data from wearable devices, and multi-omics

measurements can be used to predict liver fibrosis, cirrhosis,
NAFLD, and for the differentiation of benign tumors

from HCC.

NAFLD, liver
fibrosis, cirrhosis,

and HCC
[115–117]

Polygenic risk scores (PRS)

Variants in PNPLA3-TM6SF2-GCKR-MBOAT7 are combined
in a hepatic fat PRS (PRS-HFC), and then adjusted for

HSD17B13 (PRS-5). Similarly, a genetic risk score (GRS)
based on three genetic variants of

PNPLA3-TM6SF2-HSD17B13 is applied to evaluate how
fatty liver disease influences the risk of cirrhosis and HCC.

NAFLD-related
HCC [118,119]

Biomarkers

For example, serum levels of inter-alpha-trypsin inhibitor
heavy chain 4 are significantly increased in HCC-NAFLD

patients compared to those in patients with simple steatosis,
NASH, and virus-related HCC. There are some other

biomarkers, such as miRNAs, lncRNAs, and circulating
tumor DNA (ctDNA).

NAFLD-related
HCC [109,120–123]
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Table 1. Cont.

Methods Target Disease References

Biomarker-based diagnostic
algorithm (GALAD)

A GALAD score based on gender, age, and biomarker
alpha-fetoprotein (AFP), AFP-L3, and Des-gamma-carboxy

prothrombin (DCP).

Early-stage of
HCC [124–126]

Epigenetic factors with or
without combined biomarkers

Epigenetic factors such as circular RNA SMARCA5 can be
used as potential new biomarkers for hepatocellular carcinoma.
In combination with serum lncRNA linc00152, UCA1 and AFP
can show better predictive ability, with areas under the curve
(AUC) of 0.912% and 82.9% sensitivity and 88.2% specificity.

Hepatitis,
cirrhosis, and

HCC
[122,127]

1 Imaging techniques, especially dynamic multiphase contrast-enhanced computed tomography (CT) scanning and magnetic resonance
imaging (MRI), are the most commonly used methods for the clinical diagnosis of HCC.

7. Treatment Options against HCC

Treatment options for HCC can be broadly classified into surgical resection and non-
surgical therapies dependent upon the stage of the disease, liver function, availability of
donor organs, cost of treatment, and so on [128]. The Westernized diet and sedentary
lifestyle promote the progression of NAFLD [129,130]. A cohort study in Europe also
showed that physical activity is inversely associated with the risk of HCC [131]. However,
excessive exercise can impact the host metabolism to reduce glucose control by impairing
mitochondrial function [132]. Here, therapies for regular HCC, NAFLD, and NAFLD-
related HCC, including immunotherapy, CAR T cell therapy, peptide treatment, bariatric
surgery, and treatment for liver fibrosis, are discussed.

7.1. Treatments against HCC
7.1.1. Systemic Therapies and Immunotherapy

The recurrence of HCC is a big concern after surgical operations. Immunotherapy
is helpful to reduce the recurrence of HCC and provides treatment options for advanced
HCC that is not suitable for surgical resection. Here, we first briefly summarize some
approved first- and second-line treatment options for regular HCC, which may be applied
in NAFLD-related HCC treatment.

Sorafenib, a multi-kinase inhibitor, was the first systemic therapy approved by the U.S.
Food and Drug Administration (FDA) for patients with unresectable HCC in 2008 [133],
and has been approved for the treatment of advanced renal cell carcinoma (RCC) [134].
Lenvatinib is another FDA-approved systemic treatment for unresectable advanced HCC,
approved in 2018 [135]. Phase 3 non-inferiority trial data showed that the median survival
time for lenvatinib-treated patients was 13.6 months (95% CI, 12.1–14.9 months) compared
with a median survival time of 12.3 months (95% CI, 10.4–13.9 months) for patients with
sorafenib treatment [135]. In 2020, the FDA approved treatment with atezolizumab in
combination with bevacizumab for adult patients with unresectable locally advanced
or metastatic HCC without prior systemic therapy [136], since the combined treatment
improved OS and progression-free survival compared to treatment with sorafenib [137].

Since 2017, the U.S. FDA has approved several drugs for HCC treatment as the second
line after sorafenib treatment, including kinase inhibitors (regorafenib, lenvatinib, cabozan-
tinib, and ramucirumab), immune checkpoint inhibitors (nivolumab and pembrolizumab),
and monoclonal antibodies (atezolizumab plus bevacizumab). In 2017, regorafenib was
approved as the first drug by the FDA for the treatment of advanced HCC in patients who
had previously been treated with sorafenib [138]. In 2018, pembrolizumab, a monoclonal
antibody against PD-1, was approved by the FDA for the treatment of patients with HCC
who have been previously treated with sorafenib. In 2019, the FDA approved another
drug, cabozantinib, for patients with HCC with prior treatment with sorafenib, since phase
3 trial results indicated that cabozantinib treatment resulted in longer overall survival
and progression-free survival than a placebo in previously treated patients with advanced
HCC [139]. Following up, the FDA approved ramucirumab as a sole treatment for HCC
patients who have serum AFP levels ≥ 400 ng/mL with prior treatment with sorafenib. In
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addition, there are some combined treatments, such as nivolumab and ipilimumab, that
may improve outcomes [140].

Additionally, there are increasing numbers of clinical trials evaluating different thera-
pies in a variety of combinations for the systemic treatment of HCC at different disease
stages with the Barcelona Clinic for Liver Cancer (BCLC) criteria, which is well summa-
rized in another review [141]. The FDA-approved treatments for HCC are summarized in
Table 2.

7.1.2. CAR T Cells

Chimeric antigen receptor (CAR) T cells have been tested in a variety of diseases,
including aging [142], autoimmune disease [143], and tumors such as B-cell acute lym-
phatic leukemia [144] and myeloma [145]. The principle of CAR T cell immunotherapy
is to engineer T cells to express CARs, which consist of an extracellular antigen recog-
nition domain fused to intracellular T-cell receptor (TCR) signaling and co-stimulatory
domains [146]. Genetically engineered CAR T cells recognize antigens on malignancy
cells to effectively damage them and overcome tolerance. A phase 1 trial showed that
CAR-glypican-3 (GPC-3) T-cell therapy showed some early signs of effectiveness against
advanced HCC in patients [147], such as decreased counts of different lymphocytes. In
addition, there are other tumor-targeting antigens against HCC, such as AFP [148] and
New York esophageal squamous cell carcinoma-1 (NY-ESO-1) [120]. In addition, these
antigens including AFP and GPC-3 are observed in NAFLD-related HCC [149].

Table 2. FDA-approved treatments for HCC.

Approval Year Selection Treatment Targets References

2008 First-line Sorafenib

Vascular endothelial growth factor receptor (VEGFR)-2
and -3, platelet-derived growth factor receptor

(PDGFRβ), receptor tyrosine kinases RET and KIT, and
Raf kinase

[150,151]

2017 Second-line Regorafenib

VEGFR1-3, TEK receptor tyrosine kinase or
angiopoietin-1 receptor (TIE2), fibroblast growth factor
receptor 1 (FGFR1) and PDGFRβ, oncogenic kinases

c-KIT, RET, and c-RAF/RAF-1

[138,152]

2017 Second-line Nivolumab PD-1 [153]

2018 First-line Lenvatinib An oral inhibitor of VEGFR 1-3, FGFR 1-4, PDGFRα,
receptor tyrosine kinases RET and KIT [135,154]

2018 Second-line Pembrolizumab PD-1 [155]

2019 Second-line Cabozantinib Tyrosine kinases, including MET, AXL, and VEGFR 1-3 [139,156]

2019 Second-line Ramucirumab VEGFR2 [157]

2020 Second-line Nivolumab and
Ipilimumab PD-1 and CTLA-4 [158,159]

2020 First-line Atezolizumab plus
Bevacizumab PD-L1 and VEGF [136,160]

7.1.3. Peptides

Peptide vaccination has been applied in the clinic to treat HCC. In a study of vac-
cination with human telomerase reverse transcriptase-derived peptide 461 (hTERT461,
VYGFVRACL) in a total of 14 HCC patients, 11 patients (71.4%) showed hTERT461-specific
cytotoxic T cells (CTLs) in blood post-vaccination at 4 weeks [161]. Of the response patients,
57.1% of patients (five of them) did not show HCC recurrence. In contrast, HCC recurred
in all three patients (100.0%) without hTERT461-specific CTLs. In 15 HCC patients after
vaccination with AFP-derived peptide 357 (AFP357) vaccine, 53.3% of patients showed
slow tumor growth and 26.7% had AFP357-specific CD8 T cells [162]. Only one patient
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had a complete response more than 2 years; the functional T cells in this patient expressed
a high avidity for AFP-specific T-cell receptors. Anti-cancer peptides are also potential
treatment options for liver cancer [163].

7.2. Treatment against NAFLD

Bariatric surgery (BS) or weight loss surgery has been well established to provide ex-
cellent weight loss outcomes and improvements in comorbid medical conditions, including
diabetes [164], NAFLD [165], cardiac function [166], and cancer [167]. Multiple mecha-
nisms are involved in the effectiveness of weight loss surgery, including restriction (sleeve
gastrectomy and gastric bypass) and malabsorption (gastric bypass and biliopancreatic
diversion with duodenal switch) and through gut enteroendocrine hormonal effects [168]
(sleeve gastrectomy, gastric bypass, and biliopancreatic diversion with duodenal switch).
Weight loss surgery alters the gut microbiota, as well as circulating bile acids [169] and
many blood metabolites [170]. These mechanisms are likely intricately related and function
to regulate the effects of weight loss surgery on a person’s health [169]. However, there is a
lack of evidence for the treatment of NAFLD-related HCC in clinical trials.

Many treatment agents have been tested in clinical trials for the treatment of NAFLD
or NASH with promising effects, including polyphenols, bile acids, diet intervention, herb
medicines, anti-inflammatory or antioxidant agents, hormones, and symbiotics (Table 3).

Table 3. The completed clinical trials for NAFLD/NASH treatment.

Liver
Disease Treatment Class Effect Trial References

NAFLD Curcumin Polyphenol

Daily supplementation of curcumin
(250 mg) for 2 months caused a

significant reduction in hepatic steatosis
and enzymes in patients with NAFLD

compared to placebo.

A double-blind,
randomized,

placebo-controlled
trial.

[171]

NAFLD
Ursodeoxycholic

acid
(UDCA)

Bile acid

Treatment with UDCA (15 mg/kg/d) for
3 months, the level of enzymes alanine

aminotransferase (ALT), aspartate
transaminase (AST), and

glutamyltransferase decreased. After
6-month treatment, body weight, fatty

liver index, total cholesterol, low-density
lipoprotein, and triglyceride were

significantly reduced.

An open-label,
multicenter,

international
noncomparative

trial.

[172]

NAFLD
with T2DM Tofogliflozin

A selective
sodium-glucose
cotransporter 2

inhibitor

Oral treatment with 20 mg tofogliflozin
or 15–30 mg daily for 24 weeks

significantly decreased body weight and
hepatic steatosis.

A randomized
prospective
open-label

controlled trial.

[173]

NAFLD Diet and
activity

Physical activity
(PA), a low

glycemic index
Mediterranean diet
(LGIMD), or their
combined effect.

After 45 days, there was a statistically
significant reduction in the NAFLD score

in each group except for the control
diet-treated group. After 90 days, the
combined treatment showed the best

effect on the reduction of NAFLD score.

A randomized
clinical trial. [174]

NAFLD Sumac Herbal medicine

After a 12-week intervention, the
sumac-treated group displayed a greater

reduction in hepatic fibrosis and
enzymes ALT and AST, fasting blood
sugar, serum insulin, and HOMA-IR
(insulin resistance index), as well as

higher QUICKI (insulin sensitivity index)
compared to the placebo.

A randomized
controlled trial. [175]
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Table 3. Cont.

Liver
Disease Treatment Class Effect Trial References

NAFLD Propolis
An

anti-inflammatory
agent

Patients with propolis at a dose of
250 mg twice daily for 4 months
compared to placebo showed a

significant improvement in hepatic
steatosis and a significant reduction of

liver stiffness, as well as serum
high-sensitivity C-reactive protein

(hs-CRP).

A randomized
clinical trial. [176]

NAFLD Vitamin E An antioxidant
vitamin

Treatment with vitamin E improved liver
injury and steatosis.

A single-center
prospective trial. [178]

NASH Cenicriviroc

A dual antagonist
C-C chemokine
receptor type 2

(CCR2) and CCR5

Therapy with cenicriviroc showed an
antifibrotic effect without impacting

steatohepatitis at year 1 in responders,
which was maintained in year 2 with a

greater effect in advanced fibrosis.

A randomized,
controlled study. [179]

NAFLD Synbiotic
A mixture of

probiotics and
prebiotics

Administration of a synbiotic
combination of probiotic and prebiotic

for one year changed gut microbiota but
did not reduce liver fat content or

markers of liver fibrosis.

A double-blind
phase 2 trial. [180]

7.3. Treatment against Liver Fibrosis

TGF-β is a predominant profibrotic gene that causes the activation of hepatic stellate
cells (HSCs) in the liver independently of causal factors such as a high-fat diet, alcohol, and
other toxins such as carbon tetrachloride (CCL4). Strategies that block the TGF-β signaling
pathway can inhibit the progression of liver fibrosis [181]. Bone morphogenetic proteins
(BMPs) belonging to the large TGF-β family play an important role in tissue homeostasis.
Accumulating evidence indicates that BMPs are involved in the development and progres-
sion of liver fibrosis and liver regeneration [182,183], becoming a new target for liver fibrosis.
In addition, some other drugs can ameliorate NAFLD/NASH-associated liver fibrosis, such
as the farnesoid X receptor (FXR) agonists obeticholic acid and isotschimgine [184,185].
Furthermore, changing lifestyles, such as the consumption of a healthy diet and appropriate
exercise, also can prevent fibrosis progression in NAFLD patients.

Overall, the treatment options (Figure 3) for NAFLD-related HCC, targeting liver
fibrosis, lipid accumulation, cancer cells, and immune responses, can be selected according
to the pathogenesis of the liver disease and the health condition of the patient.
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8. Conclusions

The prevalence of NAFLD-related HCC is increasing in developed countries and
developing countries due to the consumption of fast food or a Western-like diet, less
physical exercise, and an increased prevalence of obesity and diabetes. Patients with
advanced NAFLD or NASH and liver fibrosis progression are at a higher risk of developing
HCC. Imaging is the most commonly used technique for HCC diagnosis. The development
of other non-invasive diagnostic methods is also critically important for better clinical
treatment and prevention of HCC. Combined diagnosis with multiple diagnostic methods
provides higher sensitivity and specificity for monitoring NAFLD-related HCC. Although
there are several FDA-approved drug treatments, the overall survival rate and survival
time are still not promising. In addition, some treatments such as bariatric surgery are more
beneficial at the early stage of NAFLD but show no evidence of helping HCC therapy in
clinical trials. With the development of large databases, along with artificial intelligence and
machine learning, precision medicine in the future will improve the diagnosis of NAFLD-
related HCC and provide better options for personal precise treatment of the disease.
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