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Abstract

Patients with obsessive compulsive disorder (OCD) exhibit tremendous heterogeneity

in structural and functional neuroimaging aberrance. However, most previous studies

just focus on group-level aberrance of a single modality ignoring heterogeneity and

multimodal features. On that account, we aimed to uncover OCD subtypes integrat-

ing structural and functional neuroimaging features with the help of a multiview

learning method and examined multimodal aberrance for each subtype. Ninety-nine

first-episode untreated patients with OCD and 104 matched healthy controls (HCs)

undergoing structural and functional MRI were included in this study. Voxel-based

morphometric and amplitude of low-frequency fluctuation (ALFF) were adopted to

assess gray matter volumes (GMVs) and the spontaneous neuronal fluctuations

respectively. Structural/functional distance network was obtained by calculating

Euclidean distance between pairs of regional GMVs/ALFF values across patients.

Similarity network fusion, one of multiview learning methods capturing shared and

complementary information from multimodal data sources, was used to fuse multi-

modal distance networks into one fused network. Then spectral clustering was

adopted to categorize patients into subtypes. As a result, two robust subtypes were
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identified. These two subtypes presented opposite GMV aberrance and distinct ALFF

aberrance compared with HCs while shared indistinguishable clinical and demo-

graphic features. In addition, these two subtypes exhibited opposite structure–

function difference correlation reflecting distinct adaptive modifications between

multimodal aberrance. Altogether, these results uncover two objective subtypes with

distinct multimodal aberrance and provide a new insight into taxonomy of OCD.
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1 | INTRODUCTION

Patients with obsessive compulsive disorder (OCD) demonstrate tre-

mendous interindividual heterogeneity in terms of symptom presenta-

tions and treatment responses (Alexander et al., 1986; McKay

et al., 2004). Although this heterogeneity might be resulted from fac-

tors including age of onset, comorbidity, duration of illness, there is a

gradually accepted notion that mental disorders including OCD are

inherently heterogeneous (P. S. W. Boedhoe et al., 2018; McKay

et al., 2004). High level of heterogeneity results in conflicting findings

of neuroimaging studies, hampering discovery of validated findings

indicative of precision diagnosis and treatment (Bokor &

Anderson, 2014). To resolve the heterogeneity, clinical psychiatrists

rely exclusively on subtyping patients with OCD into categories

according to clinical manifestations (McKay et al., 2004). However,

taxonomy based on phenomenology cannot uncover underpinned

neuroanatomical pathophysiology and presents too vague diagnostic

threshold to exclude sub-threshold symptoms (Okada et al., 2015).

Thus, subtypes based on symptomatology often share overlapped

neuroimaging aberrance (Ravindran et al., 2020; Xia et al., 2020; Yoo

et al., 2008). What is worse, the similar clinical manifestations could

be caused by distinct mechanisms (Beijers et al., 2019;

Goldberg, 2011). All these factors limit the impact of studies attempt-

ing to handle the heterogeneity using symptom profiles (Chand

et al., 2020). To pave the way for precision medicine, it is urgent to

uncover subjective subtypes directly related to biological heterogene-

ity using neuroimaging data (Chand et al., 2020).

The interindividual heterogeneity leads to inconsistent neuroim-

aging findings in mental disorders (Lv et al., 2020). The heterogeneity

is acknowledged by an increasing number of researchers (Chand

et al., 2020; Lv et al., 2020; Voineskos et al., 2020; Wolfers

et al., 2018) and accepted as one of the leading causes resulting in

conflicting findings in neuroimaging studies (Liu, Palaniyappan,

et al., 2021; Wolfers et al., 2018). In OCD, although the cortico-

striato-thalamo-cortical circuit is widely accepted as the core circuit,

the conclusions are far from unanimous (P. S. W. Boedhoe

et al., 2018; Bokor & Anderson, 2014; Saxena & Rauch, 2000). Neuro-

imaging studies witness reduced, increased and even no differential

gray matter volumes in patients with OCD (Lázaro et al., 2011;

Okasha et al., 2000). The possible reason is that group-level aberrance

is not representative of most of individual patients with mental disor-

ders (Lv et al., 2020; Sun et al., 2021; Wolfers et al., 2018). For that

reason, many attempts have been made to uncover more homoge-

neous subtypes with distinct neuroimaging manifestations. Dwyer

et al. uncover two neuroanatomical subtypes of schizophrenia improv-

ing stratification for computer-aided diagnose (Dwyer et al., 2018).

Chand et al. adopting semi-supervised method reveal two robust sub-

types where subtype 1 presents widespread decreased GMVs while

subtype 2 presents increased GMVs in basal ganglia and internal cap-

sule. These two subtypes challenge the widely accepted notion that

schizophrenia is characterized by general brain volume loss (Chand

et al., 2020), help to deepen our understanding of mechanism and

move toward targeted treatment (Varol et al., 2017). Nonetheless,

these studies only focus on a single neuroimaging modality alone

(Chand et al., 2020; Drysdale et al., 2017; Sundermann et al., 2014).

Mental disorders are accompanied by structural and functional

aberrance reflecting different sides of pathological features. In OCD,

beyond structural aberrance, patients with OCD demonstrate func-

tional abnormalities in regional activity and interregional functional

coordination (Soriano-Mas, 2021; Stein et al., 2019; Veltman, 2021).

In addition, brain structure and function differences are not indepen-

dent of each other and neither of them can delineate the complete

picture of the pathomechanism of mental disorders. For example, cog-

nitive impairment is related to multimodal signatures in schizophrenia

(Sui et al., 2018). The coupling between functional and structural con-

nectivity in numbers of brain networks is altered in schizophrenia

(Skudlarski et al., 2010). Machine learning frameworks combing multi

neuroimaging modalities exhibit better diagnostic performance than

that using a single modality (Du et al., 2012; Lei & Pinaya, 2020; Ota

et al., 2013). Combing multimodal information provides an integrated

insight into the pathophysiology of mental disorders. Nonetheless, it

is a challenge integrating multimodal data sources (Miši�c &

Sporns, 2016). Recent progress in techniques such as multi-view

learning methods makes it possible that exploiting the complementary

information from different data sources (S. Fan et al., 2020; Rai

et al., 2017). As one of these methods, similarity network fusion (SNF)

(Wang et al., 2014) is proved to yield a balanced representation of

multiview data sources (Markello et al., 2021). Using SNF, Ross et al.

integrate multimodal data sources and successfully uncover putative

subtypes of Parkinson's disease, suggesting the potential of SNF for
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integrating multimodal data in heterogeneous disorders (Markello

et al., 2021).

In this study, we aimed to uncover potential subtypes by integrat-

ing structural and functional MRI data with the help of SNF and exam-

ine multimodal aberrance in each subtype of OCD. Structural

T1-weight MRI and resting-state functional MRI data were collected

from first-episode and untreated patients with OCD (n = 99) and

matched healthy controls (n = 104). Voxel-based morphometric and

amplitude of low-frequency fluctuation (ALFF) were adopted to assess

regional gray matter volumes (GMVs) and the spontaneous neuronal

fluctuations, respectively (Ashburner & Friston, 2000; Yu-Feng

et al., 2007). We would show that our proposed framework could

identify putative subtypes of OCD by integrating multimodal informa-

tion (GMV and ALFF). Then, we examined multimodal and clinical phe-

notypes for each subtype.

2 | MATERIALS AND METHODS

2.1 | Sample

Written informed consents were obtained from all participants before

experiment. The study was approved by the research ethical commit-

tee of the First Affiliated Hospital of Zhengzhou University. We

recruited patients with OCD (n = 99) and matched healthy controls

(HCs, n = 104). Patients were recruited from out-patient services of

Department of Psychiatry, the First Affiliated Hospital of Zhengzhou

University. The diagnosis was done by two experienced psychiatrists

according to Diagnostic and Statistical Manual of Mental Disorders,

Fifth Edition (DSM-V) for OCD. All patients were drag-naive and first-

episode. One patient would be excluded if it was comorbidity with

other mental/psychotic disorders, suffering from nervous system dis-

ease/brain trauma, or its first degree relatives having a history with

mental illness/neurological disease. Yale–Brown Obsessive Compul-

sive Scale (Y-BOCS) was used to evaluate severity of symptoms

(Goodman et al., 1989). All participants were Han Chinese and right-

handed and must meet the additional exclusion criteria: (1) Taking

drugs such as anesthesia, sleeping or analgesia in the past 1 month;

(2) substance abuse; (3) a history of brain tumor, trauma, surgery or

other organic body disease; (4) suffering from cardiovascular diseases,

diabetes or hypertension; (5) contraindications for MRI scanning; and

(6) other structural brain abnormalities. The data acquisition, prepro-

cessing steps (Han et al., 2018; Han et al., 2020), voxel-based mor-

phometry (Ashburner, 2009; Han, Chen, et al., 2021; Han, Zheng,

et al., 2021), ALFF, and quality assurance were included in supplemen-

tary information S1.

2.2 | Subtyping patients with OCD

We aimed to uncover potential subtypes of OCD integrating struc-

tural and functional neuroimaging modality. Main steps included: (1).

Constructing structural and functional distance network by calculating

Euclidean distance between pairs of M � 1 (M, the number of brain

regions defined in brain atlas) regional GMVs/ALFF values across

patients. Thus, two N � N (N, the number of patients) distance net-

works were obtained from GMV and ALFF respectively; (2) fusing

multimodal information using similarity network fusion (SNF). SNF

integrated multimodal distance networks into one fused network that

captured shared and complementary information from multimodal

datasets (Wang et al., 2014). There were two free parameters to be

considered in SNF: K and μ. K controlled the neighbors of one node

(subject) to be considered when constructing fused networks where a

larger K would result in a more sparsely connected network or vice

versa. μ determined the weights of edges between nodes (subjects) in

the fused network. A smaller μ would only keep the strongest edges

while a larger one would endure the weaker edges in the fused net-

work (Wang et al., 2014). The recommended ranges of K and μ were

[10, 30] and [0.3, 0.8], respectively (Wang et al., 2014). The optimal

combination of K and μ was determined according to following proce-

dures (see below); (3) once we obtained the fused network based on

the optimal combination of K and μ, spectral clustering was adopted

to divided patients into subtypes based on the fused network. The

number of clusters was determined through eigen-gap (Wang

et al., 2014). These subtyping procedures were done with 268 regions

brain atlas and validated with 200 regions brain atlas (Craddock

et al., 2012; Shen et al., 2013). Adjusted rand index (ARI) was used to

measure the consistency of subtyping results based on these two

brain atlases. The workflow was included in Figure 1.

Inspired by one previous study (Markello et al., 2021), we pro-

posed an strategy to determine the optimal combination of K and μ

avoiding an arbitrary decision. We assumed that the optimal combina-

tions should generate stable subtyping results. That is to say, small

perturbations in one of parameters (K or μ) did not dramatically

change the subtyping results. We searched optimal combined of K

and μ from recommended range (K: 10–30, interval = 1; μ: 0.3–0.8,

interval = 0.1). For each combination, we obtained subtyping results

following the step (3) (mentioned before). Here, we defined a similar-

ity matrix to measure the consistency of subtyping results for each

node in the hyperparameter space. Specially, for a given node “a” (one
combination of K and μ) in the hyperparameter space, we identified

its four neighbors (e.g., “a” and its four neighbors in Figure 1b). ARI

was used to measure the similarity between subtyping results

obtained from each pairs of five nodes (in all, C(5,2) = 10 pairs). The

local similarity of “a” was defined as the average ARI value of subtyp-

ing results obtained from these 10 combinations. If the number of

neighbors was less than 4 (for the node at the edge of the hyperpara-

meter space), we used the actual number of neighbors. A larger local

similarity value meant a more stable subtyping result. The largest

values in the similarity matrix were found out. After that, we calcu-

lated consistency values between each pairs of structural, functional

and the fused distance network for each node with the largest local

similarity values. Among these, we picked the optimal combination

where the average consistency value was the largest. The consistency

between each pair of distance networks was measured with normal-

ized mutual information (NMI) (Strehl, & Ghosh, 2003).
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2.3 | Clinical and multimodal examination of OCD
subtypes

First, we examined clinical and demographic features for each sub-

type. Age, sex, education level, duration of illness, and TIV were com-

pared between each pairs of OCD subtypes using two sample t test.

Then, we examined the voxel-wise multimodal aberrance for each

subtype compared with HCs using two sample t test in SPM12

(https://www.fil.ion.ucl.ac.uk/spm/software/spm12/). In this proce-

dure, age, sex, educational level, and TIV were treated as covariates.

Reported results were corrected with FDR (p < .05). As a validation,

we also calculated the voxel-wise multimodal aberrance based on sub-

typing results of 200 region brain atlas in construction of distance net-

works. The spatial correlations between multimodal aberrance

(unthresholded voxel-wise t-statistic maps) of 268 regions brain atlas

and that of 200 regions brain atlas were calculated to evaluate the

consistency of multimodal voxel-wise aberrance.

In addition, to further inquire the reliability of voxel-wise results,

we randomly selected 80% of patients and HCs, respectively, and per-

formed voxel-wise statistical analysis for each subtype (Liu

F IGURE 1 The workflow of subtyping strategy integrating multimodal information. (a) Multimodal (amplitude of low-frequency fluctuation
[ALFF] and gray matter volume [GMV]) distance networks were constructed and then integrated into one fused network using similarity network
fusion (SNF). (b) Strategy to determine the optimal combination of K and μ. Here, we defined a similarity matrix to measure the consistency of
subtyping results for each node in the hyperparameter space. For a given node “a” in hyperparameter space and its four neighbors (b, c, d, and e),
we obtained their corresponding subtyping results. Adjusted rand index (ARI) was used to measure the similarity between subtyping results
obtained from each pairs of five nodes (C(5,2) = 10). The local similarity of “a” was defined as the average ARI value of each pairs of subtyping
results. A larger local similarity value meant a more stable subtyping result. The largest values in the similarity matrix were found out. Then we
calculated consistency values between each pairs of structural, functional and the fused distance network for each node with the largest local
similarity values (yielding a concordance matrix for each node). Among these, we picked the node where the average consistency value was the
largest.

HAN ET AL. 4257

https://www.fil.ion.ucl.ac.uk/spm/software/spm12/


et al., 2020). Then, the spatial correlation between the new

GMV/ALFF aberrance (unthresholded voxel-wise t-statistic map) and

that we reported was obtained. This procedure was done in subtyping

results based on 268 regions brain atlas and repeated 100 times.

2.4 | Validation analysis

To investigate the reliability of our results, we adopted various strate-

gies. (1) Using different brain atlases when a brain atlas was needed.

Consistency of results obtained with different brain atlases was

inquired with proper methods such as spatial correlation and ARI;

(2) randomly selecting sub-dataset to validate the voxel-wise aber-

rance results. The details were included in corresponding parts in

method section.

2.5 | Association between multimodal aberrance

To explore whether there was association between structural and

functional aberrance in identified subtypes. We calculated regional

GMV/ALFF aberrance (unthresholded t-statistic maps) based on brain

atlas (268 and 200 brain atlases) thus yielding two t-value vectors.

Then, the Pearson correlation between them was obtained to mea-

sure the association between GMV and ALFF aberrance. This proce-

dure was done in each subtype and all patients.

3 | RESULTS

3.1 | Clinical demographics

The demographics information was included in Table 1. These was no

significant difference between patients with OCD and HCs in terms

of age, TIV, IQR and sex (all p values > .05). Patients with OCD had

less years of education than HCs.

3.2 | Two robust subtypes are identified by fused
network

After searching the hyperparameter space, a series of combinations of

K and μ were identified where the local similarity reached 1 suggesting

fairly stable performance against to small perturbations (the similarity

matrix was drawn in Figure S1). Among these, we further selected

combination having the highest consistency value between each pairs

of structural, functional and fused distance networks. Using this opti-

mal combination of K and μ, two subtypes of OCD were identified by

spectral clustering based on the fused network (OCD 1 and OCD 2).

When 200 regions brain atlas was used, the optimal number of sub-

types was also 2. The ARI between subtyping results based on differ-

ent brain atlases was 0.960 declaring a good consistency.

3.3 | Two OCD subtypes demonstrate distinct
multimodal aberrance

These was no significant difference between these two OCD sub-

types in terms of age, sex, educational level, TIV and the total score of

Y-BOCS (all p values > .05). However, these two OCD subtypes dem-

onstrated remarkably distinct GMV/ALFF aberrance compared with

HCs. Specially, OCD 1 showed decreased GMV while OCD 2 pre-

sented increased GMV throughout the brain (p < .05, FDR corrected).

However, when mixed up, all patients demonstrated no differential

GMV compared with HCs. On the other hand, OCD 1 showed

decreased ALFF in cerebellum while increased ALFF in right inferior

parietal lobe. OCD 2 exhibited altered ALFF in numbers of brain

regions including thalamus, hippocampus, cerebellum, occipital gyrus

and frontal gyrus (Figure 2, Table S1). We also obtained ALFF aber-

rance in all patients with OCD compared with HCs. When mixed

together, all patients demonstrated increased ALFF in inferior parietal

lobule and decreased ALFF in brain regions such as motor regions,

cerebellum, and precuneus (Figure S2 and Table S2). The multimodal

difference was drawn in Figure S3.

TABLE 1 Sample demographics
HC (N = 104) OCD (N = 99) p

Male, No. (%) 51 (49.04) 52 (52.53) .99a

Age, mean (SD) [range], years 23.14 (5.64) [16–43] 23.16 (9.34) [12–49] .99b

Educational level, mean (SD), years 15.21 (3.17) 11.95 (3.04) <.01b

Duration of illness, mean (SD), m - 48.08 (57.61)

Y-BOCS score, mean (SD) - 21.73 (6.91)

TIV, mean (SD),103 1.54 (0.13) 1.55 (0.15) .68b

IQR, mean (SD) 2.08 (0.13) 2.08 (0.15) .71b

SNR, mean (SD) 207.48 (39.75) 216.31 (44.56) .14b

Mean FD, mean (SD) 0.11 (0.05) 0.12 (0.10) .39b

Abbreviations: HC, healthy control; IQR, imaging quality rating; mean FD, mean frame-wise displacement;

OCD, obsessive–compulsive disorder; SNR0, signal-to-noise ratios; TIV, total intracranial volume; Y-

BOCS: Yale–Brown Obsessive Compulsive Scale.
aChi-square t-test.
bTwo-tailed two sample t-test.
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3.4 | Validation results

The spatial correlations between multimodal voxel-wise aberrance of

268 and 200 regions brain atlas in each subtype were summarized in

Table S3 and Figure 2 (r268-200). The high correlation coefficients sug-

gested a good agreement between voxel-wise aberrance obtained

from different brain atlases. To exclude the chance that the voxel-

wise aberrance was induced by few subjects, we randomly selected a

certain percentage of patients and HCs and obtained voxel-wise aber-

rance in this sub-dataset. The spatial correlation was calculated to

measure the consistency between voxel-wise aberrance results. Our

results suggested a good reproducibility of multimodal aberrance in

each subtype. The distribution of spatial correlations was drawn in

Figure 3 and summarized in Table S4.

3.5 | Spatial correlation between structural and
functional aberrance

We also investigated the association between structural and func-

tional aberrance in each subtype of OCD. In OCD 1, there was a nega-

tive correlation between ALFF and VBM aberrance (r = �.011,

p = .078 for 268 regions brain atlas; r = �.193, p = .006 for

200 regions brain atlas). In contrast, ALFF aberrance presented signifi-

cant positive correlation with GMV aberrance (r = 0.156, p = .010 for

268 regions brain atlas; r = .243, p < .001 for 200 regions brain atlas)

in OCD 2. Once all patients were mixed, we did not observe signifi-

cant correlation between GMV and ALFF aberrance (Figure 4,

Table S3).

4 | DISCUSSION

To uncover subtypes of OCD, we proposed a subtyping framework

integrating structural and functional information. Using this frame-

work, two robust subtypes of OCD were identified. These two sub-

types demonstrated remarkably distinct multimodal differences while

shared indistinguishable clinical and demographic features. Compared

with HCs, OCD 1 exhibited decreased GMVs in widely distributed

brain regions. On the contrary, OCD 2 exhibited increased GMVs

throughout the brain. When comparing all patients with HCs, we did

not observe significant differential GMV. With regard to ALFF, OCD

1 presented decreased ALFF in cerebellum anterior lobe and

increased ALFF in inferior parietal lobule. OCD 2 demonstrated

increased ALFF in brain regions including hippocampus, thalamus,

inferior temporal lobe and middle frontal gyrus while decreased ALFF

F IGURE 2 Gray matter volume (GMV) and amplitude of low-frequency fluctuation (ALFF) aberrance in each subtype of obsessive compulsive
disorder (OCD). The r268-200 represented the spatial correlation between multimodal aberrance based on different brain atlases. The r represented
the spatial correlation between structural and functional aberrance for each subtype of OCD.
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in motor area, cerebellum, and calcarine. In addition, these two sub-

types exhibited opposite structure–function difference association.

Our framework integrating structural and functional data revealed

two reproducible subtypes of OCD. Almost all previous studies using

neuroimaging data subtyped patients with mental disorders based on

one MRI modality (Chand et al., 2020; Drysdale et al., 2017;

Sundermann et al., 2014; Varol et al., 2017). These studies ignored

the multimodal nature in mental disorders like OCD (Soriano-

Mas, 2021; Veltman, 2021). To our knowledge, it was the first attempt

using multimodal MRI data to uncover putative subtypes of OCD.

Although we only combined structural and functional data in this

study, this framework could integrate more modal data sources, such

as transporter binding and protein assays (Markello et al., 2021).

Avoiding an arbitrary setting, our framework determined the number

of subtypes automatically. We further investigated the consistency of

subtyping results between different brain atlases. Validation results

showed that the subtyping results could be reproducible across differ-

ent brain atlases and in randomly selected subgroup. These results

suggested the feasibility of our framework in subtyping patients with

mental disorders like OCD.

Even factors like medicine statue and comorbidity were well con-

trolled, patients with OCD exhibited tremendous heterogeneity

reflected in multimodal aberrance. These identified two subtypes of

OCD demonstrated distinct structural and functional aberrance.

Especially, these two subtypes exhibited completely opposite struc-

tural differences compared with HCs in distributed brain regions while

shared indistinguishable clinical symptoms and demographic features.

Nonetheless, when mixed together, all patients presented no differ-

ence with HCs. We did not observe any difference in terms of age

and illness duration between these two subtypes. Please note that

this result did not necessary deny the effect of these factors. Actually,

studies found that age and illness duration drove enlargement of stria-

tal areas (P. S. Boedhoe et al., 2017; de Wit et al., 2014). One plausible

explanation was that the effect of age/illness duration could be

ignored when compared with that of inherent heterogeneity between

these subtypes revealed in this study. Nowadays, clinical therapeutic

schedule was often determined according to symptom profile. Specific

symptoms were likely to response distinctly to treatment (Komulainen

et al., 2021; Starcevic & Brakoulias, 2008). For example, 75% of

patients cleaning/checking received cognitive behavior therapy (Ball

et al., 1996) while hoarding symptoms were consistently found to

respond less well to cognitive behavioral therapy and to pharmaco-

therapy (McKay et al., 2004). Among symptoms of OCD, checking and

cleaning responded better to treatment than others (McKay

et al., 2004). One possible reason was that works had been done to

increase rates of improvement of specific symptoms while the others

that relatively understudied would be less responsive to current treat-

ments (McKay et al., 2004). According to symptom profiles, these two

F IGURE 3 Spatial correlation
between gray matter volume
(GMV)/amplitude of low-
frequency fluctuation (ALFF)
aberrance obtained from
randomly selected sub-dataset
with that from the whole dataset.
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subtypes might be likely to treated with the same therapeutic regimen

in clinical. However, exhibiting remarkable multimodal aberrance,

these two subtypes were expected to respond distinctly to treatment.

This assumption could be verified in the future. In general, our frame-

work revealed subtypes not otherwise detectible by symptom repre-

sentations and provided a new insight into taxonomy of OCD

independent of symptom representations.

Consistent with the notion that the etiology of OCD might

involve more widely distributed largescale brain systems, such as lim-

bic system and the salience network, these two subtypes exhibited

abnormal GMVs in distributed brain regions (Alexander et al., 1986;

P. S. W. Boedhoe et al., 2018; Glahn et al., 2015; Menzies

et al., 2008). Nonetheless, they exhibited completely opposite struc-

tural aberrance pattern, might explaining inconsistent findings in pre-

vious studies such as orbitofrontal gyrus and right anterior insula

(P. S. Boedhoe et al., 2017; P. S. W. Boedhoe et al., 2018; Lázaro

et al., 2011; Okasha et al., 2000; Rotge et al., 2009). Studies with

functional imaging studies revealed hypermetabolism and increased

cerebral bold flow in orbitofrontal gyrus (Saxena et al., 1998;

Saxena & Rauch, 2000; Swedo et al., 1992). In accordance with these

findings, volume of orbitofrontal gyrus was found increased in OCD

(Kim et al., 2001; Pujol et al., 2004; Szeszko et al., 2008). However,

decreased volume of this brain region was also reported (Pujol

et al., 2004; van den Heuvel et al., 2009). As another key region in

OCD, right anterior insula was suggested to be respond for the poorer

inhibitory control in OCD (J. Fan et al., 2016). GMVs were found both

increased (Nishida et al., 2011; Yoo et al., 2008) and decreased in right

anterior insula (Besiroglu et al., 2011; Subirà et al., 2013). In addition

to opposite structural difference, these two subtypes also exhibited

distinct altered spontaneous brain activity in brain regions distributed

in networks/circuits frequently reported including orbitofronto-

striatal circuit (Menzies et al., 2008), frontoparietal network (Eng

F IGURE 4 Spatial correlation between gray matter volume (GMV) and amplitude of low-frequency fluctuation (ALFF) aberrance. Spatial
correlation was based on 268/200 brain atlas separately.
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et al., 2015) and cerebellum (Hou et al., 2012; Liu, Bu, et al., 2021).

These conflicting findings were often attributed to medicine exposure,

methodological differences, comorbidity or illness duration

(P. S. Boedhoe et al., 2017; P. S. W. Boedhoe et al., 2018;

Veltman, 2021). However, our results suggested the heterogeneity

might be inherent to OCD. Recently, researchers began to acknowl-

edge the high heterogeneity and realize that group-level difference of

brain structure was not representative of every patient in mental dis-

orders (Liu, Palaniyappan, et al., 2021; Lv et al., 2020; Wolfers

et al., 2018; Wolfers et al., 2020). However, to our knowledge, only

limited studies focused on structural aberrance in subtypes of OCD

(e.g., children vs. adult, contamination vs. aggressive) (P. S. Boedhoe

et al., 2017; P. S. W. Boedhoe et al., 2018; Yoo et al., 2008). Future

researchers might be pay more attention on more homogeneous sam-

ples even individualized aberrance in the study of OCD.

Another notable finding was the opposite association between

structural and functional aberrance in each subtype of OCD. Brain

structure and function reflecting different perspectives of brain func-

tion were not independent. Even the detail association between brain

structure and function remained unknown, it was suggested that ana-

tomical architecture constrained brain function and that brain function

interactions could be predicted from brain structure (Honey

et al., 2009). On the contrary, function of brain such as functional

coordination was found to also expert influence on structural connec-

tions through the plasticity mechanism (Hagmann et al., 2008; Honey

et al., 2009). The coupling of brain structure and function was found

to be altered in brain disorders and development. For example, schizo-

phrenia demonstrated a decoupling interaction between structural

and functional connectivity in the DMN and task-positive network

(Skudlarski et al., 2010). Similar findings were found in bipolar disorder

(Jiang et al., 2020) and attention-deficit hyperactivity disorder

(Hearne & Lin, 2021). Structure–function coupling was remodeled to

support functional specialization and cognition during adolescent

brain development (Baum et al., 2020). The opposite structure–

function correlations might reflect distinct adaptive modifications

between structural and functional aberrance in subtypes of OCD. We

hypothesized that these two subtypes would present distinct altered

structure–function coupling. Future studies could confirm this

hypothesis.

4.1 | Limitations and future directions

Numbers of limitations in this study were worth mentioning. First,

even we used multiple strategies to confirm the reliability of these

results. These results were obtained in a single dataset, one more

dataset was needed to validate these results. Second, factors such as

body mass index, alcohol/cigarette use were not controlled in this

study, future studies could evaluate their effects on these results.

Third, we did not include patients with late onset OCD; thus, we could

not know whether our conclusion held true for late onset OCD.

Fourth, we did not record enough clinical information (such as neuro-

psychological performance and pharmacological treatment), thus we

could not investigate the relationship between the identified subtypes

and obsessive dimensions.

5 | CONCLUSION

With the help of a multiview learning method named SNF, we pro-

posed a novel framework integrating structural and functional infor-

mation and successfully uncovered two subject subtypes of OCD.

These two subtypes presented totally opposite GMV difference and

distinct ALFF aberrance compared with HCs while shared indistin-

guishable clinical and demographic features. These results suggested

that these two subtypes were otherwise obscured by taxonomy based

on phenomenology. In addition, these two subtypes demonstrated

opposite spatial correlations between structural and functional aber-

rance. Altogether, our results revealed two distinct multimodal OCD

subtypes facilitating a new insight into clinical precision diagnostics.
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