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Abstract

The development of new drugs is a very complex and time-consuming process, and for this

reason, researchers have been resorting heavily to drug repurposing techniques as an alter-

native for the treatment of various diseases. This approach is especially interesting when it

comes to emerging diseases with high rates of infection, because the lack of a quickly cure

brings many human losses until the mitigation of the epidemic, as is the case of COVID-19.

In this work, we combine an in-house developed machine learning strategy with docking,

MM-PBSA calculations, and metadynamics to detect potential inhibitors for SARS-COV-2

main protease among FDA approved compounds. To assess the ability of our machine

learning strategy to retrieve potential compounds we calculated the Enrichment Factor of

compound datasets for three well known protein targets: HIV-1 reverse transcriptase (PDB

4B3P), 5-HT2A serotonin receptor (PDB 6A94), and H1 histamine receptor (PDB 3RZE).

The Enrichment Factor for each target was, respectively, 102.5, 12.4, 10.6, which are con-

sidered significant values. Regarding the identification of molecules that can potentially

inhibit the main protease of SARS-COV-2, compounds output by the machine learning step

went through a docking experiment against SARS-COV-2 Mpro. The best scored poses

were the input for MM-PBSA calculations and metadynamics using CHARMM and AMBER

force fields to predict the binding energy for each complex. Our work points out six mole-

cules, highlighting the strong interaction obtained for Mpro-mirabegron complex. Among

these six, to the best of our knowledge, ambenonium has not yet been described in the liter-

ature as a candidate inhibitor for the SARS-COV-2 main protease in its active pocket.
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Introduction

During an outbreak, it is necessary to quickly respond to the unknown pathogen to avoid the

uncontrolled spread of the disease. Just like what happened with the novel COVID-19 disease,

caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-COV-2), that

appeared for the first time in Wuhan, China at the end of 2019, spreading quickly all over the

globe. In approximately one year, the infection reached more than 170 million cumulative con-

firmed cases and caused over than 3.5 million deaths (https://covid19.who.int/; as of Jun

2021). Considering that the development of new drugs is expensive and time-consuming, in

this scenario computational strategies can potentially speed up the process of drug discovery.

The repurposing of existing drugs to treat new diseases can accelerate the approval process,

giving a quick response against unknown pathogens [1]. The use of the antiviral Remdesivir is

an example, as this drug was initially indicated for the treatment of Ebola, and in October

2020, FDA approved it for use against COVID-19 [2]. However, the mortality rate for patients

treated with Remdesivir is still quite high and does not differ significantly from placebo treat-

ment in clinical trials [3, 4]. This shows that treatment with this antiviral alone is still not

enough and further research to identify other promising drugs should continue.

Drug development often starts with the identification of key molecules, generally proteins,

also called targets, which are crucial for the treatment of a specific disease. High-throughput

screening (HTS) experiments are performed aiming to identify compounds that interact with

a target protein to achieve a biological purpose, and these compounds can be used as drug can-

didates. However, designing HTS experiments is expensive, which requires time and resources

such as advanced laboratories having chemical and biological libraries [5, 6]. The problem

increases when considering the drug development as a whole since the cost of all process is

upwards of US$2.8 billion [7]. Moreover, there is a lack of correlation between in vivo and in
vitro assays, since HTS is not able to predict clinical failures, such as side effects and toxicity

problems. To address these challenges, computational methods, such as virtual screening (VS),

have been developed to mitigate costs and improve productivity in drug development [8–11].

VS is a computational approach in drug discovery, which aims to predict drug-like small

molecules that can bind a drug target, generally, a protein [12]. The VS pipeline has the poten-

tial to highly reduce the cost and time required for HTS experiments, discarding unlikely com-

pound-target pairs and, as result, potential active combinations are selected [5]. The binding

affinity between a protein target and a ligand candidate is assessed by scoring functions associ-

ated with the method, in which potential ligands are ranked according to their binding capa-

bility. There are two main approaches of VS, structure-based and ligand-based. These can also

be combined, generating a hybrid approach [13].

The structure-based virtual screening (SBVS) uses structural information of a protein

target, such as biding pockets, to dock a ligand candidate to obtain energy predictions. It is

highly dependent on the three-dimensional structure of the protein, which can be consid-

ered as a limitation because there is a considerable gap between the availability of protein

sequences and protein structures. According to The UniProt Consortium, there are 189 mil-

lion sequence records in Uniprot, a catalogue of all known protein sequences. On the other

hand, in Protein Data Bank (PDB), the catalogue of all known structures, there are 175,000

macromolecules [14]. Therefore, depending on the target, it is necessary to create a protein

structure model first, which can potentially impact on the quality of the final result [15, 16].

Furthermore, docking techniques may disregard dynamic features of the protein and, thus,

the three-dimensional structure may not represent the most favorable conformation for

binding a ligand that would be highly favorable in another thermodynamic state. For these

reasons, structure-based methods are more commonly used for optimization, along with
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some other techniques, such as molecular dynamics [17]. The primary characteristic that

distinguishes SBVS tools is how spatial conformations are ranked, according to the score

function. There is a current trend to replace classical score functions with more sophisti-

cated methods involving machine learning, to increase the accuracy of the tools [18]. Thus,

recent methods look for improvements in the calculation of score functions, such as Atom-

Net [19], which uses deep convolutional neural network, and SIEVE [20], which uses fea-

tures of intermolecular binding energy.

Another popular class of methods to perform virtual screening is the ligand-based, which

explores chemical and structural features among small molecules to identify compounds hav-

ing a similar pharmacological activity to the protein. Therefore, it requires a large volume of

known data for the specific target, opening space for the employment of a variety of machine

learning methods [21]. The main algorithms used for this purpose are support vector

machines, k-nearest neighbors, random forests, genetic algorithms, and artificial neural net-

works, which can be combined [6, 22, 23]. There are some data structures usually employed to

represent molecules in ligand-based virtual screening (LBVS) algorithms: graphs, based on the

molecular structure [24, 25], fingerprint vectors, which characterize the ligand in terms of its

physicochemical and structural properties [23, 26, 27], and ACFs (Atom-Centered Fragments)

[28, 29]. We can highlight some examples involving each of the structures. LiSiCA [24] is a

software that applies the click algorithm to find and rank similarities between pairs of two or

three-dimensional molecules, represented in the shape of graphs. The LBVS [29] is a web

server that uses BindingDB [30] and ChEMBL [31] as data sources for the Naive Bayes classi-

fier, whose features are ACFs (Atom-Centered Fragments). Another web server is HybridSim-

VS which performs virtual screening ligand prediction based on 2D and 3D fingerprints to cal-

culate the similarity between molecules [27].

SARS-COV-2 is an enveloped RNA positive genome virus with about 30kb that encodes

two polyproteins, which are cleaved to constitute the 16 non-structural proteins and four

structural proteins, essential to virus cycle [8, 32]. The polyproteins cleaveage is mostly done

by the main-protease (Mpro) which makes this protein a potential drug target to inhibit virus

replication [10].

In this work, we combine an in-house developed machine learning strategy, docking,

MM-PBSA calculations, and metadynamics to identify molecules approved by the Food and

Drug Administration (FDA) that can potentially act as inhibitors of the enzyme activity of

the main protease of SARS-COV-2, which is relevant for interrupting the viral cycle. Our

computational strategy is hybrid as it combines LBVS and SBVS: (i) We devised a machine

learning strategy that couples different molecule fingerprints to perform a first step of

LBVS. (ii) Next, the resulting molecules went through SBVS steps. These molecules are

docked against the target protein (SARS-COV-2 Mpro) using Autodock Vina. The poses

with lowest vina scores show the preliminary favorable fit of the ligand inside the Mpro

active site. Finally, we selected the best-scored poses to perform Molecular Mechanics

Poisson-Boltzmann Surface Area (MM-PBSA) and metadynamic simulations using two

distinct force fields, CHARMM and AMBER. These simulations intended to predict the

binding energy for each complex and inspect the impact of the force field on this kind of

simulation.

This work aims to identify, through computational techniques, promising molecules to

interact with the target protein. The results obtained here serve as input for subsequent in

vitro assays to validate the inhibition potential suggested by in silico experiments. All the

source code and input datasets are available at https://github.com/IsabelaGomes/Prediction_

SARSCOV2_inhibitors.
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Materials and methods

This section details our computational strategy to predict candidate inhibitors for SARS-COV-

2 Mpro. (Fig 1) presents the workflow that outlines the process. We explain data collection and

preprocessing, prediction of molecules through the in-house developed supervised learning

strategy, and refinement of these molecules through docking and molecular dynamics.

Data preparation

Our strategy intends to predict small molecules to favorable interact with a protein in an

active pocket. As a first step, it is necessary to collect robust data to feed the machine learning

strategy.

Only positive samples are insufficient to build a robust predictive model and, to make a

model that correctly filters non-active compounds, is important to have inactive molecules in

the dataset. One challenge in molecule screening modeling is how to label compounds as inac-

tive since the range of inactive molecules is very wide, so we use decoys to fulfill this task. We

generated 50 molecular decoys for each active ligand using the “Database of Useful Decoys:

Enhanced” server (DUD-E) [33].

An important step in machine learning is feature engineering, where the raw data is con-

verted into a more informative value, called a feature. In the drug repurposing context, we aim

to convert the chemical data into an informative numerical feature understandable for predic-

tive models. This is achieved by computational processing for molecular fingerprint genera-

tion, which are numerical features extracted from chemical structures that can be used to

assess the similarity of two compounds.

The structural similarity of two molecules is commonly evaluated by computing the

Tanimoto coefficient on their chemical fingerprints [26]. High values indicate two com-

pounds are similar but do not provide information about specific chemical groups they

share. This is because the compounds are compared one by one, resulting in a local point of

view, unlike when compounds are analyzed together, achieving a global view. In this sce-

nario, we decide to use techniques to increase the overall quality of the data and to help the

machine learning strategy better capture the relationships between features, beyond the

Tanimoto coefficient.

The active ligands and the decoys composes our dataset and we described the molecule fea-

tures through a combination of two molecular fingerprints, implemented by RDKit [34]. The

first of them is a topological-based fingerprint inspired by Daylight fingerprint that extracts

chemical patterns from the chemical graph, and the other one is a structure keys-based finger-

print implementation of the public MACCS keys, indicating the presence or absence in the

Fig 1. The workflow of our strategy. It is composed of four blocks: Data preparation; Preprocessing data; Supervised

learning; and Refining simulations. Rectangles indicate processing steps and ellipsoids denote datasets.

https://doi.org/10.1371/journal.pone.0267471.g001
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compounds of particular substructures or features from a given list of structural keys [26].

Thus, we built a data matrix containing numerical information about active molecules and

decoys on the rows and fingerprint features on the columns. The resulting matrix is composed

of 2214 columns and used as input to build the supervised machine learning model.

Preprocessing data

The next step concerns processing the data in order to improve the predictive performance.

Usually, the matrix data generated by fingerprints is sparse, because molecules have different

sizes and functional groups. This results in many cells filled with zeros. Moreover, the assump-

tion that similar molecules share similar activities might not always be valid, since minor mod-

ification on functional groups causes an abrupt change in activity [35]. Small changes of

descriptor values can lead to considerable changes in molecular properties. Thus, before using

raw fingerprints as input for a machine learning strategy, we perform singular value decompo-

sition (SVD) that allows us to obtain lower-dimensional projections of the data [36]. The SVD

reduces the dimensionality while preserving essential properties of the raw data matrix, detect-

ing meaningful patterns while discarding weak signals and noises [37].

As 50 decoys were generated for each active molecule, there is an imbalance between actives

and decoys, that is, positive and negative classes. Imbalanced data refers to a dataset in which

one or more classes have much grater number of examples than others [38]. In drug discovery,

the prevalent class, called majority class, comprises inactive molecules, while the rarest class,

or minority class, is composed by active compounds. Generally, imbalanced data significantly

challenges traditional machine learning models. To address this issue, a rebalance is performed

before building the learning model, aiming to attain a more balanced input data and improve

the model prediction capacity. We use a resampling technique to rebalance the sample space

in order to relieve the effect of the skewed class distribution in the learning process. Given an

imbalanced dataset, we split the majority class set into subsets similar in size to positive class.

We combine each negative subset with the positive one, and create many smaller balanced sub-

datasets that will be used as input to an ensemble of classifiers, similar to the strategy imple-

mented in [39].

Supervised learning

The matrix of active compounds and their respective decoys for each target after preprocessing

data served as training data to build a prediction model. To select an appropriated learning

model and optimize its parameters for each dataset, we used TPOT [40], an automated

machine learning system written in Python. The pipelines were trained and evaluated under

5-fold cross validation using scikit-learn library in Python [41].

Nearly 2,000 approved molecules were obtained from Drugbank [42] and screened against

each target using the best pipeline according TPOT. This set of approved drugs was used as a

validation set, aiming to verify if the best machine learning pipeline is able to retrieve active

compounds from Drugbank FDA approved drugs. After screening, Drugbank approved com-

pounds were ranked according to the class probabilities returned by the respective pipeline.

Best ranked compounds can be selected as candidates for future analysis in more robust exper-

iments, such as molecular docking and molecular dynamics. The metric used to assess the per-

formance of the VS strategy is the Enrichment Factor (EF), which is a measure of how much

the compound dataset is enriched with actives after applying the VS strategy [6]. Usually, a

sample of one percent (top-1%) of the original data, after labeling probabilities, containing the

best classified compounds is used to calculate the EF. This metric is computed as the ratio
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between the proportion of actives after and before applying the VS strategy.

EF ¼
a2

a2þd2

a1

a1þd1

ð1Þ

in which a1 = actives before the VS step, a2 = actives after the VS step, d1 = decoys before the

VS step, and d2 = decoys after the VS step.

For our search for potential SARS-COV-2 Mpro inhibitors, we collected a benchmark on

April 24, 2020 in PDB [43] consisting of 74 SARS-COV-2 main protease structures in complex

with diverse ligands. The best machine learning algorithm calculated by TPOT under a 5-fold

cross validation was the MLP Classifier, with parameters: alpha = 0.0001, learning_rate_init =

0.1, max_iter = 500, hidden_layer_sizes = (100,75,50,25,).

Docking

After using our VS strategy on Drugbank FDA approved drugs, we selected 17 compounds

candidates to interact against SARS-COV-2 Mpro, excluding those that act on the central ner-

vous system or are illegal—allowed to medical use under specific conditions. We executed

the local docking focusing on the binding site: H41, S46, M49, Y54, F140, L141, N142, G143,

C145, H164, M165, E166, L167, P168, H172, A173, F185, D187, Q189, T190, A191, and Q192

[10]. The grid box was elaborated using Autogrid from AutoDock Tool [44]. We added polar

hydrogen to the macromolecule, intended to correct any deprotonations of the structure, and

rotation was allowed to all rotatable bonds of the ligands. Every molecule was saved in pdbqt

format so they could be used as input for AutoDock Vina [45]. We executed three simulations

replica and we set the tool to generate seven poses for each drug in each replica. The best

scored complexes were analyzed by Biovia Discovery Studio 2020 [46] to describe the contacts

profile.

Docking indicates preferable areas where the ligands interact with the protein. However,

this is a static result that can be improved with molecular dynamics approximating the system

to real conditions. Moreover, the docking score function does not reflect the the binding

energy, which can be estimated by molecular dynamics methods such as MM-PBSA and

metadynamics.

MM-PBSA simulations

We selected the six best-scored poses from docking for molecular dynamics simulations,

MM-PBSA and metadynamic, using two distinct force fields: CHARMM [47] and AMBER

[48]. These simulations intended to predict the binding energy for each complex and inspect

the impact of the force field on this kind of simulation. Using two different ways to estimate

the interaction power of the two molecules allows us to view the complex binding from more

than one perspective. The use of distinct force fields allows us to see if even with different

parameters governing the molecular trajectories, the tendency of the interaction force is

maintained.

We performed the MM-PBSA on GROMACS 5.1.4 [49]. We followed the SwissParam [50]

protocol to generate drugs topologies with the CHARMM force field [47] and antechamber

[51] to generate drugs topologies with the AMBER force field [48]. Each system was centered

on a dodecahedral box with a distance of 14 Å between the complex and the edges, solvated

with TIP3P water, and neutralized with 0.15 mol.L-1 sodium chloride.

For energy minimization, we applied the steepest descent [52] and conjugate gradient [53]

algorithms with convergence criteria of 0.24 kcal.mol-1 in both cases. Subsequently, we equili-

brated the system in 300 K and 1.0 atm using seven simulations stages with restriction forces
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being gradually removed. The first stage was in canonical coupling and, the others, in iso-

therm-isobaric coupling. The simulation protocol consisted of the Verlet Leap-frog integration

algorithm [54], with an integration step of 2.0 fs. Also, v-rescale algorithms [55, 56] with a

taut = 0.1 ps and Parrinello-Rahman [57] with a taup = 2.0 ps were used for the temperature

and pressure couplings, respectively. For the CHARMM force field, we applied the settings

suggested by GROMACS for van der Waals parameters on the molecular dynamics parameters

file.

Next, we submitted the complexes to 100 ns of molecular dynamics each, under the same

parameters. From the trajectories obtained, we compressed it into 500 snapshots due to

MM-PBSA calculation using g_mmpbsa tool [58] and default parameters.

Since the sample data set is small to compare the energies calculated with both force fields,

only six points, we used Spearman’s rank correlation to assess the concordance of the results.

Metadynamics

Metadynamics is an appropriate method to determine the binding energy for protein-ligand

complexes, mainly when the active site is large and the ligands very small [59, 60] and it is a

quicker simulation than MM-PBSA. This simulation also allows us to establish different sets of

collective variables, which govern the simulation in specific ways. The combination of several

of these sets of collective variables describes more clearly the unbinding behavior of the ligand

from the active site of the protein.

We used the same six complexes to perform metadynamics simulations with the same force

fields used previously, CHARMM, and AMBER. First, each system was solvated using the Sol-

vate v1.7 plugin for Visual Molecular Dynamics software [61] with TIP3P water in a cubic

box with 14 Å padding. Next, we neutralized the systems with 0.15 mol.L-1 sodium chloride

using Autoionize v1.7 plugin for VMD software [61].

We used the NAMD 2.14 software [62] to perform the simulations with a time-step of 2.0

fs, in an NPT ensemble with Langevin thermostat and barostat devices set at 300K and 1

atm. We set periodic boundary conditions and a cutoff of 12 Å for the nonbonded interac-

tions, and we calculated the long-range electrostatic interactions by the Particle mesh Ewald

(PME) method. The systems were minimized for 1000 steps by minimization with conjugate

gradient, then a protocol of relaxation with harmonic restrains was performed. This proto-

col consists of:

1. 500 ps MD with harmonic restrains in the Mpro and the ligand;

2. 500 ps MD with harmonic restrains in the backbone of the Mpro and ligand;

3. 500 ps MD with harmonic restrains in the Mpro;

4. 500 ps MD without harmonic restrains;

5. 8 ns MD without harmonic restrains, restarting the velocities;

6. 500 ps MD with harmonic restrains in the backbone of the Mpro;

7. 500 ps MD with harmonic restrains in the Mpro;

8. 1 ns MD with harmonic restrains in the Mpro, restarting the velocities.

For the actual metadynamics, we restrained the Mpro harmonically, and we kept the ligands

free for all the systems during the 7 ns. We executed three simulation replica for each ligand

with each force field. We set the height of the Gaussians to 0.02 kcal.mol-1, added every 1.0 ps

with a width of 1.77. We chose two groups of collective variables (CV):
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• Group 1: The first CV were the distance between the center of mass of Mpro C145 and the

center of mass of the closest atoms of the ligand to Mpro C145, varying between 0 Å and 30 Å
with an amplitude fluctuation of 2 Å. For the second CV, we established the angle between

the center of mass of Mpro C145, the center of mass of the closest atoms of the ligand to Mpro

C145 and the center of mass of the entire ligand, varying from 0º to 180º with an amplitude

fluctuation of 10º.

• Group 2: The first CV were the same distance for group 1. For the second CV, we established

specific angles for each ligand, considering their internal coordinate variations, varying

from 0º to 180º with an amplitude fluctuation of 10º. The atoms involved in each angle are

described in Table 1. The label of each ligand is available on Supporting Information.

We chose this pair of collective variables based on the principal movements of the ligands

inside the protein on the equilibrium molecular dynamics stage. These CVs showed better

sampling and convergence about the configurations on each minimum before the recrossing.

Despite operating the metadynamics by varying two collective variables, distance (CVdist),

and a specific angle (CVang), the unbinding process is mainly described by pull off the ligand

from the protein. For this reason, we can estimate the metadynamics free energy onto the

CVdist according to the (Eq 2) [60].

� bGðCVdistÞ ¼ ln
R
e� bGðCVdist ;CVang ÞdCVang

R
e� bGðCVdist ;CVang ÞdCVangdCVdist

ð2Þ

in which β = 1/kbT, where kb is the Boltzmann constant 1.9858 x 10-3 kcal.mol-1�K-1, T = 300K,

and G(CVdist, CVang) is the free energy value for each distance and angle pair described in the

PMF (Potentials of Mean Force) map.

Since Mpro is an enzyme with a shallow and exposed active site, the 7.0 ns of simulation

maps conformations of the ligand onto the active site, the bulk, and even allows the molecule

to interact with the protein again in other regions. Thus, it is critical to analyze the distance

profiles and potential and electrostatic energies over time to select the most appropriate PMF

files, since they are constructed by overlapping Gaussians during the simulation. These files

describe the energies within the catalytic site and on the bulk to reconstruct the free energy

landscape of the system before the ligand explores states beyond the two intended to avoid

overestimating the energies in these two states. We calculated the distance in each frame using

Table 1. Set of atoms for each angle component for the selected ligands.

Ligand Atoms involved in the CV

Set 1 Set 2 Set 3

Ambenonium

(DB01122)

C145 O,O1,N1,N2,C8,C9,C10,C11 ligand

Plerixafor (DB06809) C145 N,N1,N2,N3,C7,C8,C9,C10,C11,

C12,C13,C14,C15,C16

N4,N5,N6,N7,C18,C19,C20,

C21,C22,C23,C24,C25,C26,C27

Revefenacin

(DB11855)

C145 H41,H04,H05,O3,N4,C31,C34 ligand

Mirabegron

(DB08893)

H1,H2,H11,N1,N2,

C8,C9,C10,S

ligand H19,H20,H21,H22,H23,C15,

C16,C17,C18,C19,C20

Diloxanide furoate

(DB14638)

beta carbon of

C145

O,O1,O2,C,C1,C2 O3,C4,C5,C6,C12

Vorinostat (DB02546) C145 H1,H2,H14,H15,H16,H17,H18,

H19,O1,O2,N1,C10,C11,C12,C13

ligand

https://doi.org/10.1371/journal.pone.0267471.t001
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CPPTRAJ [63] and nonbonded energies using NamdEnergy. We analyzed the results with

VMD software [61] and Python in-house scripts.

The binding free energy from each ligand with both force fields was determined by the sub-

traction of the minimum energy of the ligand inside the protein binding site (Gin) and the

minimum energy of the ligand in the water (Gout), without the protein influence according to

(Eq 3).

DGbind ¼ Gin
CVang
ðCVdistÞ � Gout

CVang
ðCVdistÞ ð3Þ

This influence could be noticed from the distance profile, in which we established a cutoff

of 20 Å to consider the ligand inside the protein, concomitantly with energy profiles. When

the complex energy is null, it indicates no influence of the Mpro on the ligand.

For each ligand, we then performed six simulations with each force field. We calculated the

final free energy by weighting the free energy of each simulation using the Boltzmann average,

which highlights more favorable states, which are the more negative ones. The Boltzmann

average applied for our systems can be written as the summation in (Eq 4). Thus with it was

done for the MM-PBSA essay, we measured the concordance of the two force fields with

Spearman rank correlation.

DGbind ¼ � kTlnð
X3

i¼1

X2

j¼1

e� GRiCVj

kT
Þ ð4Þ

in which Ri CVj is the ith replica with the j CV set.

Results and discussion

This section discusses detailed results for each step of our method. First, we show that our

supervised learning strategy is able to enrich compound datasets for three well known targets.

Then our strategy is applied to point out potential molecules to inhibit SARS-COV-2 Mpro that

will be refined through docking and molecular dynamics. Next, molecules that went through

docking simulation and their respective scores are presented. Finally, the binding energies cal-

culated through MM-PBSA and metadynamics simulations for two force fiels are shown.

Supervised learning

To execute the methodology and validate it, we used the data of three targets that have a large

amount of FDA approved drugs available: HIV-1 reverse transcriptase, 5-HT2A serotonin

receptor, and H1 histamine receptor. We searched for specific ligands on BindingDB [30] and

removed from the set all drugs deposited on DrugBank, used as method validation. Thus, we

established a set of 1,492 ligands for HIV-1 reverse transcriptase (PDB 4B3P), 1,199 ligands for

H1 histamine receptor (PDB 3RZE), and 1,974 ligands for 5-HT2A serotonin receptors (PDB

6A94). Based on these data, we followed the data preparation described and generated the

matrix for the training set of the predictive model.

Table 2 shows the results achieved by our VS strategy. For each target, we used the TPOT to

select the appropriated learning model and ran it on the Drugbank FDA approved data [64] to

Table 2. Values of enrichment after apply the virtual screening strategy in three different datasets.

Target Best Algorithm Drugbank EF

HIV-1 reverse transcriptase K-Neighbors Classifier 102.5

5-HT2A serotonin receptor MLP Classifier 12.4

H1 histamine receptor MLP Classifier 10.6

https://doi.org/10.1371/journal.pone.0267471.t002
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retrieve drugs already used in the treatment of diseases related to these targets. The results

were satisfactory, highlighting the HIV-1 target, where an enrichment above a hundred was

obtained, in other words, at least a hundred times better than random picking.

The enrichment factor (EF) measures how well the VS strategy filtered out positive ligands

and is not directly related to the model used. For the HIV target assay, the model returned

only three results above the established cutoff line, and for this reason, the EF was significantly

high. The results for the other targets were not as good, but are still favorable since they indi-

cate that the strategy selects better results for molecules that interact with the protein than for

ligands not yet classified for this purpose. In this case, these other molecules that stood out in

the model could be potential study targets to identify if they interact well with the protein.

Observing the results, the next step was modeling and screening compounds from Drug-

bank FDA approved drugs for the SARS-COV-2 Mpro. Ligands in complex with the published

X-ray crystal structure for this protein [10] can be used as examples in the training model, in

order to find other molecules that share similar features, since that compounds with similar

structures are expected to have similar biological activities [65]. To obtain these ligands we col-

lected 74 SARS-COV-2 Mpro complexes from PDB [43] and executed our VS, which returned

28 ligands whose probability of being Mpro inhibitors is superior to 0.9. Among these, we

selected to proceed to the docking step the 17 best-ranked ones, excluding those that act on the

central nervous system or are illegal.

Docking

The compounds selected for docking simulation are displayed in Table 3 with their respective

vina and our LBVS scores.

The poses with lowest vina scores show the preliminar favorable fit of the ligand inside the

Mpro active site. The 2D structure of the six best ranked ligands through the docking assay are

shown in (Fig 2). We can observe that there is diversity among the ligands and the interactions

that they establish (Fig 3). However, some characteristics prevail, such as the aromatic charac-

ter and the electronegative content due to nitrogen, oxygen, and chlorine atoms. This indicates

Table 3. Top-scored ligands for SARS-COV-2 Mpro selected for docking calculation in Autodock vina.

Ligand DrugBank ID Vina score LBVS score

Plerixafor DB06809 -8.2 0.92

Revefenacin DB11855 -7.6 0.90

Mirabegron DB08893 -6.7 0.92

Ambenonium DB01122 -6.1 0.96

Diloxanide furoate DB14638 -5.9 0.94

Vorinostat DB02546 -5.8 0.95

Acetarsol DB13268 -5.4 0.90

Lacosamide DB06218 -5.3 0.98

Procainamide DB01035 -5.3 0.98

Alverine DB01616 -5.0 0.91

Phenacemide DB01121 -4.9 0.98

Acetaminophen DB00316 -4.7 0.96

Isoniazid DB00951 -4.6 0.91

Mephentermine DB01365 -4.4 0.97

Levmetamfetamine DB09571 -4.3 0.97

Phentermine DB00191 -4.1 0.95

Pargyline DB01626 -4.0 0.98

https://doi.org/10.1371/journal.pone.0267471.t003
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the predominance of favorable interactions: hydrogen bonds, attractive electrostatic interac-

tions, hydrophobic interactions, and some involving π orbitals. For Mpro-vorinostat, there is

only one unfavorable donor-donor interaction involving histidine 41. For Mpro-ambenonium,

there is one unfavorable electrical interaction between histidine 41 and one of the charged

nitrogens. Besides, there is another unfavorable donor-donor involving glycine 143. For Mpro-

plerixafor there are two unfavorable donor-donor interactions, involving serine 46 and glu-

tamic acid 166.

MM-PBSA simulations

We chose the six vina best-scored poses to perform MM-PBSA (Molecular Mechanics Pois-

son-Boltzmann Surface Area) and (Fig 4) shows the binding energy calculated with the two

distinct force fields.

The choice for a given force field impacts how the atoms interact with one another and how

we calculate the dihedrals, which can lead the trajectories in distinct ways, even under the

same conditions. This had a considerable influence on complexes’ behavior. The Mpro-plerixa-

for complex was the one in which the energy contrasted the most considerably when varying

the force field. This may have been due to its structure, which is composed of two wide loops,

with nitrogens between carbons, attached to an aromatic ring. Because it is not an usual

arrangement, the parameterization varied considerably with the force field and influenced the

simulations in a wide range.

The other complexes also presented certain variations, but they were within the expected

for MM-PBSA simulations, considering the peculiarities of each force field. It can be seen that

the ligands ambenonium, vorinostat, and revefenacin were the least divergent because they are

composed of predominantly open chains and without the presence of rarer groups. In the case

of ligands mirabegron and dioxanide furoate, the influence on the parameterization that

Fig 2. Compounds highlighted by docking assay. The 2D structure of the best scored ligands in docking experiment.

https://doi.org/10.1371/journal.pone.0267471.g002
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Fig 3. Top-scored complexes calculated by Autodock vina. The ligands (in blue) are well fitted in the Mpro active site (in orange). Hydrogen bonds are

represented by green dashed lines; attractive electrostatic interactions, as orange dashed lines; orbital π interactions, as pink, yellow and purple dashed

lines; unfavorable interactions, as red. Residues involved in hydrophobic interactions are represented by light green circles.

https://doi.org/10.1371/journal.pone.0267471.g003

Fig 4. Binding energy on MM-PBSA calculation for the complexes. CHARMM is represented in blue and AMBER,

in yellow. The error bars represents the standard error.

https://doi.org/10.1371/journal.pone.0267471.g004
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generated the energy difference may be due to the presence of an atom other than carbon in

the middle of the aromatic ring, and each force field treats this differently.

The binding energies calculated with the MM-PBSA technique provided the estimated val-

ues with high oscillations, and it was very sensitive to the change of force field. We can see this

from the Spearman rank correlation coefficient between the energies calculated based on both

force fields, which is 0.143 with p-value 0.787. The detailed energy contributions are available

on Supporting Information. Intending to have another perspective, we also calculated the

binding energy with metadynamics using both force fields.

Metadynamics

To calculate the binding energy, we choose among the PMF maps generated during each simu-

lation the first one that described both the ligand inside and outside of the active site. This pro-

cess is necessary because the simulation occurs with Gaussian potentials stacking according to

the movements the complex assumes. Then, if we pick a PMF map in a simulation point much

later than both events occurred, the energy may not be precise, because more Gaussian poten-

tials will be considered [59].

Analyzing the distance and energy profiles together to calculate the binding free energy we

can expect that the ligands did not have the same cutoff distance to indicate whether they were

in the protein site or not, even though they were the same ligand but in different replicas. Con-

sidering the energies in this process makes the calculation more accurate, despite this cutoff

variation. An example of these profiles of what was obtained for all simulations is available on

(Fig 5). It represents the energy behavior along CVdist for Mpro-mirabegron. The other profiles

are available in the Supporting Information.

Performing the calculation based on (Eq 4), we considered different modes of unbinding

the ligand from the protein, some less energetic than others, but the influence of each is con-

sidered proportionally. It is important to emphasize that it is not possible to mix simulations

executed with different force fields, because the parametrization influences translational and

rotational movements of the molecules during the trajectory.

Fig 5. Energy profile for Mpro-mirabegron in its first replica with CHARMM and the first CV set. The points A

and B represents, respectively the minimum energy inside the active site and in the water.

https://doi.org/10.1371/journal.pone.0267471.g005
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This possibility of different behavior according to the force field applied is the reason why

the calculated energy, in each case, have a divergency, as already shown in MM-PBSA experi-

ment. Table 4 explores the relation of the calculated energies with CHARMM and AMBER.

Metadynamics had a more concordant behavior between the force fields compared to the

MM-PBSA experiment. The Spearman rank correlation coefficient is 0.714 (p-value 0.111)

when all points are considered. However, by removing the outlier which is the point corre-

sponding to the complex Mpro-vorinostat, this value reaches 0.9 (p-value 0.037) indicating that

CHARMM and AMBER energy ranks are well correlated.

For CHARMM and AMBER, compound DB08893 (mirabegron) stands out from the oth-

ers, and seems to be promising. Next, we notice DB06809 (plerixafor), which formed the low-

est energy complex in MM-PBSA using CHARMM and the second-best ranked in the docking

score. The other molecules do not follow a definite pattern for both force fields.

Another compound that we can highlight is DB01122 (ambenonium), a molecule that, to

the best of our knowledge, had not yet been identified in any other study involving possible

inhibitors for SARS-COV-2 Mpro in its active pocket. Although it was not the top-ranked com-

pound in any of the docking and molecular dynamics simulations, it showed favorable interac-

tion in all simulations. For these reasons, this ligand also ranks among the promising ones for

further assays to prove inhibition activity.

Comparing all the steps performed, shown in Table 5, we can notice that the ligands

end up changing their ranking during the virtual screening. The main difference occurred

in the classifications of DB06809 (plerixafor) and DB11855 (revefenacin), which had the

lowest LBVS scores of the set of the six best ligands but stood out in the other SBVS

simulations. The opposite occurred with DB02546 (vorinostat) and DB14638 (diloxanide

furoate). This variation demonstrates the relevance of combining ligand and structure

based strategies for efficient inhibitor prediction, considering several positive aspects of

both techniques.

Table 4. Relation between calculated energies with CHARMM and AMBER. The energies described are in kcal.mol-1.

Ligand CHARMM AMBER

Energy std error Energy std error

Ambenonium (DB01122) -10 2.0 -17 3.0

Vorinostat (DB02546) -15 1.2 -10 2.0

Plerixafor (DB06809) -20 3.7 -20 3.4

Mirabegron (DB08893) -35 8.7 -26 6.3

Revefenacin (DB11855) -19 5.9 -17 4.4

Diloxanide furoate (DB14638) -8.2 0.66 -13 1.6

https://doi.org/10.1371/journal.pone.0267471.t004

Table 5. Ranking of compounds for each step of our method.

Supervised learning Docking MM-PBSA CHARMM MM-PBSA AMBER Metadynamic CHARMM Metadynamic AMBER

DB01122 DB06809 DB06809 DB11855 DB08893 DB08893

DB02546 DB11855 DB11855 DB14638 DB06809 DB06809

DB14638 DB08893 DB08893 DB01122 DB11855 DB01122

DB08893 DB01122 DB01122 DB06809 DB02546 DB11855

DB06809 DB14638 DB14638 DB02546 DB01122 DB14638

DB11855 DB02546 DB02546 DB08893 DB14638 DB02546

https://doi.org/10.1371/journal.pone.0267471.t005
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Conclusion

This work brings together an in-house developed machine learning strategy, docking,

MM-PBSA calculations and metadynamics to identify FDA approved molecules that can

potentially inhibit the main protease of SARS-COV-2. First, we devised a machine learning

strategy that couples different molecule fingerprints to perform a first step of LBVS. Next, the

resulting molecules go through SBVS steps, which consists of docking these molecules against

the target protein (SARS-COV-2 Mpro) using Autodock Vina and then selecting the poses with

lowest vina scores. Finally, we selected the best-scored poses to perform MM-PBSA calcula-

tions and metadynamic simulations using CHARMM and AMBER force fields to predict the

binding energy for each complex.

To assess the ability of our in-house developed machine learning strategy to retrieve poten-

tial candidates for the molecular docking and molecular dynamics, the Enrichment Factor was

used, which is a measure of how much the compound dataset is enriched with active molecules

after applying the screening strategy. Data for three well-studied targets, HIV-1 reverse tran-

scriptase (PDB 4B3P), 5-HT2A serotonin receptor (PDB 6A94), and H1 histamine receptor

(PDB 3RZE) went through screening using the proposed machine learning strategy and the EF

was, respectively, 102.45, 12.4, 10.6, which are considered significant values. Regarding the

identification of molecules approved by the FDA that can potentially act as inhibitors of the

enzyme activity of the main protease of SARS-COV-2, this work points out six molecules,

highlighting the strong interaction obtained for Mpro-mirabegron complex. Among these six

molecules, to the best of our knowledge, ambenonium has not yet been described in the litera-

ture as a candidate inhibitor for the SARS-COV-2 main protease in its active pocket.

The computational prediction of molecules that can potentially inhibit SARS-COV-2 main

protease does not give the certainty that the top-ranked compounds inhibit the target, as it is

an entirely computational experiment. Thus, as future work we envision to select the promis-

ing candidates for in vitro and in vivo studies that can show the inhibitory action of the pro-

posed molecules for the target of interest.

Supporting information

S1 Fig. van der Waals energy on MM-PBSA calculation for the complexes. CHARMM is

represented in blue and AMBER, in yellow. The error bars represent the standard error.

(TIF)

S2 Fig. Electrostatic energy on MM-PBSA calculation for the complexes. CHARMM is rep-

resented in blue and AMBER, in yellow. The error bars represent the standard error.

(TIF)

S3 Fig. Polar solvation energy on MM-PBSA calculation for the complexes. CHARMM is

represented in blue and AMBER, in yellow. The error bars represent the standard error.

(TIF)

S4 Fig. SASA energy on MM-PBSA calculation for the complexes. CHARMM is represented

in blue and AMBER, in yellow. The error bars represent the standard error.

(TIF)

S5 Fig. Labels for ambenonium atoms.

(TIF)

S6 Fig. Labels for plerixafor atoms.

(TIF)
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S7 Fig. Labels for revefenacin atoms.

(TIF)

S8 Fig. Labels for mirabegron atoms.

(TIF)

S9 Fig. Labels for diloxanide furoate atoms.

(TIF)

S10 Fig. Labels for vorinostat atoms.

(TIF)

S11 Fig. Energy profile for Mpro-ambenonium. Energy profile in all replicas (represented by

the R1, R2 or R3) with AMBER (represented by A) and CHARMM (represented by C) and the

two CV sets (represented by 1 or 2 preceding the force field label). The highlighted points rep-

resents, respectively the minimum energy inside the active site and in the water. The vertical

axis represents the energy in kcal.mol-1 and the horizontal axis represents the distance in Å.

(TIF)

S12 Fig. Energy profile for Mpro-plerixafor. Energy profile in all replicas (represented by the

R1, R2 or R3) with AMBER (represented by A) and CHARMM (represented by C) and the

two CV sets (represented by 1 or 2 preceding the force field label). The highlighted points rep-

resents, respectively the minimum energy inside the active site and in the water. The vertical

axis represents the energy in kcal.mol-1 and the horizontal axis represents the distance in Å.

(TIF)

S13 Fig. Energy profile for Mpro-revefenacin. Energy profile in all replicas (represented by

the R1, R2 or R3) with AMBER (represented by A) and CHARMM (represented by C) and the

two CV sets (represented by 1 or 2 preceding the force field label). The highlighted points rep-

resents, respectively the minimum energy inside the active site and in the water. The vertical

axis represents the energy in kcal.mol-1 and the horizontal axis represents the distance in Å.

(TIF)

S14 Fig. Energy profile for Mpro-mirabegron. Energy profile in all replicas (represented by

the R1, R2 or R3) with AMBER (represented by A) and CHARMM (represented by C) and the

two CV sets (represented by 1 or 2 preceding the force field label). The highlighted points rep-

resents, respectively the minimum energy inside the active site and in the water. The vertical

axis represents the energy in kcal.mol-1 and the horizontal axis represents the distance in Å.

(TIF)

S15 Fig. Energy profile for Mpro-diloxanide furoate. Energy profile in all replicas (represented

by the R1, R2 or R3) with AMBER (represented by A) and CHARMM (represented by C) and

the two CV sets (represented by 1 or 2 preceding the force field label). The highlighted points

represents, respectively the minimum energy inside the active site and in the water. The vertical

axis represents the energy in kcal.mol-1 and the horizontal axis represents the distance in Å.

(TIF)

S16 Fig. Energy profile for Mpro-vorinostat. Energy profile in all replicas (represented by the

R1, R2 or R3) with AMBER (represented by A) and CHARMM (represented by C) and the

two CV sets (represented by 1 or 2 preceding the force field label). The highlighted points rep-

resents, respectively the minimum energy inside the active site and in the water. The vertical

axis represents the energy in kcal.mol-1 and the horizontal axis represents the distance in Å.

(TIF)
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22. Banegas-Luna AJ, Cerón-Carrasco JP, Pérez-Sánchez H. A review of ligand-based virtual screening

web tools and screening algorithms in large molecular databases in the age of big data. Future Medici-

nal Chemistry. 2018; 10(22):2641–2658. https://doi.org/10.4155/fmc-2018-0076 PMID: 30499744

23. Mendolia I, Contino S, Perricone U, Ardizzone E, Pirrone R. Convolutional architectures for virtual

screening. BMC Bioinformatics. 2020; 21(S8). https://doi.org/10.1186/s12859-020-03645-9 PMID:

32938359
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