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A B S T R A C T   

Background: Building Machine Learning (ML) models in healthcare may suffer from time-consuming and potentially biased pre-selection of predictors by hand that 
can result in limited or trivial selection of suitable models. We aimed to assess the predictive performance of automating the process of building ML models (AutoML) 
in-hospital mortality prediction modelling of triage COVID-19 patients at ICU admission versus expert-based predictor pre-selection followed by logistic regression. 
Methods: We conducted an observational study of all COVID-19 patients admitted to Dutch ICUs between February and July 2020. We included 2,690 COVID-19 patients 
from 70 ICUs participating in the Dutch National Intensive Care Evaluation (NICE) registry. The main outcome measure was in-hospital mortality. We asessed model 
performance (at admission and after 24h, respectively) of AutoML compared to the more traditional approach of predictor pre-selection and logistic regression. 
Findings: Predictive performance of the autoML models with variables available at admission shows fair discrimination (average AUROC = 0⋅75-0⋅76 (sdev = 0⋅03), PPV 
= 0⋅70-0⋅76 (sdev = 0⋅1) at cut-off = 0⋅3 (the observed mortality rate), and good calibration. This performance is on par with a logistic regression model with selection of 
patient variables by three experts (average AUROC = 0⋅78 (sdev = 0⋅03) and PPV = 0⋅79 (sdev = 0⋅2)). Extending the models with variables that are available at 24h after 
admission resulted in models with higher predictive performance (average AUROC = 0⋅77-0⋅79 (sdev = 0⋅03) and PPV = 0⋅79-0⋅80 (sdev = 0⋅10-0⋅17)). 
Conclusions: AutoML delivers prediction models with fair discriminatory performance, and good calibration and accuracy, which is as good as regression models with 
expert-based predictor pre-selection. In the context of the restricted availability of data in an ICU quality registry, extending the models with variables that are 
available at 24h after admission showed small (but significantly) performance increase.  

Abbreviations: APACHE, Acute Physiology and Chronic Health Evaluation; AutoML, Automated machine learning; AUPRC, Area under the Precision-Recall Curve; 
AUROC, Area under the Receiver Operator Characteristic; CT, Computed tomography; CV, Cross validation; GCS, Glasgow coma scale; LDA, Linear discriminant 
analysis; ML, Machine learning; NPV, Negative predictive value; PPV, Positive predictive value. 
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1. Introduction 

The prevalent approach to clinical prediction modeling often in-
volves the manual selection of potentially relevant variables by experts, 
followed by regression analysis. Recent advancements in Machine 
Learning (ML) render this classical approach restrictive (uses only one 
model type), inefficient (labor-intensive manual selection) and poten-
tially biased (predictor pre-selection). Automated Machine Learning 
(AutoML) is the automation of the ML design process which includes, 
among others, automatic model and variable selection and hyper-
parameter tuning [1]. The promise of AutoML is to remove or lessen the 
burden of manual ML design tasks. In this study, we assess the predictive 
performance of AutoML for clinical prognosis modeling by comparing 
classical modeling (manual variable selection followed by regression) 
and AutoML modeling approaches. In particular, we assess the perfor-
mance of AutoPrognosis [2]for the prediction of in-hospital mortality of 
COVID-19 patients that were admitted to the ICU. AutoPrognosis is an 
AutoML tool developed for clinical prognostic modeling that learns 20 
ML models (e.g., regression, neural networks, and linear discriminant 
analysis) simultaneously. The case study is particularly relevant for 
challenging the classical model approach, because (1) the largest pro-
portion of prediction models for diagnosis and prognosis of COVID-19 
were developed in the classical way (dd. July 2021: 89 out of 238 
models used regression); [3] and (2) efficient automated approaches 
might be part of a rapid response strategy in a crisis situation. 

The classical approach to develop prediction models based on expert- 
based predictor preselection followed by logistic regression can be time 
and labor intensive and may be biased. In case of new and yet unknown 
diseases, such predictor selection is not even possible. New and highly 
infectious diseases with high chances of leading to pandemic outbreaks, 
like COVID-19, require a rapid response in order to obtain and dissem-
inate new information about the disease. It is unclear whether auto-
mated clinical prognostic modelling approaches based on different 
machine learning algorithms, which are more rapid and less labor- 
intensive, are able to reliably predict in-hospital mortality for COVID- 
19 patients [2]. 

The aim of this study is twofold. First, to assess the performance of 
prognostic models to predict in-hospital mortality of COVID-19 patients 
admitted to Dutch ICUs using automated clinical prognostic modelling 
versus using the more traditional approach with expert-based predictor 
preselection followed by logistic regression. Second, to assess the per-
formance of these models based on data available at ICU admission 
versus data available after 24h of ICU admission. 

2. Methods 

2.1. Data 

This study used prospectively collected data on all patients admitted 
between February 15th and July 1st 2020 with confirmed COVID-19 to a 
Dutch ICU extracted from the Dutch National Intensive Care Evaluation 
(NICE) registry. This NICE dataset contains, amongst other items, de-
mographic data, minimum and maximum values of physiological data in 
the first 24h of ICU admission, diagnoses (reason for admission as well as 
comorbidities), ICU as well as in-hospital mortality data and length of 
stay [4]. This data collection takes place in a standardized manner ac-
cording to strict definitions and stringent data quality checks to ensure 
high data quality [5]. 

Patients were considered to have COVID-19 when the RT-PCR of 
their respiratory secretions was positive for SARS-CoV-2 or when their 
CT-scan was consistent with COVID-19 (i.e. a CO-RADS score of ≥ 4 in 
combination with the absence of an alternative diagnosis) [6]. All ana-
lyses were performed on two variants of the NICE dataset: (1) when 
including only variables available at ICU admission (0h) and (2) when 
including all variables available after the first 24h of ICU admission 
(24h). 

2.2. Outcome measurements 

The primary outcome of this study was in-hospital mortality. During 
the peak of COVID-19 there was a shortage of ICU beds in some hospitals 
and many patients were transferred to other ICUs. For transferred pa-
tients we could follow their transfers through the Netherlands (because 
all Dutch ICUs participate in the used registry) and used the survival 
status of the last hospital the patient was admitted to during one and the 
same COVID-19 episode. 

2.3. Analyses 

We applied AutoPrognosis to build prognostic models for prediction 
of in-hospital mortality using an automated machine learning (AutoML) 
process [2]. Supplementary Section 1 provides a brief technical over-
view of how AutoPrognosis works. 

Comparative design – In our study, we compared three different ap-
proaches (see Table 1) to develop a prognostic model to predict the in- 
hospital mortality of confirmed COVID-19 patients. Additionally, as a 
reference, we applied a recalibrated version of the Acute Physiology and 
Chronic Health Evaluation IV (APACHE IV) regression model, [7] which 
is one of the most common prognostic model used in intensive care, on 
our COVID-19 patient population. Such a reference enabled us to verify 
if developing an ad-hoc model makes sense at all (independently from 
the used approach). 

Statistical Analysis – All the analyses were performed using Python 
v3.6 and R version 3.5.1 x64 with publicly available software packages2. 
For the reporting of this study, we followed the TRIPOD statement (htt 
ps://www.tripod-statement.org) and the IJMEDI checklist for assess-
ment of medical AI (https://zenodo.org/record/4835800) [8]. The file 
is available in an Open Science Foundation (osf.io) repository (htt 
ps://osf.io/d68cr/). 

2.4. Data processing 

Table 2 includes an overview of the processing operations that were 
performed. For the expert-selection approach, three intensivists (DD, 
DdL, SA) independently preselected predictors from a list of available 
variables in the NICE registry. Discrepancies were resolved by discussion 
and based on consensus. The APACHE III acute physiology score [9] and 
the overall Glasgow Coma Scale (GCS) [10] score were included, and the 
raw predictors that these scores take into account were excluded (we 
tried adding the raw predictors but this did not improve results). A 
further selection on the predictors was done with a backward stepwise 
AIC selection model. 

Table 1 
Model approaches.  

Approach Description 

Fully- 
automated 

We performed an AutoPrognosis analysis on all available patient 
variables and these variables were not processed, i.e., selected or 
transformed. 

Semi- 
automated 

We performed an AutoPrognosis analysis on patient variables that 
were selected by means of stepwise regression and subsequently 
transformed (capped and normalized) - see the Section Table 1 for 
details. 

Expert- 
selection 

We performed a more traditional logistic regression analysis on 
patient variables that were selected based on experts’ opinions (i.e. 
intensivists) and by means of stepwise regression.  

2 We used autoprognosis (https://bitbucket.org/mvdschaar/mlforhealthlabp 
ub/src/master/alg/autoprognosis/; included R packages on https://cran.r-pro 
ject.org/) and scikit (https://scikit-learn.org/) software packages (date of last 
acces October 31, 2021). 
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2.5. Model performance 

We measured (1) discrimination: Area Under the Receiver Operating 
Curve (AUROC), Area Under the Precision-Recall Curve (AUPRC), 
sensitivity, Positive predictive value (PPV), Negative predictive value 
(NPV), Brier score (i.e., the mean squared error of the prediction); (2) 
calibration: calibration curves; and (3) interpretation: model coefficients. 
AUROC and AUPRC were provided by AutoPrognosis; we computed 
separately the other required measurements. For PPV, NPV and sensi-
tivity, the decision threshold was set to 0.3, which is the average mor-
tality rate in this patient population, corresponding to outcome 
prevalence [11]. For some models built by AutoPrognosis, e.g., neural 
networks, interpretation was not readily available (but involves more 
elaborative techniques like SHAP [12] or LIME [13]), this was not 
measured. 

2.6. Validation 

The model performance was evaluated as the average performance 
over a five-fold cross validation (this is the default validation in Auto-
Prognosis). For all three approaches, the folds were kept identical to 
enable fair comparison. The original APACHE IV model as a baseline was 
first-level recalibrated with the same five folds to achieve a better fit 
with our specific population, and was then also evaluated with the same 
five folds. Following Moreno and Apolone, [14] recalibration was done 
by computing a new intercept αnew and the overall calibration slope βnew 
by fitting a logistic regression model with the APACHE IV probability 
(lpAPIV) as the only covariate: lpAPIVrecal = αnew + βnewlpAPIV . 

2.7. Approach comparison 

Performance measures for discrimination and calibration were 
assessed by averaging the mean predicted values and the fraction of 
positives of the best models per fold. To determine the best model per 
fold, we perform a model comparison within AutoPrognosis. The best 

model is the one which achieved the highest average AUROC over the 
five folds. We used the 5x2 cross validation (CV) F-test statistical test for 
determining the best model [15,16]. For interpretation, we provided 
feature importance results for the best performing model within each 
approach. The interpretation results were judged on clinical relevance 
by intensivists (DdL, SA, DD). 

3. Results 

3.1. Study population 

In total 2,706 confirmed COVID-19 patients of 70 ICUs were 
included, of which 2,690 (99⋅4%) could be followed up until hospital 
discharge; 796 patients (29⋅6%) died during their hospital stay. Table 3 
(data at admission) and supplementary Table 1 (data at 24h) show the 
descriptive summary statistics of the patient population stratified by 
hospital survival state. 

We observe that survivors were significantly younger (60⋅8 vs 68⋅6 
years), were more often woman (30⋅5 vs 22⋅1%), were less often 
admitted from the emergency room (23⋅2 vs 30⋅9%), and were less often 
on mechanical ventilation at ICU admission (45⋅4 vs 55⋅5%). 

3.2. Models’ performance 

Discrimination – Tables 4a (models with data at admission; referred to 
as 0h models onwards) and 4b (models with data after 24h; referred to as 
24h models onwards) show the AUROC, AUPRC, PPV, NPV, and Brier 
scores of the three approaches. The obtained 0h and 24h models have 
fair discriminatory performance (AUROC = 0⋅75-0⋅78). For both the 0h 
and 24h models, there is a significant difference in discriminatory per-
formance in terms of AUROC, AUPRC and Brier score between the fully- 
and semi-automated approaches (AUROC 0h: p < 0⋅05, AUROC 24h p <
0⋅01, AUPRC and Brier score both 0h and 24h: p < 0⋅01, for 5x2 CV F- 
test). Additionally, for the 24h models the results of the APACHE IV 
model are significantly different to all other models for all measures but 
NPV (p < 0⋅01 for 5x2 CV F-test). The best 0h and 24h models obtained 
by the fully-automated approach were linear discriminant analysis 
(LDA) models. The best 0h models of the semi-automated approach was 
LDA; the best 24h was a logistic regression (logR) model. The PPV in the 
context of triage is most important as one does not want to falsely 
identify non-survivors and abstain them from ICU care. The 0h model 
PPVs range between 0⋅70 (fully-automated) and 0⋅79 (expert-selection); 
there is no significant difference in PPV between the three approaches 
(p > 0⋅05 for 5x2 CV F-test). 

Calibration – Fig. 1a (data at admission: 0h) and 1b (data at 24h: 24h) 
show the calibration curves of the three approaches. The 0h and 24h 
models were well calibrated (calibration curves closely follow the 45◦

line) and the 24h models outperformed the calibration of the APACHE 
IV model. 

Interpretation of the models – Fig. 2a (data at admission: 0h) and 
Fig. 2b (data at 24h: 24h) show the coefficients of the best performing 
models of the fully-automated approach (Linear Discriminant Analysis). 
Supplementary Table 2 includes the 0h-model description for the fully- 
automated approach. Supplementary Table 3 includes the 0h-model 
description for the semi-automated approach. For both the LDA 
models, the major harmful risk factor for mortality was the patient’s age 
and the major protective risk factor for mortality was the date at which 
the patient was admitted to the ICU (later date lower mortality risk). 
Fig. 3a (data at admission) and 3b (data at 24h) show the coefficients of 
the best performing models of the semi-automated approach (best 0h 

Table 2 
Overview of data processing operations.  

Model approach Concerns Operation 

All approaches Missings Missing values for numerical variables were 
imputed by using fast k-nearest neighbour 
(kNN)[27] and mode imputation for 
categorical variables. Multiple imputation by 
chained equations (MICE)[28] yielded 
similar results. 

Derived 
variables 

In addition to the original patient variables as 
collected and described above, we included a 
derived variable for the body mass index 
(BMI) based on weight divided by squared 
length. 

Semi-automated 
approach 

Variable 
selection 

Variables were selected with a backward 
stepwise AIC (Akaike information criterion) 
selection model[29] before application of 
AutoPrognosis. 

Extreme 
values 

Extreme values were removed by capping 
numerical variables (below 1th percentile 
and above 99th percentile). 

Rescaling All variables were rescaled to the range [0,1] 
by min–max normalization: 

x’ =
x − min(x)

max(x) − min(x)
, 

where × is the original value and x’ is the 
normalized value.   
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model: LDA, best 24h model: logR). Again, age (harmful) and ICU 
admission date (protective) were found as most important risk factors. 
Fig. 4a (data at admission) and 4b (data at 24h) show the coefficients of 
the logR models of the expert-selection approach. Most important fac-
tors were again age (harmful) and ICU admission (protective). Supple-
mentary Table 4 includes the model description of the 0h logR model. 

Variable selection – Supplementary Table 5 shows the selections of 
variables. For the 0h models, the semi-automated approach selects the 

least number of variables (16 versus 25 selected by the experts); and 
there is a major overlap (13 out of 16 variables) in the variable selections 
in the semi-automated and expert-selection approaches. For the 24h 
models, the semi-automated approach selected more variables (34) than 
the experts did (30), but the overlap of variables (13) is the same as in 
the 0h models. 

Table 3 
Descriptive summary statistics stratified by in-hospital mortality for the variables available at admission. The variables used for the first 24h from admission are 
available in Supplementary Table 1.    

Overall Survivor Non- 
survivor 

P- 
Value 

Missing 

Number of patients 2,690 1,894 796   
Age, mean (SD) 63⋅1 (11⋅2) 60⋅8 (11⋅3) 68⋅6 (9⋅1) <0⋅001  
Gender female, n (%) 754 (28⋅0) 578 (30⋅5) 176 (22⋅1) <0⋅001  
Body mass index, mean (SD) 28⋅7 (5⋅0) 28⋅9 (5⋅1) 28⋅3 (4⋅9) 0⋅016  
Origin of admission, n (%) General ward same hospital 1,834 

(68⋅3) 
1,334 
(70⋅6) 

500 (62⋅8) 0⋅009 5  

Emergency room same hospital 685 (25⋅5) 439 (23⋅2) 246 (30⋅9)    
CCU/IC of another hospital 78 (2⋅9) 54 (2⋅9) 24 (3⋅0)    
CCU/IC of the same hospital 23 (0⋅9) 14 (0⋅7) 9 (1⋅1)    
Special/Medium care of the same hospital 19 (0⋅7) 15 (0⋅8) 4 (0⋅5)    
Others 46 (1⋅6) 33 (1⋅9) 13 (1⋅7)   

Readmission to the ICU, n (%) 11 (0⋅4) 6 (0⋅3) 5 (0⋅6) 0⋅319  
Referring specialty, 

n (%) 
pulmonary diseases 1,703 

(64⋅1) 
1,191 
(63⋅9) 

512 (64⋅6) 0⋅173 33  

internal medicine 822 (30⋅9) 588 (31⋅5) 234 (29⋅5)    
cardiology 32 (1⋅2) 16 (0⋅9) 16 (2⋅0)    
surgery 21 (0⋅8) 17 (0⋅9) 4 (0⋅5)    
other specialism 17 (0⋅6) 11 (0⋅6) 6 (0⋅8)    
others 62 (2⋅2) 42 (2⋅6) 20 (2⋅5)   

Planned admission, n (%) 46 (1⋅7) 36 (1⋅9) 10 (1⋅3) 0⋅311  
Hospital length 

of stay prior to ICU 
admission, mean 
(SD) 

2⋅2 (2⋅8) 2⋅3 (2⋅9) 1⋅9 (2⋅4) <0⋅001  

Comorbidities       
Confirmed infection, n (%) 2,143 

(79⋅7) 
1,509 
(79⋅7) 

634 (79⋅6) 0⋅97  

Acute renal failure, n (%) 243 (9⋅0) 114 (6⋅0) 129 (16⋅2) <0⋅001  
Gastro intestinal bleeding, n (%) 4(0⋅1) 4 (0⋅2)  0⋅326  
Aids or Immunological insufficiency, n (%) 196 (7⋅2) 124 (6⋅6) 72 (9⋅0) 0⋅025  
Chronic cardiovascular insufficiency, n (%) 30 (1⋅1) 12 (0⋅6) 18 (2⋅3) 0⋅001  
Chronic renal insufficiency, n (%) 76 (2⋅8) 34 (1⋅8) 42 (5⋅3) <0⋅001  
Cirrhosis, n (%) 3 (0⋅1) 2 (0⋅1) 1 (0⋅1) 1  
Chronic Obstructive Pulmonary Disease, n (%) 222 (8⋅3) 130 (6⋅9) 92 (11⋅6) <0⋅001  
Diabetes, n (%) 516 (19⋅2) 319 (16⋅8) 197 (24⋅7) <0⋅001  
Malignancy, n (%) 63 (2⋅3) 31 (1⋅7) 32 (4⋅0) 0⋅296  
Chronic respiratory insufficiency, n (%) 104 (3⋅9) 65 (3⋅4) 39 (4⋅9) 0⋅091  
APACHE IV reason for admission, N 

(%) 
Pneumonia, viral 2,508 

(93⋅4) 
1,785 
(94⋅4) 

723 (90⋅9) <0⋅001 5  

Pneumonia, other 20 (0⋅7) 11 (0⋅6) 9 (1⋅1)    
Cardiac arrest 20 (0⋅7) 2 (0⋅1) 18 (2⋅3)    
Pneumonia, bacterial 17 (0⋅6) 15 (0⋅8) 2 (0⋅3)    
ARDS-adult respiratory distress syndrome, non-cardiogenic 
pulmonary edema 

11 (0⋅4) 8 (0⋅4) 3 (0⋅4)    

Others 109 (2⋅4) 69 (5⋅4) 40 (4⋅9)   
Interventions       
Cardio Pulmonary Resuscitation before or at ICU admission, n (%) 25(0⋅9) 2 (0⋅1) 23 (2⋅9) <0⋅001  
Mechanical ventilation at ICU admission, 

n (%) 
1,301 
(48⋅4) 

859 (45⋅4) 442 (55⋅5) <0⋅001  

Outcome       
In-hospital mortality, n (%) 796 (29⋅6)  796 (100⋅0) <0⋅001   

Table 4a 
Comparison of the automated, semi-automated, and expert-selection approaches using data available on admission (0h). We outline the average results for the five-fold 
cross validation with the standard deviation in between brackets and considering the best model per fold. For both PPV and NPV, the decision threshold was set to 0⋅3.  

Approach AUROC AUPRC PPV NPV Sensitivity Brier 

Fully-automated 0⋅753 (0⋅028) 0⋅565 (0⋅029) 0⋅695 (0⋅109) 0⋅720 (0⋅008) 0⋅092 (0⋅050) 0⋅181 (0⋅011) 
Semi-automated 0⋅771 (0⋅022) 0⋅600 (0⋅029) 0⋅816 (0⋅124) 0⋅721 (0⋅013) 0⋅090 (0⋅082) 0⋅187 (0⋅018) 
Expert-selection 0⋅762 (0⋅027) 0⋅579 (0⋅032) 0⋅762 (0⋅122) 0⋅717 (0⋅007) 0⋅070 (0⋅045) 0⋅179 (0⋅012)  
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4. Discussion 

In this study, we assessed the predictive performance of automated 
clinical prognostic modelling (AutoML) for in-hospital mortality of ICU- 
admitted confirmed COVID-19 patients by comparing two automated 
modelling approaches using (fully-automated and semi-automated) 
AutoML and one expert-selection approach where intensivists selected 
potentially relevant variables and a logistic regression analysis was 
performed. In addition, we compared predictive performance of models 
that had access to only variables available at admission (0h) with models 
that had access to variables available at 24h after ICU admission (24h). 
Overall, predictive performance in terms of discrimination (AUROC) 
was fair (0⋅7-0⋅8). 

For the 0h models, there was no significant difference for discrimi-
nation (AUROC) between the automated and manual approaches. The 
semi-automated constructed LDA model (best model of the semi- 
automated approach) did significantly outperform the fully automated 
constructed LDA model (best model of the fully-automated approach), 
but the difference was too small to be clinically relevant. There was no 
significant difference in PPV between the three approaches. 

The 24h models performed similarly in terms of discrimination 
(AUROC), PPV, and calibration. The selected best model for the semi- 
automated approach was different for 0h and 24h (0h: LDA, 24h: 
logR), for the fully-automated approach the best 0h and 24 models were 
the same (both LDA). 

The 24h models were found to perform significantly better than the 

Table 4b 
Comparison of the automated, semi-automated and expert-selection approaches and the APACHE IV baseline using data from the first 24h after admission (24h). We 
outline the average results for the five-fold cross validation with the standard deviation in between brackets and considering the best model per fold. For both PPV and 
NPV, the decision threshold was set to 0⋅3.  

Approach AUROC AUPRC PPV NPV Sensitivity Brier 

Fully-automated 0⋅764 (0⋅030) 0⋅594 (0⋅032) 0⋅736 (0⋅080) 0⋅740 (0⋅014) 0⋅191 (0⋅082) 0⋅177 (0⋅017) 
Semi-automated 0⋅785 (0⋅027) 0⋅629 (0⋅037) 0⋅818 (0⋅107) 0⋅740 (0⋅017) 0⋅183 (0⋅099) 0⋅170 (0⋅019) 
Expert-selection 0⋅778 (0⋅029) 0⋅608 (0⋅042) 0⋅785 (0⋅165) 0⋅727 (0⋅019) 0⋅117 (0⋅099) 0⋅173 (0⋅014) 
APACHE IV(original) 0⋅706 (0⋅028) 0⋅521 (0⋅045) 0⋅697 (0⋅105) 0⋅724 (0⋅010) 0⋅107 (0⋅040) 0⋅186 (0⋅008) 
APACHE IV(recalibrated) ⋅⋅ ⋅⋅ ⋅⋅ ⋅⋅ ⋅⋅ 0⋅186 (0⋅006)  

Fig. 1a. Calibration curves of the fully-automated, semi-automated, and expert-selection approaches using data available on admission. Below the distribution of 
predicted values is shown. 
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0h models (improved AUROC of 0⋅02), but since it is only a small 
improvement, it may not be clinically relevant. 

4.1. Related work 

The studies that are most closely related to our work focus on the 
development and assessment of prognostic models of mortality among 
COVID-19 infected patients[17,18] and the identification of prognostic 
factors for severity and mortality in patients infected with COVID-19. 
[19–23] 

As for development of prognostic models, reported predictive per-
formance varies from fair (AUROC 0⋅7-0⋅8) to very good (AUROC > 0⋅9), 
other performance measures than AUROC are rarely assessed (e.g., 
calibration), the studies show an high risk of bias and concern sample 
sizes up to a maximum of 577 (Table 1 in Wynants et al.[3]). 

As for finding strong prognostic factors, similar to other studies we 
found age, sex and patient history (comorbidities) to be predictors of 
mortality among COVID-19 patients. 

Additionally other indicative predictors were found in other studies 
such as body temperature, disease signs and symptoms (such as short-
ness of breath and headache), blood pressure, features derived from CT 
images, oxygen saturation on room air, hypoxia, diverse laboratory test 
abnormalities, biomarkers of end-organ dysfunction. [17,18,20,21,23] 
Most of these other predictors were not included in our dataset (mainly 
because the used registry data did not include detailed individual pa-
tient information). For some of the included comorbidities, we have no 
explanation why these were not selected as predictors in our models, 
other than that it is a result from dependences and correlations that are 
specific for our set of predictors. Our best performing models included 
CPR, gastro intestinal bleedings and neoplasm, which were not 
mentioned before in other studies. This may be because these data items 
are not systematically recorded in other datasets, or that the combina-
tion of COVID-19 with another important reason for ICU admission 
cannot be identified in other studies. A bad prognosis of ICU patients 
with cancer and after CPR, even independent of COVID-19, is expected 
and known.[24,25] 

Fig. 1b. Calibration curves for the fully-automated, semi-automated, and expert-selection approaches using data from the first 24h from admission. Below the 
distribution of predicted values is shown. 
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4.2. Strengths 

The sample size of our study is large (i.e., contains many confirmed 
COVID-19 patients), and the dataset is comprehensive (i.e., contains 
many features per patient). As for the analysis, our evaluation is rigorous 
in that we use multiple performance measures. In general, our approach 
enables the rapid development of prediction models in case of the 
COVID-19 epidemic crisis since the registry data that we use are readily 
available and we use an autormated machine learning approach. 

4.3. Limitations 

Regarding the model development, we enabled the logistic regres-
sion model to perform better to some degree (e.g., with/without variable 
selection, inclusion of either aggregate (APACHE, GCS) scores or the raw 
predictors) but this was not done exhaustively. Boosting logR perfor-
mance is still possible, for example by allowing it to use the best form of 
predictors (i.e., transformation with for example restricted cubic splines 
[26]). We found further model tweaking to be out of scope, because we 
primarily compare (automated versus traditional) approaches and not 
models. 

As for data, the used NICE registration data does not include all 
laboratory or other individual patient variables, but a specific selection 
and sometimes an aggregation of routinely collected data. As other 
studies do include more and different individual patient information 
such as time series of laboratory values and features derived from CT 
images that may explain their higher predictive performance. 

4.4. Implications 

Our study shows the value of automated modelling. After further 
development and extensive validation, these models are of great 
importance to assist medical staff in making decisions on ICU admit-
tance and treatment, thereby supporting the use of ICU capacity as 
efficiently as possible. 

Since we do not find clinically relevant differences between models 
using data at admission time compared to after 24h, this may affect the 
triage process itself as well: when considering predicted mortality under 
high pressure on ICU capacity, it may not be effective to admit patients 
only to see how they develop in the first 24h. However, in case limited 
ICU capacity is not the main pressure for triage one might say that 24h is 
not long enough to accurately estimate individuals’ survival chances. 

4.5. Future work 

The models achieve fair (AUROC 0⋅7-0⋅8) but not good (AUROC >
0⋅8) predictive performance. The addition of more individual patient 
information such as other and more detailed laboratory values (instead 
of min/max values that we included) and findings of CT images obtained 
from the electronic patient record may increase the performance since 
other COVID-19 models including those predictors show better perfor-
mance than we do, and this is thus worthwhile to investigate. 

4.6. Conclusions 

This study shows that automated clinical prognostic modelling 
(AutoML) delivers prediction models with fair predictive performance in 

Fig. 2a. Coefficients of the linear discriminant analysis model of the fully-automated approach using data available at admission.  
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terms of discrimination, calibration, and accuracy. The model perfor-
mance is as good as models that were developed using the more time- 
consuming regression analysis with expert-based predictor preselec-
tion. Models including data from the first 24h of ICU admission did 
significantly outperform models based on admission data, but the clin-
ical relevance is small. These results pave the way to serve as a baseline 
for rapid automated model development in times of pandemics or other 
enduring crises that affect ICU capacity and hence increase the need for 
patient triage. 

Other declarations 
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Summary Table 

What was already known on the topic:  

• Classical prediction models (i.e., regression models with manual 
predictor selection) yield good performance for clinical diagnosis 
and prognosis, but the modeling process is potentially biased and 
limited.  

• Automated prognostic modelling (AutoML) facilitates automatic 
model and variable selection and hyperparameter tuning, and can 
lessen the burden of carrying out manual design tasks for prediction 
modeling. 

Fig. 2b. Coefficients of the logistic regression model of the fully-automated approach using data available at 24h after admission.  
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Fig. 3a. Coefficients of the linear discriminant analysis model of the semi-automated approach using data available at admission.  

Fig. 3b. Coefficients of the linear discriminant analysis model of semi-automated approach using data available at 24h after admission.  
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Fig. 4a. Coefficients of the logistic regression model of the expert-selection approach using data available at admission.  

Fig. 4b. Coefficients of the logistic regression model of the expert-selection approach using data available at 24h after admission.  

I. Vagliano et al.                                                                                                                                                                                                                                



International Journal of Medical Informatics 160 (2022) 104688

11

• The largest proportion of prediction models for diagnosis and prog-
nosis of COVID-19 were developed in the classical way (regression 
with manual predictor selection). 

What this study added to our knowledge:  

• Automated modeling can deliver clinical prediction models that 
perform on par with more classical models (regression models with 
manual predictor selection).  

• Automated modelling can assist decision-making on ICU admittance 
and treatment, and can support efficient use of ICU capacity.  

• Admitting of COVID-19 patients to the ICU to see how they develop 
in the first 24 hours may not be effective. 
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