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Seizure detection algorithms are often optimized to detect seizures from the

epileptogenic cortex. However, in non-localizable epilepsies, the thalamus is frequently

targeted for neuromodulation. Developing a reliable seizure detection algorithm from

thalamic SEEG may facilitate the translation of closed-loop neuromodulation. Deep

learning algorithms promise reliable seizure detectors, but the major impediment is the

lack of larger samples of curated ictal thalamic SEEG needed for training classifiers.

We aimed to investigate if synthetic data generated by temporal Generative Adversarial

Networks (TGAN) can inflate the sample size to improve the performance of a deep

learning classifier of ictal and interictal states from limited samples of thalamic SEEG.

Thalamic SEEG from 13 patients (84 seizures) was obtained during stereo EEG

evaluation for epilepsy surgery. Overall, TGAN generated synthetic data augmented

the performance of the bidirectional Long-Short Term Memory (BiLSTM) performance

in classifying thalamic ictal and baseline states. Adding synthetic data improved the

accuracy of the detection model by 18.5%. Importantly, this approach can be applied

to classify electrographic seizure onset patterns or develop patient-specific seizure

detectors from implanted neuromodulation devices.

Keywords: temporal lobe epilepsy, thalamus, Bidirectional Long-Short Term Memory (Bi-LSTM), seizure detection

algorithm, Generative Adversarial Network (GAN)

INTRODUCTION

Despite significant advances in diagnostic and therapeutic technologies, over 30 million people
worldwide have drug-resistant epilepsy (DRE) (1). Increased seizure burden plays a central role
in morbidity and mortality, thereby emphasizing the need for seizure preventative therapies (2).
Surgical resection of the seizure focus may yield seizure freedom and remains the first line of
treatment in DRE. However, in many patients, resection or ablation is not an option if the seizure
foci are widespread involving multiple regions or are non-localizable (3, 4). Neuromodulation
of the epileptogenic circuit remotely via a central hub like the thalami is often the treatment
of choice in this cohort (5). Accurate and timely detection of seizures is clinically necessary for
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the development of feedback “responsive” therapy and
monitoring seizure counts for therapy adjustment. In recent
years, the medical community has widely adopted machine
learning approaches to develop seizure detection algorithms.
Various linear and non-linear features are extracted and have
been used for seizure detection and prediction (6–12). However,
these seizure detection algorithms have been optimized from
electrophysiological signals obtained from the seizure focus.
Machine learning algorithms to detect seizures from outside the
seizure focus are still in their nascency (13).

There are multiple challenges in developing seizure detectors
from regions like the thalamic subnuclei, i.e., (a) the thalami have
lower power spectra, and the spectral contents are significantly
different from the epileptogenic cortex during interictal and
seizure substages (14), (b) the thalami are not routinely implanted
during surgical evaluation, and hence electrophysiological
recordings during seizures are scarce. Thus, the sample size
is small and often inadequate for data-intensive deep learning
models, and (c) Chronic local field potentials (LFPs) can be
recorded from the thalami in patients with sensing-enabled deep
brain stimulators (DBS) and can potentially be the solution to
inadequate data. However, establishing the accuracy of detecting
seizures in the ambulatory setting is challenging. In the proposed
work, we overcome the inadequate sample size by applying a
novel deep learning approach for detecting seizures from LFPs
recorded directly from the human thalamic subnuclei.

Several deep learning algorithms have been proposed for
automatic seizure detection. These include artificial neural
networks, convolution, and deep convolution-based seizure
detection systems. Amongst them, a widely popular and high-
performing method for seizure classification using EEG is the use
of temporal models such as recurrent neural network (RNN) and
its variants, including Long-Short Term Memory (15)(LSTM)
Bidirectional LSTM (BiLSTM), Gated Recurrent Unit (GRU)
(16), and Generative Adversarial Networks (GAN). LSTMs are
known for their excellence in learning patterns from temporal
information while preserving dependencies in very long-time
sequences. However, these temporal models (RNN, LSTM, GRU)
are first trained in an adequately powered sample to learn the
inherent temporal dependencies of the EEG signal that accurately
represent the features of a seizure. In the present study, we apply
the time-GAN method with the novel goal of detecting temporal
lobe seizures from a limited number of the LFPs recorded from
the human thalami. We hypothesize that the performance of a
deep learning algorithm classifying seizures from the interictal
state can be significantly improved by adding synthetic data using
the GAN approach.

METHODS

Study Participants and Ethics
Patients diagnosed with drug-refractory temporal lobe epilepsy
(TLE) who underwent stereoelectroencephalography (SEEG)
for localization of seizure focus were included in the study. The
indication for SEEG was clinically necessary and determined in
a multidisciplinary patient management conference. Within this
cohort, consenting adults who had thalamic implantation for

TABLE 1 | Demographic details of the study participants.

Demographics N = 13

Age (years) 42.8 ± 11.9

Gender (M:F) 6:7

Details of recording:

Number of contacts 2,205

(R: 1,328, L: 877)

Thalamic implant laterality (R:L) 8:3

Thalamic target nucleus (Anterior: Central) 8:3

Disease burden measures:

Age at Onset (years) 28.8 ± 16.2

Duration of Epilepsy (years) 14.3 ± 16.3

Frequency of focal seizures (/month—median and range) 4 (range: 1–48)

H/o FBTCS (Present: Absent) 6:7

MRI (Abnormal: Normal) 7:6

M, male; F, female; FBTCS, focal to bilateral tonic-clonic seizures; MRI, magnetic

resonance imaging.

research were included in the present analysis. The multi-step
consenting and evaluation process has been described in detail
in our previous studies (13, 14, 17). The electrophysiological
sampling of the thalamic subnuclei was performed under the
supervision of the IRB, and all patients provided written
informed consent. To mitigate the risk associated with
implanting an additional depth electrode for research sampling
of the thalamus, we modified the trajectory of a clinically
indicated depth electrode sampling the operculum-insula to
track medially for recording from the thalamus. Clinician-
identified seizures were documented for all patients, and the
SEEG data was clipped and parsed for analysis. Ictal (N = 84
from 13 patients) and baseline interictal data (Length: 550 s prior
to seizure) were obtained. The demographic details of the study
participants are detailed in Table 1.

SEEG Recording
All SEEG implantation procedures were performed using
robotic assistance (ROSA device, MedTech, Syracuse, NY)
(12–16 contacts per depth electrode, 2mm contact length,
0.8mm contact diameter, 1.5mm intercontact distance, PMT R©

Corporation, Chanhassen, MN). Once implanted, the patients
were monitored over 4–12 days in the epilepsy monitoring unit
(EMU). SEED data as recorded using Natus Quantum (Natus
Medical Incorporated, Pleasanton, CA, sampling rate 2,048Hz).
Signals were referenced to a common extracranial electrode
placed posteriorly in the occiput near the hairline.

Accurate Anatomical Localization of SEEG
Depth Electrodes
The details of the accuracy of the implantation strategy have
been reported in our previous study (17). Here we highlight
the main steps to localize the SEEG electrodes to the various
cortical regions and the thalamic subnculei. The post-implant
CT-scan was coregistered to preimplant MRI using Advanced
Normalization Tools (ANTs) and refined registration of deep
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structures was performed using brain shift correction to improve
the registration of subcortical structures using Lead-DBS v2
software (18). Both the images were normalized to ICBM 2009b
NLIN asymmetric space using the symmetric diffeomorphic
image registration. Following this, the localization of the thalamic
contacts was performed in Lead-DBS, while the cortical channels
were performed in iElecetrodes (19). Thalamic contacts were
registered to Morel’s thalamus atlas, while cortical contacts were
localized using AAL2 atlas (20).

Identification of Interictal Epochs and
Seizures in the Seizure Onset Zone and
Thalamus
The time of the seizure onsets and offsets was annotated by a
board-certified epileptologist (SP). Seizure onset in the cortex
was marked as “unequivocal EEG onset” (UEO) at the earliest
occurrence of rhythmic or repetitive spikes that was distinct
from the background activity. SEEG segments were clipped
to include 10min before this UEO and 10min after seizure
termination. Four different clinical seizure types were included
for analysis: focal aware seizures (FAS), focal impaired awareness
seizures (FIAS), and focal to bilateral tonic clonic seizures
(FBTCS) (21). Epochs of “interictal state” (28 epochs with
each epoch lasting 9min) were visually screened and identified
from the non-seizure segment of the SEEG that was at least
1 h preceding seizure. Our previous study showed that the
interictal spikes in baseline data need not be actively removed
for classifying ictal states from baseline states (13). Secondly,
interictal spikes will be present while training real-time data,
e.g., line length detection in responsive neuromodulation systems
(RNS) (22). Hence for translational purposes, no effort was
made to exclude epileptiform spikes in the baseline epochs.
Supplementary Material shows the details of the ictal and
baseline data.

Deep Learning Architectures
The input to the BiLSTM classifier was the interictal baseline and
ictal thalamic EEG data. The baseline and the ictal data from
the 84 seizures (13 subjects) were initially grouped by the subject
identification. Since the length of ictal data was variable, we chose
the length of the shortest seizure for any given subject (i.e., 14 s)
as the length of the analyzable data. To avoid a discrepancy in the
length of data between ictal and baseline segments, we chose a
similar 14 s length of SEEG data from the initial segment of the
baseline data. The input to the BiLSTM classifier is a 2D array of
data. Hence, the 14 s of the data were then clipped into multiple
1 s epochs and rearranged into a two-dimensional array of 14 ×

2,048 samples (Figures 1A–C).
Principally, the LSTM network only obtains information from

the previous input observations but cannot use that information
for future input observations. However, the BiLSTM model,
composed of two independent LSTM networks, can transmit
information bi-directionally and increase the learning ability of
the system output (Figure 2) (23). Sixty three seizures from 11
subjects (were used to train the classifier differentiating ictal from
baseline. Subsequently, 21 seizures collected from 2 patients were

used for testing the model. Each BiLSTM classification model
consisted of 64 units of LSTMs in the encoding layer and a kernel
regularizer of 12 followed by a drop-out layer with a drop-out
ratio of 0.25 and a batch normalization layer. This was followed
by a dense layer of 64 units with rectified layer unit (ReLU)
activation function (24). For the final output, a dense layer with
SoftMax activation function of two units was used for the binary
classification of baseline interictal and ictal states.

Generation of Synthetic Data With GAN
GANs learn and generate synthetic data by preserving the data
distributions. For a generation of sequential data, the temporal
dynamics need to be preserved. Yoon et al. (25) proposed the
concept of time-series GAN (TGAN) that was able to capture not
only the distribution of data at each instant but also the presence
of various features across time (Figures 3A,B). TGAN differs
from other GAN architectures in two ways. (a) By introducing an
embedding network, it reduces the dimension of the adversarial
learning space, and (b) uses supervised adversarial loss, unlike
GAN, where unsupervised methods are used. In our analysis,
TGAN was used to generate synthetic data that was 10 times
the original data. The data (ictal and baseline) were fed into the
TGANmodel to produce the augmented data (Figure 1D).

Validation of Synthetic Data
The second level BiLSTM analysis classifies ictal and baseline
states based on the synthetic TGAN data (Figure 1E). Hence it
was necessary to validate the similarity of the synthetic data with
the original data. The validation was quantified using the Train-
Synthetic-Test-Real method (TSTR), where a logistic regression
classifier model with a single layer gated recurring units (GRU)
with 12 units was used for training both the original and the
synthetic data. Eachmodel was trained separately with 75% of the
original and the synthetic data, respectively. The testing of both
the models is done with the remaining 25% of only the original
data set (25). This allowed us to estimate individual seizure level
and subject level coefficient of determination (R2) values and
the percentage difference between original and synthetic data
(Table 2). Finally, a t-distributed stochastic neighbor embedding
(t-SNE) analysis was performed to visualize if the ictal and
baseline data could be better segregated using the original or the
synthetic data. T-SNEs were generated in MATLAB using the
“exact” algorithm, with Mahalanobis distance, the perplexity of
50, and PCA dimensions of 3.

Performance of BiLSTM on Original vs.
Synthetic Data
To estimate the performance of the BiLSTM following metrics
were computed: sensitivity (Sn or recall), specificity, accuracy
(for training, validation, and testing data), positive predictive
value (PPV or precision), F1-score, and area under the curve
(AUC). The difference in the performance of the BiLSTM
classifiers for original and synthetic data was visualized using
ROC (receiver operating characteristic) curve by testing the
relationship between sensitivity and 1-specificity.
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FIGURE 1 | Study pipeline: (A) Clinician identified seizure onset timings in the hippocampal-amygdalar complex were determined. We then clipped thalamic EEG

segments into epochs of baseline and seizure onset. (B) Each epoch consisted of 14 s of raw thalamic EEG segments (C). As an initial step, each 14-s 1D signal

epoch was fragmented into 1-s segments to generate a 2D matrix of time × signal (sampling rate: 2,048 samples/s) (D). The data was then submitted to the TGAN

system to generate synthetic data at the individual subject level. TGAN is expected to generate synthetic data that mimics original data and augment the sample size

required for deep learning. (E) Two separate bidirectional long short-term memory (BiLSTM) models were tested independently on original and synthetic data.
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FIGURE 2 | Block diagram of bidirectional long short-term memory learning (BiLSTM): A BiLSTM, is a serial sequence learning model that consists of two LSTMs

operating in two directions effectively increase the amount of information available to train and test the network. The first LSTM inputs in data in a forward direction,

and the second LSTM in a backwards direction. This improved the context available to the learning algorithm helping it to learn the sequence of the time series data,

i.e., what data immediately follows (Xt+1) and precedes (Xt−1) the events of interest such as the seizure (X).

FIGURE 3 | The architecture of GAN (A) and time GAN (B). (A) Generative Adversarial Networks (GAN) is an unsupervised learning system that involves discovering

and learning the patterns in input data to generate a new set of synthetic data that mimics the original dataset. (B) Time-series Generative Adversarial Networks

(Time-GAN) combines the flexibility of the unsupervised paradigm with the control by incorporating supervised training.
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TABLE 2 | Coefficient of determination (R2) and mean absolute error (MAE) values obtained from regression models comparing original and synthetic data for the baseline

and ictal data.

S_ID #Seizures Baseline

Validation R2 MAE

Original Synthetic % Difference Original Synthetic % Difference

7 10 0.468 0.469 0 3.219 3.219 0

8 7 0.367 0.370 1 9.220 9.146 1

9 9 0.260 0.268 3 4.876 4.877 0

10 7 0.182 0.180 1 20.189 20.155 0

14 8 0.285 0.275 4 4.349 4.348 0

15 6 0.850 0.880 3 32.485 32.350 0

16 11 0.910 0.920 1 8.976 8.976 0

17 3 0.253 0.250 1 4.348 4.368 0

18 3 0.413 0.420 2 7.171 7.170 0

19 5 0.380 0.380 0 3.104 3.104 0

20 4 0.400 0.420 5 12.628 12.608 0

21 6 0.680 0.640 6 12.979 12.881 1

22 5 0.854 0.866 1 10.977 10.977 0

Group 0.484 ± 0.251 0.487 ± 0.256 2 ± 1% 10.34 ± 8.25 10.32 ± 8.21 0.1 ± 0.3%

Ictal

7 10 0.868 0.869 0 2.958 2.957 0

8 7 0.456 0.470 3 14.710 14.710 0

9 9 0.380 0.370 3 4.828 4.828 0

10 7 0.218 0.210 4 23.593 23.602 0

14 8 0.360 0.365 1 6.533 6.533 0

15 6 0.420 0.426 1 59.375 59.376 0

16 11 0.910 0.910 0 5.825 5.825 0

17 3 0.340 0.335 1 5.215 5.215 0

18 3 0.413 0.420 2 8.114 8.144 0

19 5 0.278 0.269 3 5.617 5.636 0

20 4 0.400 0.400 0 3.729 3.729 0

21 6 0.600 0.600 0 21.081 21.082 0

22 5 0.750 0.760 1 6.807 6.661 2

Group 0.491 ± 0.221 0.492 ± 0.224 1 ± 1 12.95 ± 15.42 12.94 ± 15.42 0.1 ± 0.5

S_ID, Subject Identification number; #, number of; R2, coefficient of determination; MAE, mean absolute error; % difference, absolute percentage change in original and synthetic.

Implementation Details
The BiLSTM and TGAN models were tested in Python, and t-
SNE analysis was performed inMATLAB.We utilized Keras (26),
scikit-learn, an open-source Python API that takes into account
the neural organization structures based on top of TensorFlow,
to construct all learning models.

RESULTS

Safety and Localization of Thalamic
Electrodes
Thirteen subjects were included in the study, with 10 had
electrodes localized to the anterior nucleus of the thalamus
(ANT) and 3 in the centrolateral thalamic nuclei (Table 1,
Figure 4). CT brain (post-implant and post-explant) did not

show any thalamic hemorrhage. Eight subjects were implanted
on the right side and three on the left side.

Clinico-Demographic Details of Subjects
Table 1 summarizes the clinic-demographic details of the
subjects included in this study. A total of 84 seizures from 13
subjects were analyzed. The seizure onset zone was determined
based on the clinical consensus among the epileptologists during
the epilepsy surgical conference. The identified seizure focus was:
medial temporal (4 subjects), mesial + temporal pole onset (3
subjects), temporal plus (5 subjects), with the plus representing
additional seizure foci (orbitofrontal or insula or suprasylvian
operculum) (27). The seizure types were: ES (19), FAS (24), FIAS
(28), and FBTCS (6).
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FIGURE 4 | (A) Coregistration of post-implant CT scan on pre-implant MRI

and Morel’s thalamic atlas to determine the exact localization of thalamic

targets. (A) An example of the electrode localized to the central thalamic

nucleus (CL). (B) An example of the electrode localized to the anterior thalamic

nucleus (ANT).

TGAN Augmented Synthetic Data Were
Comparable to the Original SEEG Data
The TGAN generated synthetic data was similar to the original
SEEG data. At baseline, there was no difference between themean
coefficient of determination (R2) of the original and synthetic
data (original: 0.484 ± 0.251, synthetic: 0.487 ± 0.256, t = −0.6,
p= 0.27). Similarly, there was no difference in the mean absolute
error (MAE) of original and synthetic data (original: 10.34 ±

8.25, synthetic: 10.32 ± 8.21, t = 0.008, p = 0.49). Similarly, the
TGAN augmented data synthesized during the ictal period did
not differ from the original data in R2 (original: 0.491 ± 0.221,
synthetic: 0.492 ± 0.224, t = −0.0097, p = 0.49) and the MAE
(original: 12.95 ± 15.42, synthetic: 12.94 ± 15.42, t = 0.001,
p= 0.49).

TGAN Augmented Synthetic Data
Enhanced the Performance of the BiLSTM
Classifier
We constructed ROC curves to determine the performance of the
BiLSTM on original, and TGAN augmented synthetic data. The
classification of the ictal from the baseline data was superior with
the synthetic TGAN augmented data compared to the original
data (original: AUC: 60% and synthetic: 78.5%, Figure 5A).
This improvement in the performance of the BiLSTM models
could be better visualized using three component t-SNE plots
(Figures 5B–D). T-SNE of original data failed to parse the
ictal and baseline clusters separately (Figure 5B), while T-SNE
performed on the TGAN augmented synthetic data with the same
parameters, demonstrated a clear separation into ictal and the

baseline clusters (Figure 5C). We initially noted that the ictal
clusters were further separated in space into multiple clusters. A
t-SNE indexed by the subject ID showed that TGAN amplifies the
ictal data specific to each patient that is distinctly different from
their comparable baselines (Figure 5D). The result suggests that
the patient-specific electrographic seizure onset patterns were
retained in the TGAN augmented data (Figure 5D).

Overall, the performance of the BiLSTM in classifying ictal
and baseline states from thalamic SEEG data was enhanced by the
use of TGAN generated synthetic data over the original data. The
accuracy of the training data improved by 31.75%, the validation
data improved by 32.1%, and finally, the testing data improved
by 18.5%. The sensitivity and PPV of the BiLSTM classifier on
improved by 13 and 10% on the testing data (Figure 6).

DISCUSSIONS

Currently the only clinically available neuromodulation system
that is based on a close loop system approved by the
United States Food and Drug Administration (FDA) is the
Responsive neurostimulation. To date this device has been
extensively used to target neuromodulation in the cortical
regions. This device uses amplitude threshold and line-length
as the main seizure detection algorithms. There have been
anecdotal reports of implanting the human thalamus with
RNS, where the seizures were still detected in the cortex but
the stimulation was performed in the ANT. There has been
growing literature that thalamus is involved early in focal
seizures, particularly in TLE. Some studies have also tried
to detect seizures from human thalamus. This detection of
seizures from the human thalamus and understanding the
pattern of involvement of thalamus on focal seizures is of
utmost importance while developing closed-loop DBS systems.
To date, it has been shown that ANT DBS (open loop) has had
great success in patients with drug resistant epilepsy particularly
those patients who are negative for a lesion on the MRI,
with a median seizure frequency reduction of 75% at 7 years
of therapy.

Newer sensing-enabled DBS systems have been approved
by the FDA since 2018 in the practice of epilepsy and since
2002 for Parkinson’s disease. These devices offer closed loop
sensing and diary functions (record of events) to monitor
symptoms and tailor therapeutic stimulation. A recent study
has shown that closed loop neurostimulation within the human
thalamus has shown a ≥50% reduction in seizure frequency
with no adverse effects on mood, memory or behavior. With
the advent of such sensing-enabled closed loop systems, there
is a clinical need to develop seizure detection algorithms from
the thalamic SEEG and not just from the cortical seizure onset
zone. One of the most critical steps in enabling sensing, is to
develop patient-specific detection based on individual subject’s
thalamic seizure patterns. Often, the data obtained from a
single subject is limited and hence the translation of deep
learning approaches has been hindered by the lack of larger
samples of curated ictal thalamic SEEG needed for training
these classifiers. Here, we demonstrate the utility of generating
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FIGURE 5 | (A) Receiver operator characteristic (ROC) curves comparing the performance of BiLSTM models trained with original and TGAN augmented synthetic

data. (B) T-SNE plot of the original SEEG data showing the baseline (red) and ictal (blue) data. (C) T-SNE plot of the TGAN augmented synthetic data shows a clear

distinction between the two groups (baseline in red and ictal in blue). (D) A t-SNE indexed by the subject ID showed that TGAN amplifies the ictal data specific to each

patient that is distinctly different from their comparable baselines (the different colors are indicative of the data different 13 different subjects). In conjunction with C, we

understand that data is not only classified based on ictal and interictal data, but also distinctly clustered based on individual subjects’ data.

synthetic data using GAN that can augment the sample size and
improve the performance of BiLSTM. Importantly, this approach
can be applied to classify electrographic seizure onset patterns
or develop patient-specific seizure detectors from implanted
neuromodulation devices. In summary, we found that Time-
GAN helps generate synthetic time series that resemble the
original data, with a very small mean absolute error rate of
0.1 ± 0.5% between the original and the augmented data. In
fact, when this time-GAN augmented data was used in BiLSTM
classifier to detect the ictal state, we noticed that the accuracy
of the classifier improved by 18.5%, sensitivity by 13% and PPV
by 10% when compared to classifying using the original data.
Thoughmarginal, such an improvement is promising and further
refinement of such models are required to optimize seizure
detection in the thalamus.

Performance of Deep Learning Algorithms
for Seizure Detection
Table 3 summarizes the performance of deep learning algorithms
in detecting seizures from electrophysiological signals recorded
from the scalp and intracortical regions (LFPs). To date, deep
learning algorithms to detect seizures were applied to EEG
obtained from the cortical areas that participate in seizure
generation. Our study is distinct and the first of its kind to
perform deep learning detection on EEG recordings from a brain
region that is remote to the seizure focus.

As expected, the performance of these classifiers was higher
with biosignals obtained directly from the cortex than from the
scalp which is likely to be closer to the seizure focus. In those
studies, the sample size for deep learning consisted of over 100
ictal EEG data. The main motivation of this study is to highlight
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FIGURE 6 | Bi-directional Long Short-Term memory (BiLSTM) classification results using original and time generative adversarial networks (Time-GAN) generated

synthetic data. Ac, accuracy; PPV, positive predictive value, Sn, sensitivity; Sp, specificity; F1, F-score; AUC, area under the curve, %, percentage.

TABLE 3 | Summary of prior studies evaluating deep learning for seizure detection.

References Algorithm No. of classes No. of patients:

No. of seizures

Accuracy (%) Data type

Tsiouris et al. (29) LSTM 2 23:198 99.8 ICEEG

Ullah et al. (30) CNN 2 5:100 99.8 Scalp and ICEEG

Abdelhameed et al. (31) Deep LSTM 5 5:100 100 Scalp and ICEEG

Avcu et al. (32) Deep CNN 2 29:120 93.3 ICEEG

San-segundo et al. (33) Deep CNN 3 5, 500:3,750, 11,500 95.7 ICEEG

Lu et al. (34) Deep CNN 3 5, 500:3,750, 11,500 91.8 Scalp

Asif et al. (35) SeizureNet 2 500:11,500 94.0 Scalp

Yao et al. (28) BiLSTM 2 23:665 84.55 Scalp

Hu et al. (36) BiLSTM 2 23:665 93.61 Scalp

Yan et al. (37) CNN 2 679:177 98 ICEEG

ICEEG, intracranial EEG; LSTM, long short term memory; BiLSTM, bidirectional long short-term memory; CNN, Convolutional Neural Network.

how data augmentation techniques can improve the accuracy of
the classifier, albeit a lower overall performance of our classifier
in comparison to other studies. Even when data is smaller (84
seizures), we can use data-augmentation methods to enhance
the performance of the classifier (accuracy improved by 18%
in our current study) and improve the detection performed
in subcortical neuromodulatory targets such as the thalamus,
which are distant and outside the seizure cortex. Wei et al. (38)
were among the pioneering teams in demonstrating improved
seizure detection in scalp EEG with GAN models. They used the
Wasserstein Generative Adversarial Nets (WGANs) combined
with a convolutional neural network (CNN) to demonstrate
a 3% improvement in accuracy (81.5–84.4%) and a near 2%
improvement in the sensitivity (70.68–72.11%). In our study, the

accuracy and sensitivity improved by 18.5 and 13%, respectively.
Zhao et al. (39), in their model with a 1D-CNN with data-
augmentation on data obtained from intracranial EEG data that
was close to seizure focus, achieve an improvement of only 3%
(accuracy of 89.28% compared to 86.89 with a support vector
machine). They proposed a data augmentation method which
leverages feature correlations in the transformed domain rather
than in the original domain where time-domain data is converted
to the frequency domain by discrete cosine transform (DCT), and
new artificial data is generated by combining different frequency
bands from different data, and converted back to time-domain
data. Overall, these studies and ours, point to the promising
future of using data augmentation techniques for better seizure
detection to improve therapeutic stimulation.
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Augmented Subject-Specific Classification
With Temporal GAN
GANs, are deep-learning algorithms where two competing
networks, namely the generator and the discriminator, compete
against each other until the generator generates artificial data
of high quality. According to Goodfellow et al. (40), “the
generative models are analogous to a team of counterfeiters
trying to produce fake currency without being detected. The
discriminative model is analogous to the police trying to detect
fake currency. The competition between the generator and
discriminator drives improvement until the counterfeiters are
indistinguishable from the genuine currency.” Thus, GAN has
been used to classify interictal spikes and in EEG-based brain-
computer interfaces. Our result supports the use of GAN to
produce synthetic data to augment the performance by 18% as
compared to using only the original data. The ability to classify
seizures from limited samples of unprocessed LFP signals may
provide a clinical advantage in neuromodulation devices where
efficient processing at a lower computational expense is desired.

Study Limitations
There is a proof-of-concept study evaluating the use of synthetic
data in augmenting sample size for deep learning. The study
needs to be extended to a larger cohort with thalamic recordings
of seizures and interictal baseline. One major challenge of the
temporal GAN model is that it is computationally intense and
consumes time to learn or converge to local minima and hence
slows the training process. Another limitation of GAN is that
the presence of discontinuous (e.g., ECoGs obtained from clinical
neuromodulation devices) data may synthesize incorrect data. In
our study, the duration of the data used for time-GAN analysis
was 14 s based on the shortest duration of the ictal event from
our cohort and in the future the results need to be optimized to
individual patients, in whom the seizure durations are likely to
vary significantly. This will also have a bearing on minimizing
the detection latencies in the future models. Such sophisticated
models will help build closed-loop neuromodulation strategies
where early seizure detection can be used to pace the brain
to abort seizures. Regarding the size of our data-set, we used
63 seizures from 11 patients’ data for training and 21 seizures
from 2 patients’s data for testing the BiLSTM and Time-GAN
models. While our study did show a reasonable improvement
in the accuracy of the BiLSTM models and can be used as a
proof of concept, in the future it is essential to validate this
using random sampling of the patients’ data and at individual
subject level to emphasize and validate its clinical use. Also, cross
validation across all patients’ data would further strengthen the
validity of the model. Since GAN is time consuming and resource
demanding, our purpose was not to run it on all subjects but
show how even in few subjects an improved accuracy can be
obtained. Another limitation is that we did not determine the
exact cause of improved accuracy and test the fidelity, diversity,
and generalization of the data augmentation method, i.e., TGAN.
These measures help determine the point at which the generative
model surpasses and fools the discriminative network. Once
the TGAN augmented data robustly mimics the real data, the

TGAN-output is then used as the input in BiLSTM models
improve accuracy. TGANs supersede BiLSTMs at finding a better
low dimensional representation and hence may contribute to
improved accuracy. In our study, we were interested in showing
if the TGAN is able to produce synthetic data effectively from
available limited samples and whether that use of the synthetic
data shows elevated performance as compared to the using the
original data only and a more detailed validation of TGAN was
to voluminous for this study.

CONCLUSION

The ability to detect seizures from the thalamus- a structure
remote to the seizure focus is clinically necessary for monitoring
seizure burden in drug-resistant epilepsies where seizure foci
are non-localizable. In this study, we demonstrate the use of
synthetic data to augment sample size and improve deep learning
performance in detecting seizures from the human thalamic
SEEG. The proposed framework should be extended to a larger
cohort of patients with thalamic DBS in multifocal epilepsies.
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