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Abstract: Long noncoding RNAs (lncRNAs) influence cellular function through binding events that
often depend on the lncRNA secondary structure. One such lncRNA, metastasis-associated lung
adenocarcinoma transcript 1 (MALAT1), is upregulated in many cancer types and has a myriad of
protein- and miRNA-binding sites. Recently, a secondary structural model of MALAT1 in noncancer-
ous cells was proposed to form 194 hairpins and 13 pseudoknots. That study postulated that, in
cancer cells, the MALAT1 structure likely varies, thereby influencing cancer progression. This work
analyzes how that structural model is expected to change in K562 cells, which originated from a
patient with chronic myeloid leukemia (CML), and in HeLa cells, which originated from a patient
with cervical cancer. Dimethyl sulfate-sequencing (DMS-Seq) data from K562 cells and psoralen
analysis of RNA interactions and structure (PARIS) data from HeLa cells were compared to the
working structural model of MALAT1 in noncancerous cells to identify sites that likely undergo
structural alterations. MALAT1 in K562 cells is predicted to become more unstructured, with almost
60% of examined hairpins in noncancerous cells losing at least half of their base pairings. Conversely,
MALAT1 in HeLa cells is predicted to largely maintain its structure, undergoing 18 novel structural
rearrangements. Moreover, 50 validated miRNA-binding sites are affected by putative secondary
structural changes in both cancer types, such as miR-217 in K562 cells and miR-20a in HeLa cells.
Structural changes unique to K562 cells and HeLa cells provide new mechanistic leads into how the
structure of MALAT1 may mediate cancer in a cell-type specific manner.

Keywords: cancer; RNA secondary structure; DMS-Seq; PARIS; miRNAs

1. Introduction

Long noncoding RNAs (lncRNAs; all abbreviations henceforth can be found in Supple-
mental Table S1, “Abbreviations” tab) are involved in a wide array of biological functions in
humans, including imprinting, cell differentiation, and disease proliferation [1,2]. lncRNAs
regulate gene expression through multiple mechanisms, including alternative splicing [3],
binding transcription factors [4,5], and binding microRNAs (miRNAs) [6]. Specifically,
lncRNAs can act as competing endogenous RNAs (ceRNAs) and sponge miRNAs, thus hin-
dering those miRNAs from promoting degradation of their intended mRNA targets [7–10].
In some situations, miRNA binding can even promote lncRNA degradation [9]. The ability
of lncRNAs to interact with other RNAs and proteins is largely mediated by secondary
structure. For instance, lncRNAs can sponge miRNAs when the binding site is free of
secondary structures (e.g., hairpins and pseudoknots) and/or proteins. In cancer and
other human diseases, the proper functioning of lncRNAs is directly impacted by miRNA-
binding events, where miRNA sponging can promote mRNA dysregulation and aberrant
gene expression [11]. lncRNAs are often associated with oncogenic or tumor-suppressing

Non-coding RNA 2021, 7, 6. https://doi.org/10.3390/ncrna7010006 https://www.mdpi.com/journal/ncrna

https://www.mdpi.com/journal/ncrna
https://www.mdpi.com
https://orcid.org/0000-0001-7683-2530
https://orcid.org/0000-0002-8012-1931
https://orcid.org/0000-0002-3830-3424
https://orcid.org/0000-0001-9055-5939
https://doi.org/10.3390/ncrna7010006
https://doi.org/10.3390/ncrna7010006
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/ncrna7010006
https://www.mdpi.com/journal/ncrna
https://www.mdpi.com/2311-553X/7/1/6?type=check_update&version=1


Non-coding RNA 2021, 7, 6 2 of 18

effects and have high potential for use as cancer biomarkers [12]. While the structure
dictates function of RNA and proteins, the distinct functional roles of structural elements
in many lncRNAs are unclear.

One notable cancer-associated lncRNA is human metastasis-associated lung adenocar-
cinoma transcript 1 (MALAT1), whose longest isoform has over 8700 nucleotides [13] and
its mature form terminates in a triple helix at its 3′ end [14]. Additionally, MALAT1 has
hnRNPC- and hnRNPG-binding sites which are made available when N6-methyladenosine
(m6A) modifications destabilize characterized hairpins [15–17]. Numerous roles for
MALAT1 have been proposed, including regulation of pre-mRNA splicing, transcrip-
tional regulation through binding of transcription factors, and acting as a ceRNA [18].
MALAT1 has previously been linked to SR protein phosphorylation and alternative splic-
ing of pre-mRNAs [3]. Aberrant MALAT1 upregulation is considered oncogenic and occurs
in breast, cervical, liver, and lung cancers, among others [18]. Moreover, MALAT1 has
numerous known miRNA- and protein-binding partners, some of which mediate cancer.
For example, the sponging of miR-217 by MALAT1 promotes dasatinib resistance in K562
cells by upregulating AGR2 [19]. Similarly, MALAT1 sponges the tumor suppressors
miR-145 [20] and miR-202-3p [21], prompting invasiveness and epithelial-mesenchymal
transitioning in HeLa cells [22]. The strong correlation between MALAT1 expression and
cancer [18], as well as numerous known interactions with miRNAs and proteins that can
bind to MALAT1, has made MALAT1 a promising biomarker and anticancer therapeutic
target [23]. While increased expression of MALAT1 has been correlated with cancer or
severe cancer phenotypes, how the roles of MALAT1 are influenced by its myriad structural
elements is not yet clear.

Previously, a secondary structural model of human MALAT1 in noncancerous cells
was proposed [15]. The model posits 194 helices and 13 pseudoknots covering 8425 nu-
cleotides of MALAT1 and identified several unique and dynamic MALAT1 secondary
structures, including a putative m6A switch that regulates miRNA binding [15]. According
to this model, when there is a lack of methylation at A5044 in HeLa cells, a short hairpin is fa-
vored over a pseudoknot, thereby possibly increasing the accessibility of cancer-associated
miR-101-3p, miR-217-5p, and miR-383-5p to their binding sites in MALAT1 [15,24–26].
Based on this structural switch and other cell-dependent structural predictions, we de-
cided to examine structural data for MALAT1 in cancerous contexts. Herein, the working
noncancer-derived secondary structural model of MALAT1 was compared to previously
published RNA structural probing data in chronic myeloid leukemia (CML)-derived K562
cells [27] and in cervical cancer-derived HeLa cells [28,29] to identify putative differences
between cancerous and noncancerous MALAT1 structural models [15]. DMS-Seq data from
K562 cells [27] and PARIS data from HeLa cells [28,29] were used to determine how the
structural model of MALAT1 changes in cancer. Both datasets were analyzed to generate
a more complete picture of MALAT1, as the output for DMS-Seq provides structural in-
formation for only adenosine and cytidine and PARIS detects only psoralen-crosslinked
duplexes [27–29]. From these comparative analyses, MALAT1 is predicted to become
unstructured in K562 cells, with 59 of 101 analyzed hairpins losing at least half of the base
pairs predicted in MALAT1 in a noncancerous context. Conversely, the MALAT1 model is
largely maintained in HeLa cells, but 18 novel RNA-RNA interactions suggest structural
rearrangements predominate. These structural changes would subsequently impact ac-
cessibility of 50 miRNA-binding sites. For instance, the binding site for miR-217, which
is associated with tumor suppression [30], is subject to linearization in K562 cells, which
would allow MALAT1 to sponge miR-217. Overall, this work highlights the potential, novel
dynamic secondary structural changes in K562 and HeLa cells, whereby differential ef-
fects on miRNA-binding sites, protein-binding sites, RNA modifications, single nucleotide
polymorphisms (SNPs), and cancer-associated mutations suggest mechanisms by which
MALAT1 plays different roles in K562 and HeLa cells.
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2. Results and Discussion
2.1. DMS-Seq Data Suggest Unfolding of MALAT1 Structure in K562 Cells

DMS-Seq involves chemically labeling RNA with DMS on unstructured adenosine
and cytidine residues, which stops reverse transcriptase in a manner that can be detected
by sequencing [27]. K562 DMS-Seq data [27] for MALAT1 (herein referred to as K562-
MALAT1) were first analyzed to determine which adenosine and cytidine nucleotides are
unstructured or structured (Supplemental Table S1). Of the 8425 nucleotides within the
human MALAT1 transcript that were examined, 3951 nucleotides are either adenosine or
cytidine. Of these, DMS-Seq data determined using MALAT1 isolated from K562 cells were
available for 2554 adenosine and cytidine nucleotides, whereby 1835 DMS-Seq (71.8%)
datapoints (i.e., number of DMS-Seq reads corresponding to a single adenosine or cytidine)
were classified as unstructured and 719 DMS-Seq datapoints (28.2%) were classified as
structured pursuant to the 250-read threshold (see Section 3 and Figure 1A). When K562-
MALAT1 was compared to the working noncancerous MALAT1 model (Supplemental
Table S1), 1504 datapoints (58.9%) agreed with the consensus model while 733 datapoints
(28.7%) corresponded to loss of structure and 317 datapoints (12.4%) corresponded to gain
of structure (Figure 1B). While the majority of K562-MALAT1 agreed with the MALAT1
consensus model, 41.1% of datapoints diverged from the noncancerous model, suggesting
that wide-sweeping changes in MALAT1 secondary structure may occur in K562 cells.
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Figure 1. Summary of DMS-Seq data analysis. (A) 2311 available DMS-Seq datapoints (i.e., number of DMS-Seq reads
corresponding to a single adenosine or cytidine) in human foreskin fibroblasts and 2554 DMS-Seq datapoints in K562 cells
were classified as unstructured or structured based on whether they exceeded the 20-read or 250-read threshold, respectively
(see Section 3 and [15]). (B) K562 DMS-Seq datapoints were compared to the working MALAT1 consensus model and
further classified as losing structure, gaining structure, or agreeing with the model [15].

K562-MALAT1 data that corresponded to the loss or gain of structure were mapped
onto the noncancerous MALAT1 model to examine how the secondary structure of MALAT1
may vary in K562 cells (Figure 2 and Supplemental Figure S1). Of the 194 hairpins pre-
dicted in the noncancerous MALAT1 model, 101 hairpins from the noncancerous model
are supported by DMS-Seq data and 59 of these hairpins (58.4%) lose at least half of their
base pairs in K562 cells. Among these hairpins are: H44, losing 13 of 25 base pairs (52.0%);
H45, losing 5 of 8 base pairs (62.5%); H98, losing 8 of 12 base pairs (66.7%); and H155,
losing 4 of 6 base pairs (66.7%) (Figure 3, “K562-MALAT1”). These correspond to novel
losses of eight base pairs in H44, four base pairs in H45, six base pairs in H98, and two base
pairs in H155 (Figure 3, “Change”). The comparative analysis suggests widespread loss
of structural features within the context of K562-MALAT1. While individual nucleotides
occasionally appear to gain structure in K562-MALAT1, the sporadic occurrences do not
suggest the development of any unambiguous novel secondary structures in MALAT1 in
K562 cells (Figure 2). It is worth noting that refolding of the MALAT1 structure based on the
K562 DMS-Seq data is expected to produce a novel secondary structure of K562-MALAT1.
However, DMS-Seq is the only major RNA structural probing dataset available for K562
cells and it lacks data for about 1600 nts from a central region of MALAT1; therefore,
a novel model cannot be constructed and the analysis herein is restricted to identifying
regions of MALAT1 that potentially change in K562 cells. Overall, K562-MALAT1 results
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suggest many hairpins in the working MALAT1 model lose structure, and unstructured
regions remain unstructured. This result is in agreement with prior work using DMS-Seq
data, which found loss of structure in mRNAs [27]. Cumulatively, the K562-MALAT1
data indicate general loss of structure in MALAT1, thereby suggesting possible functional
ramifications within the context of K562 cells.
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Figure 3. Hairpins predicted to be disrupted in K562-MALAT1. Loss of structure is shown for four hairpins: (A) H44,
(B) H45, (C) H98, and (D) H155. Canonical base pairs are shown with a line and noncanonical base pairs are shown with
a dot. Nucleotides with an orange background are classified as unstructured and nucleotides with a blue background
are classified as structured. For each hairpin, the following schematics are shown from top to bottom: original secondary
structure as predicted in the working MALAT1 model (“Model”) using fibroblast DMS-Seq data, the K562 DMS-Seq data
(“K562-MALAT1”), and the K562 DMS-Seq datapoints that differ from their noncancerous counterparts (“Change”).

2.2. Predicted Secondary Structural Changes in K562-MALAT1 Would Impact Multiple RNA-
and Protein-Binding Sites

Loss of secondary structure in K562-MALAT1 may signal that certain RNA- and
protein-binding sites are now available in MALAT1, especially for single-stranded RNA-
binding proteins. As such, this possibility was examined to identify the aberrant binding
events in K562-MALAT1 that are different from binding and interaction events for MALAT1
in noncancerous conditions. miRNAs, ncRNAs, proteins, RNA modifications, SNPs, and
cancer-associated mutations were re-aligned to MALAT1 to identify structure-function
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relationships that provide a starting point to examine their possible roles in CML (Supple-
mental Table S1).

miRNAs are currently known to play a pivotal role in the development and progres-
sion of CML [31]. Of the 98 validated miRNA-binding sites in MALAT1, 28 sites occur
in hairpins predicted to lose structure in K562-MALAT1, thereby increasing accessibility
of binding site and potential for sponging (Supplemental Table S1). Examples include
miR-320, which overlaps with H101; miR-217, which overlaps with H160; and miR-140-5p,
which overlaps with H168 (Figure 4). miR-320 is considered a tumor suppressor in K562
cells, but K562 cells often bypass its action by transporting miR-320 to exosomes via
hnRNPA1 [32]. Sponging of miR-320 by MALAT1 in K562 cells could also dampen the
tumor-suppressive effects of miR-320, as is the case with lncRNA SNHG12 sponging miR-
320 in gastric cancer [33]. miR-217 reportedly targets the mRNA of oncogenic protein
AGR2 in K562 cells [19]. As decreases in unbound miR-217 accompany AGR2 upregulation
and subsequent dasatinib resistance in K562 cells [19], sponging of miR-217 by MALAT1
may have similar effects in K562 cells. miR-140-5p has been linked to CML cell apoptosis
via targeting of the SIX1 mRNA transcript [34]; therefore, possible sponging of miR-140-5p
by MALAT1 in K562 cells may promote cell survival. These examples highlight how the
novel availability of miRNA-binding sites in MALAT1 may aid in K562 cell progression
via multiple miRNA-mediated mechanisms.
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Figure 4. Structural loss in K562-MALAT1 improves accessibility of miRNA-binding sites. Three hairpin-miRNA interactions
are shown: (A) miR-320 seed binding to H101, (B) miR-217 seed binding to H160, and (C) miR-140-5p seed binding to H168.
Depicted is the predicted structure of each hairpin in noncancerous cells (“Model”) adjacent to the hairpin structure in
K562-MALAT1 (“K562”), where the relevant base pairs are removed according to our analysis of DMS-Seq data. Nucleotides
with an orange background are classified as unstructured and nucleotides with a blue background are classified as structured.
The binding of a given miRNA (red) seed region to the K562-MALAT1 hairpin is shown. The nucleotide R denotes a G and
A residue in miR-320a and miR-320b, respectively.
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Eleven hairpins expected to lose structure in K562-MALAT1 (H49, H77, H79, H80,
H147, H148, H155, H156, H164, H165, H168) overlap with eight of the ten U1 snRNA-
binding sites (nts 1825–1925, 3015–3067, 3152–3185, 5924–6023, 6127–6277, 6850–6884,
6985–7045, and 7138–7206) (Supplemental Table S1). U1 snRNA is known to be mutated
in multiple cancer types to promote aberrant gene splicing patterns [35]. Although the
roles of U1-MALAT1 interactions have not been elucidated, it is conceivable that binding of
U1 snRNA to MALAT1 may also contribute toward alternate, oncogenic splicing patterns
that promote CML. Furthermore, one U1 snRNA-binding site (nts 3152–3185) overlaps
with a HuR/ELAV1-binding site (nts 3158–3163) that may become accessible upon loss of
H79 in K562-MALAT1. Although the effects of HuR-MALAT1 binding on CML have not
been investigated, the HuR-MALAT1 RNP complex has been shown to stop breast cancer
cells from undergoing epithelial-mesenchymal transitioning by decreasing the levels of
CD133 [36]. Thus, increased HuR-MALAT1 binding in K562 cells is expected to hinder
cancer progression, suggesting the existence of alternate pathways by which HuR-MALAT1
binding affects K562 cells. HuR typically binds to mRNAs in cancer in order to promote
cancerous functions, such as metastasis and apoptosis resistance [37]. Thus, competition
between HuR and U1 snRNA for a binding site around nt 3160 may point to a carefully
controlled cancer-promoting mechanism mediated by MALAT1. In general, characterized
protein-binding sites on MALAT1 are expected to become more available as a result of
widespread structural loss and these changes in protein-MALAT1 binding predicted by
K562 DMS-Seq data hint at novel pathways to explore further.

Besides RNA- and protein-binding sites, RNA structure can also be modulated by RNA
modifications, SNPs, and cancer-associated mutations. RNA modifications on MALAT1 in
K562 cells are undetermined, so modification sites from other cell lines were used. Of all
the 82 m6A modifications mapped to MALAT1 at single-nucleotide resolution in HEK293,
HEK293T, and HeLa cells [24,38–41], 61 m6A modifications either overlap with hairpins
predicted to lose structure or, if not overlapping with hairpins, correspond to adenosines
predicted to be unstructured (Supplemental Table S1). The METTL3/14 complex, which is
responsible for about 80% of m6A marks in human mRNAs and ncRNAs, has no strong
preference for ssRNA or dsRNA [42], suggesting secondary structural changes are insuffi-
cient to predict changes in m6A levels caused by METTL3/14. It is worth noting that the
METTL3/14 complex is considered tumor suppressive and is downregulated in cancers
like endometrial cancer, whereas m6A erasers like ALKBH5 and FTO are oncogenic and
often upregulated in cancers like acute myeloid leukemia (AML) and breast cancer [43].
Correspondingly, ALKBH5 is associated with MALAT1 upregulation [44] and FTO reg-
ulates MALAT1 levels via demethylation [45]. ALKBH5 does not discriminate between
ssRNA and dsRNA [46] and FTO targets ssRNA [47]; therefore, m6A marks in MALAT1
are potential substrates for both m6A erasers. Also notable, m6A2515 enables the binding
of hnRNPG to MALAT1 at H63 [16], which is lost in K562-MALAT1 (Figure 2). As hnRNPG
has stronger binding affinity for ssRNA, particularly in A-rich regions, [48,49] and has gen-
erally been associated with tumor suppressive effects [50–52], increased MALAT1-hnRNPG
binding may decrease the tumor suppressive activity of hnRNPG and may promote K562
cell progression. While the functional effects of any aberrant methylation patterns are diffi-
cult to predict in CML, m6A modifications and their roles in RNA regulation and function,
particularly with regard to mRNAs where such modifications are the most common, have
been explored in attempts to develop novel cancer biomarkers and treatments [53]. There-
fore, understanding how structural alterations in MALAT1 modulate m6A modification
sites in K562 cells is of particular interest.

Seventeen SNPs have been identified in MALAT1 [54]. rs664589 (C4117G), rs115795653
(A6415G), and rs60151940 (C7151W) are three SNPs that correspond to nucleotides that are
predicted to lose structure in K562-MALAT1 (Supplemental Table S1). SNPs in structured
RNAs are generally believed to alter the local secondary structure [55], although the
severity of alterations can vary and is difficult to predict [56]. Interestingly, SNP rs664589
has been characterized as aiding colorectal cancer progression by inhibiting MALAT1-
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miR-194-5p binding [57]. Besides SNPs, 655 somatic cancer-associated mutations have
been identified in MALAT1 [58]. Fifty-nine mutations (9.0%) correspond to nucleotides
predicted to lose structure in K562-MALAT1 (Supplemental Table S1). Such mutations
could further weaken the hairpin structures or reduce miRNA binding, particularly if the
mutation were to disrupt base pairing in the seed region of the miRNA-binding site. Within
H71, the A2875U mutation alters seed-region base pairing for miR-92a-3p, miR-363-3p,
and miR-25-3p (Figure 5 and Supplemental Table S1). Although miR-363-3p is associated
with tumor suppression in other cancer types [59], miR-92a-3p and miR-25-3p promote
progression in cancers like liposarcomas [60]. Moreover, miR-92a-3p was previously found
to aid CML by downregulating C/EBPα and subsequently causing cachexia, i.e., severe
weight and muscle loss associated with cancer [61]. As predicted previously, this proposed
role of H71 in regulating MALAT1-miRNA interactions illustrates how H71 can modulate
the different outputs depending on the cellular context [15]. In total, 16 miRNA-binding
sites have seed regions within hairpins predicted to become unstructured in K562-MALAT1
(Supplemental Table S1, “SeqMarkup” tab), and may experience reduced binding affinity
due to somatic cancer-associated mutations. Additionally, one METTL3/14-binding site,
two HuR/ELAV-binding sites, and ten U1-binding sites face similar conditions because
of mutations, pointing to complex regulatory pathways that may depend on the K562-
MALAT1 structure. Together, the effects of secondary structural loss on miRNA-, U1
snRNA and HuR-, m6A-, SNP-, and cancer-associated mutation-related effects in K562
cells represent potential avenues for further characterization of MALAT1 activity in cancer.
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2.3. PARIS Data Suggest Maintenance of Overall Structure of MALAT1 with Rearrangements of
Select Long-Range Interactions

PARIS involves sequencing of RNA fragments that were once photocrosslinked-
duplexes isolated from psoralen-treated cells [28]. PARIS data for MALAT1 in HeLa
cells (herein referred to as HeLa-MALAT1) were compared and mapped to the noncancer-
ous consensus model [15] to see how the MALAT1 secondary structural model is expected
to change within the context of HeLa cells (Figure 6, Supplemental Figure S2 and Supple-
mental Tables S1 and S2) [28,29]. Eighty unique PARIS interactions (Supplemental Table S2)
were aligned to the MALAT1 model. Of these, 18 PARIS interactions (22.5%) diverged from
hairpins described in the consensus model while 62 local interactions (77.5%) agreed with
the hairpins in the consensus model, suggesting that the secondary structure of MALAT1,
as it is hypothesized to exist, may be largely maintained in HeLa cells (Figure 6). The 18
PARIS interactions that diverge from the model typically suggest that secondary structural
elements undergo structural rearrangement. Of the 18 divergent PARIS interactions, six
interactions (33.3%) were denoted as short-range or local interactions and 12 interactions
(66.7%) were denoted as long-range interactions, most of which are separated by at least
80 nucleotides in their primary structure in the working noncancerous MALAT1 model
(Supplemental Table S2) [15]. The 12 divergent long-range PARIS interactions typically
signal the structural rearrangement of multiple hairpins whereas the six short-range PARIS
interactions signal the formation of novel structures. Up to 42 hairpins out of 161 hair-
pins (26.1%) are expected to undergo rearrangement and 119 hairpins (73.9%), which
are conserved among mammals [15], appear maintained in the HeLa-MALAT1 model
(Supplemental Tables S1 and S2). Thus, with regard to structural alterations of hairpins,
rearranging long-range interactions is preferred over novel short-range interactions.

Five of the aforementioned local PARIS interactions occur in predominantly unstruc-
tured regions of the working MALAT1 consensus model (Figure 6, dark red lines). Four of
these interactions fall between nts 1897 and 1941 (i.e., between H49 and H50) and the fifth
interaction falls between nts 7458 and 7461, preceding H174 (Figure 6). The noncancerous
HEK293T PARIS data did not highlight any such structures at the corresponding locations
(Supplemental Table S2). Together, these five interactions suggest distinct instances of
dynamic, novel structures. In contrast, most of the 12 long-range PARIS interactions in-
dicate distinct instances of structural rearrangement (Figure 6, purple lines). Curiously,
five of the long-range PARIS interactions and one divergent short-range PARIS interaction
start within 561 nucleotides of one another, spanning nts ~4950 to ~5600 (Figure 6 and
Supplemental Table S2). This region is largely conserved among mammals as well as some
vertebrates [15]. Thus, a core of MALAT1 undergoes structural rearrangement in HeLa
cells. The 12 long-range PARIS interactions suggest rearrangement of 39 hairpins, such
as H126, H134, H136, and H178. Long-range interactions suggest rearrangement of H105
(coordinates 6446,6564), which notably forms a 56-way junction, and H170 (coordinates
7631,8196), which notably forms a 20-way junction (Figure 6, 56WJ and 20WJ). The PARIS
data suggest these long-range interactions are lost in favor of structural rearrangement in
HeLa cells, as opposed to general structural loss in K562-MALAT1.

In addition to hairpins, the hypothetical consensus model predicts 13 pseudoknots in
noncancerous cells [15]. As previously noted, m6A5044 is absent in HeLa cells [15,24–26].
This loss of methylation may result in the loss of PK7 as there is a lack of PARIS data for
PK7 (coordinates 5038, 6642) in HeLa cells, as previously reported [15]. Instead, PARIS
reads (coordinates 5038,5145) suggest formation of a local hairpin [15], as indicated by
the sixth divergent short-range PARIS interaction (Figure 6). Additionally, long-range
PARIS interactions suggest structural rearrangement of PK3 and PK9 while the structural
rearrangement of PK10 and PK11 is supported by short-range interactions. PARIS data do
not predict disruption of any other pseudoknots. Unlike hairpins, pseudoknots typically
span long ranges of MALAT1 in the working noncancerous model [15]. As a result, loss of
many pseudoknots would indicate widespread structural changes in MALAT1. While the
loss of these pseudoknots signals some propensity for long-range structural changes, the
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maintenance of eight pseudoknots reaffirms the trend of structural maintenance within
HeLa-MALAT1. Overall, most local secondary structural features are retained in HeLa-
MALAT1, with rearrangement of select long-range secondary structures and formation of
a small number of novel, local structures.
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2.4. Predicted Structural Changes in HeLa-MALAT1 Would Impact RNA-Binding Sites
and Modifications

Structural rearrangements or novel structures detected in HeLa-MALAT1 means that
the structures of RNA- and protein-binding sites underwent changes that may potentially
alter their function. MALAT1 has 98 experimentally verified miRNA-binding sites (Sup-
plemental Table S1). Duplex formation in HeLa-MALAT1 suggests disruption of seed
region-binding sites for 25 of these validated miRNAs (Supplemental Table S2), which
means these binding sites would be less accessible in HeLa cells. The four local PARIS
interactions spanning nts 1897–1941 potentially decrease binding site availability for miR-
145-5p [62]. miR-145 has been shown to inhibit HeLa cell proliferation by targeting the
FSCN1 mRNA transcript [63]. miR-145 is reportedly a tumor suppressor in HeLa cells via
the regulation of several proteins, including CDKs and Cyclin D1 [64]. Although miR-145
is downregulated in HeLa cells [65], its function relative to expected changes in the HeLa-
MALAT1 structure raise questions regarding the full role of miR-145 in HeLa cells. The
remaining PARIS interactions indicate structural rearrangement of binding sites for 24 other
supported miRNAs, including miR-200b-3p, miR-20a-5p, and miR-106b-5p [62]. miR-200b
is upregulated in cervical cancer and aids cervical cancer metastasis by downregulating
FOXG1 [66]. Likewise, miR-20a is upregulated in HeLa cells and leads to the upregulation
of the oncogenic protein TNKS2 in HeLa cells [67]. miR-106b is also upregulated in HeLa
cells [68] and inhibits HeLa cell proliferation by downregulating PTEN via sponging of
miR-106b by the lncRNA PTENP1 [69]. The PARIS data suggest these three latter miRNAs
will not be sponged by HeLa-MALAT1, thus possibly aiding HeLa cell growth and sur-
vival. Collectively, these studies suggest the presence of complex miRNA-lncRNA-mRNA
networks that may be disrupted by changes to MALAT1 secondary structure in HeLa cells.
Additional work is required to elucidate the full pathways governed by such miRNAs
and to fully understand how structural changes in MALAT1 affect miRNA function in
HeLa cells.

Besides miRNAs, MALAT1 has been described as forming intermolecular RNA–RNA
interactions with rRNA and U1 snRNA [70,71]. The structural status of one of the five
rRNA-binding sites (C2700) and two of the ten U1 snRNA-binding sites (nts 1825–1925
and 6985–7045) is changed in HeLa-MALAT1 (Supplemental Table S1). Because few sites
are affected, little to no significant alteration to MALAT1-mediated U1 snRNA and rRNA
function is expected in HeLa cells. Additionally, protein-binding sites on MALAT1 are
expected to become less available as a result of structural rearrangement throughout HeLa-
MALAT1. Three METTL3/14-binding sites (nts 2412–2416, 5042–5046 and 8179–8184) and
one HuR/ELAV1-binding site (nts 3248–3258) are hypothesized to undergo structural
rearrangement, as indicated by the PARIS data. As previously described, the lack of
affinity for ssRNA or dsRNA makes analysis of novel METTL3/14 function with regard
to MALAT1 difficult [42]. However, the METTL3/14 complex shows some increased
affinity for single-stranded nucleic acids [72], so aberrant m6A levels are possible under
such circumstances as a result of MALAT1 rearrangement. Unlike the K562 cells, loss of
HuR-MALAT1 binding is expected in HeLa cells as structural rearrangement will make
the HuR-binding site less available. This loss mirrors the aforementioned functions of
HuR-MALAT1 binding in breast cancer [36], suggesting HuR-MALAT1 binding may be
decreased in HeLa cells in order to target CD133 expression and subsequently promote
cancer progression. Because only one HuR-binding site is expected to undergo structural
rearrangement, the repercussions on HuR function may be muted. Although probing of this
particular pathway is needed to confirm such a hypothesis, a possible role of HuR-MALAT1
binding is more compelling in HeLa cells than in K562 cells.

Interestingly, several RNA modification sites identified in MALAT1 isolated from
HeLa cells occur in structurally rearranged regions: 19 m6A sites, five m5C sites (C4834,
C5518, C5520, C5538, and C5539), and one Am (2′-O-methyladenosine) modification site
(A1909) (Supplemental Tables S1 and S2). m5C modifications have been found to regulate
chromatin-related roles in other lncRNAs, such as HOTAIR and Xist, for this modification
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often occurs specifically in regions of the lncRNA that interact with chromatin-associated
protein complexes [73]. The five aforementioned m5C sites were specifically identified
in HeLa cells (see Supplemental Table S1). All five m5C sites in MALAT1 are clustered
within 705 nucleotides of each other, with four of them clustered within 21 nucleotides
(Supplemental Table S1). Thus, because MALAT1 binds active chromatin, a novel structure
in HeLa-MALAT1 may promote a distinct and cancer-specific chromatin-associated com-
plex via m5C [74]. Moreover, the existence of modified nucleotides in MALAT1 and the
diversity of RNA modifications, along with advances in modification detection, may result
in the discovery of novel MALAT1 modifications that can be implemented as biomark-
ers [75]. Thus, integrating PARIS and RNA modification data yielded insights into how
RNA modifications, particularly m5C, may influence MALAT1 function in HeLa cells.

MALAT1 has 17 SNPs [54]. The HeLa-MALAT1 data suggest structural rearrange-
ments for three SNP sites: rs11540782 (U1876C), rs1056816 (A4872K), and rs79910129
(G3247W) (Supplemental Table S1). As previously stated, the exact effects of a given SNP
on secondary structure can vary but often result in the disruption of duplexes and loss of
secondary structure [56]. As such, based on the PARIS data, no major cellular changes are
expected in HeLa cells related to the MALAT1 SNPs. Of the 655 somatic cancer-associated
mutations that have been identified in MALAT1 [58], 102 mutations (15.6%) occur in re-
gions predicted to undergo structural rearrangement in HeLa-MALAT1. Mutations within
PARIS interactions are liable to destabilize the corresponding RNA duplexes but are also
likely to disrupt the binding sites, thus decreasing binding of molecules like miRNAs.
Eight miRNA seed-region binding sites in HeLa-specific PARIS interactions are altered by
mutations, as are one METTL3/14-binding site and one HuR/ELAV1-binding site. A U5520
insertion alters the seed-region binding sites of three miRNAs within a long-range PARIS
interaction (coordinates 5503, 5708): miR-17-5p, miR-20ab-5p, and miR-106b-5p. As dis-
cussed previously, free miR-20a is expected to aid HeLa cells via TNKS2 expression [67].
Both miR-17-5p and miR-106b-5p are described as oncogenic in cervical cancer [76,77].
miR-17-5p targets TGFBR2 and stimulates proliferation, and miR-106b-5p promotes PTEN
downregulation to achieve similar effects [69]. Hence, there is the potential for somatic
cancer-associated mutations to regulate MALAT1 function through structural changes in
HeLa cells.

3. Materials and Methods
3.1. Dataset Acquisition

All sequence datasets used in this analysis were accessed using the Gene Expression
Omnibus. DMS-Seq data from K562 cells were extracted from data file GSM1297493-
GSM1297494 (GSE45803) [27]. PARIS data from HeLa cells were extracted from data file
GSM1917754 (GSE74353), representing high RNase data [28,29]. K562 DMS-Seq and HeLa
PARIS data were mapped to human MALAT1 relative to hg38 using the open source
platform Galaxy [78] and the UCSC Genome Browser [79]. VARNA was used to visualize
the MALAT1 secondary structure [80]. Human MALAT1 nucleotide positions correspond
to accession NR_002819.2 and ENST00000534336.1.

The data for miRNA-binding sites, U1 snRNA-binding sites, rRNA-binding sites,
protein-binding sites, RNA modifications, SNPs, and somatic mutations associated with
cancer were previously curated by McCown et al. [15] (Supplemental Table S1) and up-
dated as follows: miRNA data were downloaded from ENCORI (Sun Yat-sen University,
Guangzhou, China) on 19 August 2020 [81]. Only experimentally verified miRNAs were
considered in our analysis. Additional validated U1 snRNA sites were reported by Cai
et al. [82]. Additional m6A modification data were downloaded from m6AVAR (Sun Yat-sen
University, Guangzhou, China) and are accurate as of 1 November 2020 [26]. MALAT1
somatic mutations associated with cancer were accessed from the National Cancer Institute
Genomic Data Commons (Bethesda, MD, USA) and were accurate as of 1 April 2020 [58].
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3.2. Dataset Analysis and Comparison to MALAT1 Secondary Structural Model

K562 DMS-Seq data pertaining to MALAT1 were extracted and examined with re-
spect to the previously determined hypothetical MALAT1 secondary structural model in
noncancerous human foreskin fibroblasts [15]. As the ensuing analysis sought to inves-
tigate the hypothetical differences in structure as opposed to establish a new model or
identify concrete structural changes, no data were excluded on the basis of ambiguity with
respect to the noncancerous model [15]. Thresholds for determining whether DMS-Seq
data indicated structure were established using several verified hairpins: H190 (triple
helix-containing hairpin) [15] and H191- H194 (mascRNA) (Figure 2) [14,83]. Because
MALAT1 expression is higher in cancer cells, including leukemia, than in noncancerous
tissue [84], the threshold value of structure calls for DMS-Seq data was set at 250 reads
rather than 20 [15]. This threshold of 250 reads was established in a manner similar to the
threshold of 20 determined for the consensus MALAT1 structure [15]. Briefly, DMS-Seq
labels only adenosine and cytidine in a statistically significant manner; therefore, only these
residues were considered in our structural analysis. Adenosine and cytidine residues hav-
ing no more than 250 DMS-Seq reads were classified as structured. Adenosine and cytidine
residues with more than 250 DMS-Seq reads were considered unstructured. We chose 250
as the threshold because this value was approximately midway between nucleotides that
were known to be unstructured (C8291 and A8292 at 314 and 322 reads, respectively) in
H190 and nucleotides known to be structured (e.g., m1A8398 at 217 reads) in H190-H194
(Supplemental Table S1) [14,83,85].

Like the noncancerous fibroblast DMS-Seq data, K562 DMS-Seq data did not contain
nts 1–1280 of MALAT1 because the major isoform of MALAT1 is nts 1281–8425 [83] nor nts
4258–5838 (see Supplemental Table S1). Of the 194 hairpins predicted by McCown et al.,
124 hairpins were predicted between nts 1281–4258 and nts 5838–8425 [15]. Of these,
23 hairpins were predicted using PARIS data and were thus excluded from the analysis
for this cell line. Hence, 101 hairpins were analyzed for structural alterations in K562 cells.
Structural alterations within hairpins were determined by comparing the K562 DMS-Seq
data to the noncancerous secondary structural model of human MALAT1 excluding PARIS-
derived hairpins, as well as to human foreskin fibroblasts [27,29]. As all 13 pseudoknots
were established using PARIS data, structural changes in pseudoknots were not considered
in the K562 MALAT1 model.

To verify the hypothesis that the unstructured adenosines and cytidines have higher
DMS reactivity values than structured adenosines and cytidines (Supplemental Table S1, see
U Test of Noncancerous Data tab and U Test of K562-MALAT1 Data tab), we conducted a
Mann–Whitney U test on the DMS-Seq data for the structured and unstructured adenosines
and cytidines in noncancerous MALAT1 [15] and K562-MALAT1. The DMS-Seq values
from all adenosines and cytidines classified as structured or unstructured were tabulated.
For the noncancerous MALAT1 model, DMS-Seq data derived from fibroblasts [27] were
sorted into structured and nonstructured categories based on their presence in structured
or unstructured regions of the consensus noncancerous MALAT1 model. These DMS-
Seq values were then ordered from smallest to largest, ranked, and subjected to a U test.
This U test produced a statistically significant result, with a p value of ~0. For the K562-
MALAT1 U test, structured nucleotides were all adenosine/cytidine nucleotides in stems
of hairpins that maintained more than 50% of the base pairs (Supplemental Table S1, see
Hairpin Coordinates tab). PARIS-derived hairpins were included. Ranks for structured
and unstructured DMS-Seq values were determined and subjected to a U test. The worse
performing U, corresponding to the unstructured portion of the K562-MALAT1 model,
was subjected to a z statistic calculation and was determined to be significant with a
p value of ~0, demonstrating that the mean values of structured DMS-Seq adenosines
and cytidines do not differ randomly from the mean values of the unstructured DMS-Seq
adenosines and cytidines and, as stated, the null hypothesis can be rejected. Although
these U tests suggest that the unstructured DMS-Seq values are larger than the structured
DMS-Seq values, please bear in mind that these DMS-Seq values are not truly independent
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observations due to nearest-neighbor effects of nucleotides within helices. Two additional
U tests were also conducted to compare the DMS-Seq values for adenosine/cytidine
nucleotides classified as unstructured in cancerous K562 and noncancerous fibroblasts cells
and structured in cancerous and noncancerous cells. The DMS-Seq values for all structured
and all unstructured nucleotides in both cell types were sorted into respective columns,
ranked, and subjected to U tests. Both U tests produced statistically significant results,
with p values of ~0. Please note that these statistical tests may be impacted by the different
thresholds applied to the noncancerous and cancerous DMS-Seq data, thereby ensuring
different means.

HeLa PARIS data were examined with respect to a previously determined hypothetical
MALAT1 secondary structural model in noncancerous HEK293T cells [15]. Because the
HEK293T PARIS samples were prepared under high RNase conditions, we likewise exam-
ined the high RNase dataset for HeLa cells [28,29]. First, we removed low quality RNA-seq
reads, which were lower than Q30 on the Illumina quality score metrics for each read.
Reads that formed duplexes outside the MALAT1 coordinates were excluded. Next, PCR
duplicates were removed from our analysis by barcode matching in Linux. Finally, PARIS
reads that overlapped by 20 or fewer nts were compressed into one region of at least 10 nts
and defined as a double-stranded region for any region having at least three PARIS reads.
Importantly, PARIS data from HEK293T and HeLa cells were not available for nts 1–1280
of MALAT1 because the major isoform of MALAT1 is nts 1281–8425 [83]; therefore, nts
1–1280 of MALAT1 were not examined for structural alterations in HeLa cells. Structural
alterations within hairpins and pseudoknots were determined by comparing the HeLa
PARIS data to the noncancerous secondary structural model of human MALAT1, as well as
to HEK293T PARIS data [28,29]. When aligning HeLa PARIS data to MALAT1, the PARIS
data were assigned specific ranges of nts (see Supplemental Table S2), occasionally creating
an apparent overlap among the PARIS interactions (see Figure 6). Because these overlaps
are likely artificial, they were not considered to be indicating dynamic structures but to be
indicating PARIS interactions in close proximity.

3.3. Data and Software Availability

All data and software are freely available at their designated repositories as indicated
above. To the best of our knowledge, there are no restrictions or embargoes in place on any
of these data.

4. Conclusions

Analyzing the K562-MALAT1 and HeLa-MALAT1 models provides insights into the
roles and mechanisms of MALAT1 in two different cancer cell lines: K562 and HeLa cells.
Based on the putative structural changes with respect to a working model in noncancerous
cells, we hypothesize that MALAT1 possesses different secondary structures in both K562
and HeLa cells. However, the nature of these structural changes is distinct to each cancer
type and does not appear to have obvious overlaps. In K562 cells, we predict that at
least 30% of all MALAT1 hairpins will lose at least 50% of their base pairs (Figures 1–3).
This putative loss of structure may increase the propensity for miRNA sponging by K562-
MALAT1, causing profound effects on cancer cell function. In contrast, PARIS data in
HeLa cells suggest that long-range interactions occur in HeLa-MALAT1 that are not seen
in noncancerous cells, likely due to alternative structuring of some hairpins and select
pseudoknots in MALAT1, although most local secondary structures are preserved. The
novel long-range interactions that we predict in HeLa-MALAT1 are expected to decrease in-
stances of miRNA sponging and perhaps alter the functional readout of m5C methylations
on MALAT1, having widespread consequences in K562 cells. Toggling of structures near
m5C marks may influence the chromatin restructuring and gene expression in HeLa cells.
Whereas K562-MALAT1 is predicted to have increased miRNA-sponging capabilities in
K562 cells, alterations to m5C-containing structures in HeLa-MALAT1 may point to novel
MALAT1-chromatin interactions, hinting at diverse biological processes being coordinated
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by MALAT1. The full extent to which the proposed structural alterations affect cancer cell
development and progression await experimental validation, from establishing a secondary
structural model of MALAT1 to confirming isolated structure-function relationships. How-
ever, we have identified the possible structural differences between MALAT1 in different
cellular contexts that could exacerbate K562 and HeLa cells, leading to mechanistic insights
regarding the complex cancer-specific functions of MALAT1.

Supplementary Materials: The following are available online at https://www.mdpi.com/2311-5
53X/7/1/6/s1. Supplemental Figure S1: Poster-size image (approximately 19 in. by 31 in.) of
Figure 2 showing K562 DMS-Seq structural changes on the MALAT1 secondary structural model.
Supplemental Figure S2: Poster-size image (approximately 19 in. by 31 in.) of Figure 6 showing HeLa
PARIS data on the MALAT1 secondary structural model. Supplemental Table S1: Sequence markup
and analysis of K562-MALAT1 structural changes on various structure-dependent functions. Sup-
plemental Table S2: Analysis of HeLa-MALAT1 structural changes on various structure-dependent
functions.
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