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A B S T R A C T

An animal laboratory in a teaching hospital is a possible cause of cross infection. We aimed to assess the infection
control in our animal laboratory and evaluate the disinfectant effects of a portable pulsed xenon ultraviolet (PX-
UV) machine. Samples were taken from the surface of research tables, other high touch places, such as door-
knobs, weighing scales, and handles of trolleys, and from air in the barrier system pre- and post-manual cleaning
and post-PX-UV disinfection. The bacteria types were identified. We found that routine manual cleaning sig-
nificantly reduced bacterial colony form unit (CFU)/cm2 (P = .02), and the median of CFU/cm2 reduced from
0.5 pre-cleaning to zero post-cleaning. PX-UV disinfection also significantly reduced residual bacterial counts
(P = .002), with the highest counts 10 pre-PX-UV disinfection and 1 afterwards. Without manual cleaning, PX-
UV disinfected surfaces significantly (P < .001), median count 6 pre-PX-UV disinfection and zero afterwards.
PX-UV significantly reduced bacterial colony counts in the air with the median count falling from 6 to zero
(P < .001). Some of the 21 species of pathogens we identified in the current study are pathogenic, resistant to
antibiotics, and able to cause nosocomial infections and zoonosis. PX-UV reduced counts of most of the pa-
thogens. PX-UV is an effective agent against these pathogens.

1. Introductions

Medical researchers and life scientists are often involved in animal
studies. In China, staff in medical schools and teaching hospitals are the
main resources for medical and life sciences research. Hence, hospitals
may have one or more animal laboratory.

Our animal laboratory is on a hospital campus where the majority of
investigators are Masters or PhD students from three affiliated Xiang Ya
hospital, as well as from the medical school. As a result, there is a risk of
cross infection by transmitting pathogens between a hospital clinic and
the animal laboratory, and triggering a disaster like SARS, the severe
acute respiratory syndrome that originated in China and spread to
many countries in 2003 [1].

Pulsed xenon ultraviolet (PX-UV) is proven as an effective tool for
disinfection of pathogens in various hospital settings, including wards

[2–6], operating rooms [7], surgical sites [8,9], nursing rooms [10],
human milk feeding rooms [11], and burns units [12]; and this disin-
fectant effect also applies to clinical laboratories and blood sampling
rooms in China [13,14]. However, the effectiveness of PX-UV in dis-
infection of a hospital animal laboratory is unstudied. Hence, we aimed
to evaluate the usefulness of PX-UV in this setting in China.

Our animal laboratory is specific pathogen free (SPF), which means
that animals kept in the barrier system should be free of particular
pathogens, such as those able to cause infections and zoonoses, and
those that will interfere with research. Pathogens from outside the
barrier system are not allowed to be transferred in according to the
regulations. Thus, we did not introduce any bacteria from outside the
system, but measured the pathogens that exist in the two rooms in the
animal laboratory that are used for surgical operations and adminis-
tering test agents.
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2. Methods and Materials

2.1. Sampling

2.1.1. Sampling Sites
This study was conducted in the animal laboratory on the campus of

the Third Xiang Ya Hospital, which has 2200 beds. The size of each
room is 7 m × 7 m. Research tables are placed along the wall as shown
in Fig. 1. We measured pathogens in the air and on the surface of the
research tables, and other high touch places such as doorknobs,
weighing scales, and handles of trolleys.

The sampling sites for surfaces and air are indicated in Fig. 1. In
each room we sampled 7 surface sites and 5 air sites for pathogens, with
each site one meter away from the wall. The tables are 0.9 m high.

2.1.2. Routine Manual Cleaning
At the end of each day, after removing all unnecessary items from

the tables and the room, the laboratory staff cleans the research tables
using rags wetted with 0.5% peracetic acid and the air in the room is
disinfected by spraying 1% peracetic acid.

2.1.3. Sampling Time
Samples were taken at the end of the working day, at about 7 pm,

when the facility was about to close. The disinfectant effect of PX-UV
was evaluated in two ways. First, after routine manual cleaning of the
research tables, samples were taken at three time points: pre- and post-
manual cleaning of the surfaces as well as post-PX-UV disinfection.
Second, an evaluation was performed without manual cleaning, for
which samples were taken pre- and post-PX-UV disinfection.

The comparison of colony counts pre- and post-manual cleaning and
post-PX-UV on surfaces was repeated 4 times with 7 sampling sites; the
comparison of colony counts pre- and post-PX-UV disinfection in the air
was repeated 4 times with 10 sampling sites. The comparison of colony
counts pre- and post-PX-UV without manual cleaning on surfaces was
repeated twice with 7 sampling sites. We did not repeat the last com-
parison four times because the results were consistent with our other
findings.

2.1.4. Sampling Methods
For air sampling, 64 cm2 tryptic soy agar plates were open for 30

mins to collect pathogens falling from air into the plates. The control
plates, one in each room, were open and covered immediately. Other
procedures were the same in both test and control plates.

For surface sampling, a sterilized specification board with a
5 cm × 5 cm window (Nanjing Bizheng Biological Technology Co.,
Ltd.) was used to define the sampling area. A total of 100 cm2 were
sampled for each table. For the weighing scales and doorknobs, the
whole surface of the plate containing the materials for measuring and
the whole doorknob were sampled. Sterilized sponges moistened with
saline were used to scrub the surface up and down five times in the
specification window. The sponge was then placed in a 50 mL conical
tube containing 10 mL sterile saline for testing. The tubes were then
placed in a mixer for two minutes, from which 100 μL was cultured for
48 h at 36 ± 1 °C. Sterilized gloves were worn to prevent con-
tamination during sampling.

2.2. Culture Count Results

The bacterial colonies in each plate were counted and the types of
bacteria were classified with matrix-assisted laser desorption/ioniza-
tion time of flight mass spectrometry (MicroflexLT/SH. BRUKER,
Germany). For the surface study, the colony form unit (CFU)/cm2 is the
number of colonies counted in each plate. For the air pathogen study,
results were reported as total CFU per plate. When CFU was over 100
per plate, results were recorded as 100.

2.3. Device

The PX-UV machine MX-3600 (Xi'An Fukang Air Purification
Equipment and Engineering Co. Ltd., Xi'an, China) was initially as-
sessed for its efficacy and we found that it was set at a wavelength of
100 nm to 400 nm, a frequency of 3 Hz, and a duration of work of 6
mins. The disinfectant efficacy of the machine was 100% for
Staphylococcus aureus and Escherichia coli. Thus, these parameters were
used for this study. The machine was deployed on the floor close to the
table in the center of the room. When working, the top of the machine's

Fig. 1. The sampling sites for surfaces and air in the two rooms. Pathogens in the air and on the surface of the research tables, doorknobs, weighing scales, and
handles of trolleys were measured.
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UV light lamp is 1.1 m high, well above the table surfaces (0.9 m).
Hence, all the table surfaces and air was exposed to UV light.

2.4. Data Analysis

Data were analyzed by performing a Wilcoxon rank sum test, using
a software program called MedCalc, Version 17 (MedCalc Software,
Ostend, Belgium), to compare the difference between the data pre- and
post-disinfection. Statistical significance was set at P < .05.

3. Results

3.1. Effect of Manual Cleaning and PX-UV Disinfection on Surfaces

As demonstrated in Table 1A and Fig. 2A, routine manual cleaning
significantly reduced bacterial colony counts (P = .02). The median of
the colony count dropped from 0.5 before cleaning to zero after
cleaning. PX-UV disinfection significantly reduced residual bacterial
counts (P = .002), with the highest count being 10 before PX-UV dis-
infection and 1 afterwards (Table 1B and Fig. 2B). PX-UV disinfects
surfaces without manual cleaning (P < .001), with a median count of 6
before PX-UV disinfection reducing to zero afterwards (Table 1C and
Fig. 2 C).

3.2. Effect of PX-UV Disinfection on the Air

As shown in Table 1D and Fig. 2D, PX-UV disinfection significantly
reduced bacterial colony counts in the air, with a median count 6 re-
ducing to zero (P < .001).

All controls were bacteria free.

3.3. Pathogens Identified

As shown in Table 2, 16 species of pathogens were identified from

the surfaces of the research tables, weighing scales, handles of trolleys,
and doorknobs. Ten species decreased, one remained unchanged, and
five increased after manual cleaning. Due to technical reasons, pa-
thogen identification was not performed after the first test when only
one colony was found in each of the air and surface cultures after PX-
UV disinfection. In the other tests, no pathogen was detected after PX-
UV disinfection.

Table 3 shows that 11 species of bacteria were identified in the air.
Four decreased and six increased after manual cleaning. As was the case
for the surface study, PX-UV disinfected most of the pathogens. Among
these 11 species of pathogens, six were the same pathogens as found on
the surfaces, and five were different.

4. Discussion

In this study, we found that routine manual cleaning significantly
reduces bacterial colony counts, but bacteria remain. PX-UV effectively
disinfects the surfaces of research tables, weighing scales, doorknobs,
handles of trolleys, and simultaneously the air in the room, with or
without manual cleaning in a short time. Some of the bacteria identified
in the barrier system are pathogenic and are able to cause nosocomial
infection.

Careful cleaning and disinfection of environmental surfaces in
hospital is essential for effective infection control. An animal laboratory
should be cleaned and disinfected regularly. Traditionally, the surfaces
and the air of an animal laboratory are cleaned and disinfected by
spraying peracetic acid or hydrogen peroxide, or by ultraviolet radia-
tion. These methods, however, have intrinsic shortcomings. Spraying
peracetic acid or hydrogen peroxide may corrode the surfaces of the
racks of the individual ventilation cages (IVC) system, and those of the
tables, which are often made of stainless steel. The detergents may also
affect animals if the IVC, the chamber for raising animals, draws air
from inside the room.

The effectiveness of manual cleaning and disinfection is variable

Table 1
Comparison of colony counts pre- and post-manual cleaning and post-PX-UV disinfection on surfaces and air.

A

Pre- manual cleaning Post- manual cleaning

No. samples Median (95% CV) Lowest - highest values No. samples Median (95% CV) Lowest - highest values P

56 0.5 (0.00–0.69) 0.00–100.00 56 0 (0.00–1.00) 0.00–10.00 0.02

B

Post- manual cleaning Post- PX-UV

No. samples Median (95% CV) Lowest - highest values No. samples Median (95% CV) Lowest - highest values P

56 0(0.00–1.00) 0.00–10.00 56 0(0.00–0.00) 0.00–1.00 0.002

C

Pre- PX-UV without manual cleaning Post- PX-UV

No. samples Median (95% CV) Lowest - highest values No. samples Median (95% CV) Lowest - highest values P

28 6(0.89–30.10) 0.00–45.00 28 0 (0.00–0.00) 0.00–1.00 < 0.001

D

Before air disinfection After air PX-UV

No. samples Median (95% CV) Lowest - highest values No. samples Median (95% CV) Lowest - highest values P

40 5(0.34–25.64) 0.00–94.00 40 0 (0.00–0.00) 0.00–5.00 < 0.001
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Fig. 2. Effect of manual cleaning and pulsed xenon ultraviolet light (PX-UV) on surfaces and air. Routine manual cleaning significantly reduces bacterial colony
counts (CFU) (P = .02), with the median of the CFU reduced from 0.5 before cleaning to zero after cleaning (A). PX-UV disinfection significantly reduces residual
bacterial counts (P = .002), with the highest count being 10 before PX-UV disinfection and 1 afterwards (B). PX-UV disinfects the surface without manual cleaning
(P < .001), with the median count of 6 before PX-UV disinfection reducing to zero afterwards (C). PX-UV disinfection significantly reduces bacterial colony counts in
the air, with a median count 6 reducing to zero (P < .001) (D).

Table 2
Comparison of the colony counts and bacteria kinds before and after annual cleaning and after PX-UV disinfection on surfaces.

Name of the bacteria identified on surface of the
table, balance, handle of trolley and doorknob

Staining Counts identified
before manual
cleaning

Counts identified after
manual cleaning

Counts identified
after PX-UV

Characteristics

Aerococcus viridans G+ 3 0 0 Generally acquired in hospital
environment and pathogenic, can infect
newborns[21,22]

Bacillus flexus G+ 2 0 0
Brevibacillus centrosporus G+ 4 0 0
Brevibacillus centrosporus G+ 0 2 0
Comamonas kerstersii G− 4 0 0
Corynebacterium glutamicum G+ 2 0 0
Corynebacterium stationis G+ 1 0 0
Jeotgalicoccus halotolerans G+ 0 1 0
Lactobacillus pantheris G+ 2 0 0
Lactobacillus paracasei ssp. paracasei G+ 1 1 0
Proteus mirabilis G− 2 0 0 Causing urinary tract infection, nephrolith

and cystic calculus, sepsis[16,17]
Proteus vulgaris G− 0 10 0
Staphylococcus nepalensis G+ 34 0 0 Zoonotic potential[18]
Staphylococcus sciuri ssp. sciuri G+ 1 5 0 pathogenic[19]
Staphylococcus succinus ssp. succinus G+ 0 17 0
Staphylococcus xylosus G+ 6 0 0 Pathogenic and resistance to different

kinds of antibiotics[20]
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[5,7]. Inherent human error often results in incomplete cleaning, as
demonstrated by our study. Continuous ultraviolet radiation takes
about 30 min to disinfect target surfaces and air [15]. But this is too
long when the surfaces and air must be disinfected quickly. In such
cases, PX-UV disinfection has its advantages as shown in our study, with
its fast (achieving satisfactory results in 6 min) and effective disinfec-
tion.

A number of pathogens can infect both animals and humans causing
zoonosis, such as plague, Lyme disease, rabies, anthrax, tuberculosis,
and epidemic hemorrhagic fever. In recent years, emerging zoonoses
such as SARS, Ebola, and COVID-2019 have received worldwide at-
tention because of major outbreaks [1,16,17]. Minor outbreaks of
emerging and re-emerging zoonoses occur frequently in China [18].
Zoonotic outbreaks occurred in students and teachers because of using
infected animals during teaching [19].

In our study, we found that several types of infectious bacteria exist
on the surfaces and air inside the barrier system. Among them, proteus
mirabilis can cause urinary tract infection, nephrolith and cystic cal-
culus, sepsis [20,21]; staphylococcus nepalensis has zoonotic potential
[22]; staphylococcus sciuri ssp sciuri [23], and staphylococcus xylosus
[24] are pathogenic and resistant to different antibiotics; and aero-
coccus viridans can cause serious infection [25,26]. The existence of
these bacteria in the barrier system suggests a risk of cross infection
with the hospital environment. Strict control of the transmission of
infectious pathogens in an animal laboratory is important, not only for
the health of laboratory animals [27], which helps achieve reliable and
reproducible research results, but also for the control of nosocomial
infection. PX-UV disinfection is an optimal choice to achieve this with
its advantages of fast disinfection and satisfactory efficacy without
damaging equipment and apparatus.

In our study, the discrepancy between the bacterial species on the
surfaces and in the air, as well as the increase in bacteria counts and
species after manual cleaning, is possibly caused by contamination from
the cloth used by the cleaner, or contamination from researchers as
some students are still working while the cleaner is cleaning and sam-
pling. As we only identified a few bacteria in each plate, we did not test
their resistance to antibiotics.

In the barrier system of an animal laboratory, bacteria are being
exchanged with the hospital environment. The bacteria are pathogenic,
resistant to antibiotics, and have potential to cause cross-infection, re-
sulting in nosocomial infections and zoonosis. PX-UV disinfection is an
effective agent to disinfect the system.
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