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SUMMARY

We present a whole-cell fully dynamical kinetic model (WCM) of JCVI-syn3A, a minimal cell 

with a reduced genome of 493 genes that has retained few regulatory proteins or small RNAs. 

Cryo-electron tomograms provide the cell geometry and ribosome distributions. Time-dependent 

behaviors of concentrations and reaction fluxes from stochastic-deterministic simulations over a 

cell cycle reveal how the cell balances demands of its metabolism, genetic information processes, 

and growth, and offer insight into the principles of life for this minimal cell. The energy economy 

of each process including active transport of amino acids, nucleosides, and ions is analyzed. 

WCM reveals how emergent imbalances lead to slowdowns in the rates of transcription and 

translation. Integration of experimental data is critical in building a kinetic model from which 

emerges a genome-wide distribution of mRNA half-lives, multiple DNA replication events that 

can be compared to qPCR results, and the experimentally observed doubling behavior.
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A kinetic model for a minimal bacterial cell offers quantitative insight into how the cell balances 

processes from metabolism to gene expression to growth.

Graphical Abstract

INTRODUCTION

An overarching goal of molecular biology is to explain the basic processes of life in terms 

of the laws of physics and chemistry. In 1984, Morowitz proposed the study of the simplest 

living cells, the Mycoplasmas, as models for understanding the fundamental principles 

of life (Morowitz, 1984). Just as the study of hydrogen, the simplest atom, led to the 

understanding of more complex atoms, it seems plausible that the study of the simplest 

living cells will reveal principles that apply to all living systems. For this reason, we have 

been interested in studying “minimal cells” by designing and building cellular genomes 

that do not include genes that are non-essential in the laboratory. We have been able to 

produce living cells with fewer genes than any known naturally occurring cell (Hutchison et 

al., 2016; Breuer et al., 2019). Such cells should be easier to completely describe than any 

known naturally occurring cells. To approach the question “what is life?” using our minimal 

cell model, we are testing whether the combined functions of the minimal cell genes can 

inform a computer model that correctly predicts the behavior of the cell. This will provide 

a test of our understanding of the minimal requirements for life. Such a model will also 

Thornburg et al. Page 2

Cell. Author manuscript; available in PMC 2023 March 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



provide a design tool for predicting the effects of changes in the genome; for example, when 

a reaction pathway is added.

A complete description of the state of the cell requires knowledge of its size, shape, 

components, intracellular reactions, and interactions with its environment, all of these as 

a function of time and cell growth. Adding to this list is the need for theoretical models and 

simulations that interpret and integrate this daunting amount of experimental data. Due to 

large numbers of genes with unknown function and the complexity in model systems such as 

Escherichia coli, along with the broad range of concentrations and timescales that need to be 

considered, simulating a complete description of the state of a cell has been challenging. The 

development of whole-cell models (WCMs) and how they have progressed from genome-

scale metabolic models (GSMMs) (Varma and Palsson, 1994) and the calculation of their 

steady-state fluxes has been recently reviewed (Goldberg et al., 2018; Marucci et al., 2020). 

The most comprehensive models have been developed for Mycoplasma genitalium and E. 
coli (Karr et al., 2012; Macklin et al., 2020), where the subsystems were treated in terms of 

ordinary differential equations, flux balance analysis, and stochastic simulations. Common 

challenges are establishing the reaction networks and the availability of kinetic parameters 

and -omics data such as metabolomics and proteomics to use as initial conditions. No one 

bacterium has a complete set of parameters and -omics data, so the development of a WCM 

relies upon synthesizing information from other well-studied organisms. Unlike the previous 

WCMs, the simulations we present here are based on fully dynamical kinetic models where 

subsystem networks and chemical species are interconnected continuously over time on a 

single-cell basis.

An ideal system for such a whole-cell model would be a minimal cell consisting of as 

few genes and reactions as possible for the cell to grow and divide (Luthey-Schulten, 

2021). JCVI-syn3A is a genetically minimal bacterial cell, consisting of only of 493 genes 

on a single 543-kbp circular chromosome with 452 genes coding for proteins (Breuer 

et al., 2019), some of which are subunits of multi-domain complexes (NCBI GenBank: 

CP016816.2). Syn3A’s genome and physical size are approximately one-tenth those of the 

model bacterial organism E. coli. Syn3A has a smaller fraction of genes with unclear 

function (87/452, 20%) than E. coli (1780/4637, 38%) and Mycoplasma pneumoniae 
(311/688, 45%) (Breuer et al., 2019). The reduction in complexity and scale of Syn3A 

presents a unique opportunity to develop a near-complete whole-cell kinetic model. The 

Syn3A genome was synthesized based on the known genome sequence of the natural 

parent Gram-positive organism Mycoplasma mycoides subsp. capri str. GM12 (GenBank: 

CP001621.1) and has been synthetically reduced to achieve a minimal genome producing 

living cells that grow, divide in about 100 min, and have consistent spherical morphologies 

with 400–500-nm diameters (Breuer et al., 2019; Pelletier et al., 2021; Hutchison et al., 

2016; Gibson et al., 2010).

In Breuer et al. (2019), we established the essential GSMM for Syn3A along with 

genome-wide gene essentiality and proteomics. The protein products of 155 genes involved 

in 175 metabolic reactions were organized into seven subsystems: central, nucleotide, 

lipid, cofactors, amino acid, ions, and macromolecule metabolism, providing the starting 

point for the kinetic metabolic model presented here. The reactions in macromolecule 
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metabolism are now kinetically modeled (Thornburg et al., 2019) through approximately 

2,000 reactions involving the 251 genes in the genetic information processes of DNA 

replication, transcription of all 493 genes, translation and degradation of all 452 mRNA, 

tRNA charging, and cell growth. In addition to biochemical reactions, whole-cell, 3D 

spatial models require cellular architecture, including spatial distributions of ribosomes 

and configurations of the circular chromosome. The cellular architectures (Figure 1) are 

reconstructed at the single-cell level directly from cryo-electron tomograms (cryo-ET) that 

reveal a near-random distribution of ribosomes throughout the cell with a few present in 

polysomes (Gilbert et al., 2021).

Kinetic parameters for the majority of the cellular reactions have been measured in related 

organisms through decades of biochemical, single-molecule (sm) FRET, and spectroscopic 

studies reported in the literature and kinetic databases like Bremer and Dennis (2008), 

BRENDA (Chang et al., 2021), and equilibrium constants reported in NIST’s TECRdb 

(Goldberg et al., 2004) and Equilibrator (Flamholz et al., 2012). Comparative proteomics 

analyses to Mesoplasma florum (Matteau et al., 2020; Lachance et al., 2021), B. subtilis 
(Wang et al., 2015), and E. coli (Taniguchi et al., 2010) were used to approximate missing 

or questionable information regarding a few of the Syn3A enzymes. At the moment, 

only relative metabolomics data on Syn3A is available, so the metabolite concentrations 

used to initialize the simulations of the Syn3A WCM were estimated from a scaling of 

the comprehensive study done on E. coli (Park et al., 2016) and a limited list from M. 
pneumoniae (Yus et al., 2009). For completeness, all the modifications to the metabolic map, 

genetic information processing, and kinetic parameters are provided in Figures 2, S1, and 

S2; Tables S1 and S2; and STAR Methods (Metabolic rates and parameterization).

With the background data now available for Syn3A, we were able to develop a whole-

cell kinetic model of this minimal cell. Because of the large variation in timescales and 

concentrations, developing a whole-cell model that treats metabolism, genetic information 

processes, and growth can, at the moment, only be achieved by hybrid stochastic and 

deterministic simulations. Kinetics of the essential metabolic network (Breuer et al., 2019) 

are handled deterministically via ordinary differential equations (ODEs), and the kinetics of 

the genetic information processes are handled with stochastic simulations. We consider here 

two models of the stochastic simulations (Figure S3): a chemical master equation (CME) 

description that assumes that the whole cell is well stirred and implicitly includes the effects 

of diffusion in the rates of transcription, mRNA degradation, and translation; and a reaction-

diffusion master equation (RDME) description that requires macromolecules to diffuse to 

each other for reactions to take place in the spatially heterogeneous environment of the 

cell. In our simulations, we record time-dependent particle counts of each molecule and 

intermediate, fluxes of all metabolic reactions, and in the spatial model, the position of each 

macromolecule within the cell. We present results of the well-stirred model over a complete 

cell cycle for 174 healthy replicate cells out of a total population of 207 cells. Unhealthy 

cells within the simulations run out of phosphoenol pyruvate (pep), halting glycolysis.

For the spatial model, which is computationally expensive, we use our graphics processing 

unit (GPU)-based Lattice Microbes software (Roberts et al., 2013; Hallock et al., 2014; 

Earnest et al., 2018) to simulate replicates over the first 20 min of the cell cycle, before 
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DNA replication and substantial cell growth have occurred. These relatively short-term 

simulations are critical in calculating binding probabilities and estimating mRNA half-lives 

in the well-stirred model. Being computationally less expensive, the well-stirred model runs 

on CPUs and provides a whole-cell model that can be easily complexified to allow addition 

of more pathways and testing. More importantly, it allows us to quantitatively understand the 

“principles of life” for a minimal cell growing with little regulation.

RESULTS

3D spatial whole-cell simulations incorporate experimental data and inform homogeneous 
well-stirred simulations

The general workflow of constructing an initial cell state is shown in Figure 1. Starting 

from the coordinates of the 503 ribosomes and cell boundary of a small cell with ~ 

400-nm diameter from cryo-ET (Figure 1A), the DNA is folded around ribosomes as a 

circular self-avoiding polymer on a lattice in such a way that the sequence order and 

gene positions are maintained (Figures 1B and 1C) (Gilbert et al., 2021). Experimental 

3C maps showed no significant features of persistent supercoiled domains or loops, so the 

chromosome is assumed to be in a relaxed state (Gilbert et al., 2021). Each replicate cell 

uses the same ribosome coordinates from cryo-ET, but a different chromosome configuration 

unique among the ensemble. The top of the membrane is cut away in Figure 1C to 

reveal the ribosomes and DNA. According to the 3C-seq maps and the proteomics of 

nucleoid-associated proteins (NAPs) (Gilbert et al., 2021; Breuer et al., 2019), the DNA 

configurations are assumed to be relaxed with no supercoiling so that the genes are easily 

accessible. Figure 1D shows 120 degradosome complexes in red, 66 SecY proteins in blue, 

and 831 PtsG proteins in green as three examples. The remainder of the proteome consisting 

of over 77,000 proteins, 200 mRNA, and 5,800 tRNA are then randomly distributed 

throughout the cytoplasm and membrane, resulting in the crowded environment (Figure 

1E).

Our spatial model includes a total of 7,765 unique molecules and intermediates and over 

7,200 reactions including binding reactions such as RNAP binding to a gene start site. 

Where possible, kinetic parameters are obtained from single-molecule experiments, such 

as the smFRET experiment for the formation of the DnaA filament along the AT-rich 

single-stranded DNA (Figure 1F) near the origin. Otherwise, as described in STAR Methods 

(Metabolic rates and parameterization), kinetic parameters are developed from a targeted 

survey of the primary literature or kinetic databases (Figure 1G) as discussed above. 

Simulations of a spatially resolved cell are computationally expensive and require GPU 

(Figure 1I) acceleration to make them possible on a human timescale (Hallock et al., 2014). 

The GPUs used for spatial simulations included NVIDIA Titan V and NVIDIA Tesla 

Volta V100 GPUs, which took 10 h and 8 h to simulate 20 min of cell time, respectively. 

Because of this computational expense, we simulated the first 20 min of the cell cycle 

for only 8 cells, a limited time frame during which we assume no substantial growth or 

DNA replication has occurred. The simulations provide insight into the numbers of active 

degradosomes, RNAP, and ribosomes (Figures 1J–1L). The early increases are due to the 

initial conditions of the spatial simulations. The cell is initialized with no active complexes 
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(no RNAP are on the chromosome and no mRNA are on ribosomes and degradosomes), and 

the transient behavior reflects the time required for RNAP to diffuse to genes and mRNA to 

be translated or degraded.

Bremer and Dennis (2008) calculated that anywhere from 15.5% to 36.2% of RNAP are 

active at any one time in E. coli depending on the doubling time, with slower-growing cells 

having a smaller fraction of active RNAP. The spatial model predicts that Syn3A will have 

an average of 63 of its 187 RNAP active (34%) early in the cell cycle, falling within the 

calculated range. For fast-growing E. coli, approximately 80% of the ribosomes are active 

(Bremer and Dennis, 2008; Dai et al., 2016), but for slow-growing E. coli, this number 

drops between 20%–50% depending on the growth rate (Dai et al., 2016). The spatial model 

predicts that, on average, 220 of the 503 ribosomes, roughly 45% of ribosomes, are active.

We calculated the mRNA half-lives, the number of times a gene is transcribed, and the 

number of times an mRNA is translated in its lifetime for all the 452 protein-coding genes 

(Figures 1M–1O). The average and median half-lives are in reasonable agreement with the 

2-min average half-life experimentally measured in Mycoplasma gallisepticum (Kirk and 

Morowitz, 1969). The broad distribution of half-lives, including the long tail out to 15 min, 

has been observed in a genome-wide study of mRNA half-lives in B. subtilis, Hambraeus 

et al. (2003). Each gene is transcribed at least once within the ensemble of simulations, 

but not in every simulation. The number of times each gene is transcribed reflects both its 

length and, more importantly, its promoter strength, which is weighted relative to proteomics 

counts. Lastly, the genome-wide average translations per mRNA is four times, but several 

factors impact this number including gene length and how many times a mRNA can be 

read by a polysome using a polysome spacing of 120 nt estimated from a distribution of 

polysome sizes in E. coli (Brandt et al., 2009).

The kinetic model is influenced by the defined medium composition and new genome 
annotations

The time-dependent metabolite concentrations within the cell are determined by the 

metabolic reactions that depend on transport of key metabolites like glucose, nucleosides, 

fatty acids, amino acids, and cofactors. With a defined growth medium, exact uptake 

kinetics can be simulated using the external metabolite concentrations and the numbers 

of transporters. The metabolic maps in Syn3A here have been revised to be consistent with 

the defined growth medium, updated gene annotations, and experimental measurements such 

as lipidomics. To refer to genes in JCVI-syn3A, we simplify the locus tags from the NCBI 

entry from JCVISYN3A_xxxx to xxxx. For example, JCVISYN3A_0527 is referred to as 

gene 0527.

The only sugar source in the defined medium is glucose, so the revised map for central 

metabolism (Figure 2) starts with the phosphorelay relay system (Rohwer et al., 2000; 

Meadow et al., 2005a, 2005b), which is responsible for the uptake and phosphorylation of 

glucose to glucose-6-phosphate (g6p) and is shown in the inset. Each phosphate exchange 

reaction of the phosphorelay is simulated independently, and the overall kinetics for the 

phosphorelay predict that Syn3A takes up 15,000 glucose molecules per second for a 

cell with a radius of 200 nm. Syn3A does not have the proteins to perform oxidative 
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phosphorylation, so all ATP in Syn3A is generated by the central metabolism (Breuer et 

al., 2019). Pyruvate kinase (pyk/0221) (PYK) converts ADP to ATP and pep to pyruvate, 

competing for pep molecules with the glucose transport reaction, so the fluxes between 

these two reactions need to be carefully balanced throughout the cell cycle. Because 

the fructose-1,6-bisphosphate aldolase (fbaA/0131) (FBA) reaction splits fdp into two 

molecules, the rate of lower glycolysis is twice that of upper glycolysis. Therefore, a 

maximum of 45,000 ATP can be generated per second assuming no other NTPs are being 

formed: 30,000 ATP per second can be generated by the phosphoglycerate kinase (pgk/

0606) (PGK) and 15,000 by pyruvate kinase (PYK) where pep is split between the glucose 

uptake reactions and PYKs. A much smaller amount of ATP is generated through acetate 

kinase (ackA/0230) (ACKr) upon the secretion of acetate. In our model, the cell was able to 

survive off of the ATP generated by central metabolism. Detailed discussions of the amino 

acid, cofactor, nucleotide, and lipid metabolic subsystems are included in STAR Methods.

The kinetic model of the genetic information processing reactions including DNA 

replication initiation and elongation, mRNA degradation, transcription, and translation are 

based on the kinetic model by Thornburg et al. (2019) with a few modifications. Each of 

the elongation reactions are treated using a polymerization rate dependent on the respective 

monomer concentrations (dNTPs, NTPs, aa:tRNAs). For full details on these rate forms, see 

STAR Methods (Genetic information processes).

Timing of the cell cycle and cell growth are determined by dynamics of DNA replication 
and surface area growth

Unlike the spatial RDME-CME-ODE model, cells are simulated for whole cell cycles in 

the well-stirred CME-ODE model. To highlight the key features defining the cell cycle in 

Syn3A, we examine in Figure 3 the time dependence for the initiation of DNA replication, 

chromosome duplication, and the doubling of both the cell volume and surface area in the 

well-stirred simulations. In our previous work (Thornburg et al., 2019), only one replication 

event was allowed to occur per cell cycle, but here we complexify this model and allow for 

multiple replication initiation events based solely on the kinetics. We use the same equation 

for the rate of DnaA(III) filament formation on ssDNA for each independent origin

ν = kon[DnaA] − koff = kon/NAV (t) NDnaA − koff . (Equation 1)

Both kon and koff for the binding of DnaA(III) were measured using smFRET (Cheng et 

al., 2015). We allow replication initiation events on the daughter chromosomes in our model 

after they separate following the first replication cycle. The initial cell volume is used for 

the first replication initiation event, and the doubled cell volume is used for the daughter 

chromosomes late in the cell cycle. Based on these kinetics, if the number of DnaA doubles 

faster than the volume, it is likely that another replication initiation event will occur and the 

cell will have more than two chromosomes at the end of its cell cycle.

Two representative cells were selected to demonstrate the stochastic nature of replication 

initiation, and their DnaA filament lengths are shown as functions of time (Figure 3A). 

The first cell had completed its first replication initiation event around 5 min into the cell 
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cycle. Both daughter chromosomes then initiate events late in the cell cycle. The second 

cell did not translate enough DnaA for it to be favorable for either daughter chromosome 

to complete a full DnaA filament. The distribution of replication initiation times for 174 

cells (Figure 3B) for the original chromosome ranges from 3 min up to 36 min with an 

average time of 10 min and most probable time of 6 min. Of the 174 cells, 33 had only one 

replication event occur in their cell cycle. The daughter chromosomes in cells with multiple 

replication events have replication initiation times ranging from 58 min up to 110 min with 

an average time of 82 min.

Each cell is initialized with a single chromosome, and from Figure 3C we find that the 

average duplication time for the original chromosome is around 70 min with the earliest 

being completed at 56 min and the latest at 90 min. The average chromosome number grows 

to 2.8 at the end of the cell cycle, which reflects that either one or both of the daughter 

chromosomes have partially completed another chromosome. Cells with multiple replication 

events can have chromosome copy numbers as high as 3.8, indicating that they have nearly 

duplicated both daughter chromosomes in their cell cycle.

Although other bacteria have been shown to undergo multiple replication events per cell 

cycle (Helmstetter and Cooper, 1968; Nielsen et al., 2007), it had not yet been directly 

observed in Syn3A. From quantitative polymerase chain reaction (qPCR) experiments, we 

have determined the relative quantities of origins, quarter positions, and termini in Syn3A 

cells in both exponential and stationary phases (Figure 3D). The results are presented with 

all the quantities scaled to the number of termini. In the exponential phase cells, there are 

more than three times the number of origins than termini on average. This indicates that 

in many cells, after the first replication initiation event occurs, another replication initiation 

event will occur on the same chromosome before the first replication cycle completes. In our 

current model, a maximum ratio of 2 would occur, as we do not allow multiple initiation 

events to occur until the first replication cycle completes.

Critical to determining the length of the cell cycle are the times required to double the 

volume and surface area of the cell. The kinetics for cell growth are characterized by the 

formation of lipids and insertion of membrane proteins to determine the cell surface area 

and volume in the model. The cell volume is calculated from the surface area assuming 

the cell maintains spherical morphology until the onset of division. The volume doubles 

in the simulations anywhere from 56 to 72 min with an average of 64 min (Figure 3E). 

Without explicit kinetics for cell division by FtsZ/FtsA filaments, division is assumed to 

begin when the volume has doubled, during which the volume stays constant and the surface 

area continues to grow until two separate cell are formed. The surface area will double 

anywhere from 88 to 112 min with an average doubling time of 97 min (Figure 3F). Syn3A 

has an experimentally measured doubling time of 105 min in rich growth medium (Breuer et 

al., 2019). We report a simulated doubling time (Figures 3E and 3F) based only on healthy 

cells, whereas the experimentally measured doubling time includes a whole population, 

which may include unhealthy cells, reducing the average doubling time of the colony.

To determine the cell surface area, each lipid and membrane protein has an assigned surface 

area contribution (STAR Methods, Lipid metabolism). The contributions of proteins and 
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lipids to the surface area are separated in Figure 3F where the two contributions are seen 

to maintain a rough 55% to 45% surface area contribution ratio (Sáenz et al., 2012). 

Because the translation and insertion of membrane proteins are both totally stochastic in 

the simulations, there is more variation in the surface area contribution from membrane 

proteins. The variation in lipids increases with simulation time as lipid synthesis genes are 

stochastically expressed in each individual cell.

The liponucleotide synthase cdsA/0304 catalyzing reaction DASYN (Figure S2) that adds 

CDP to a phospholipid precursor (phosphatidic acid, PA) was identified as a “choke 

point” in the phoshpolipid biosynthesis, in agreement with a recent whole-cell model of 

E. coli (Macklin et al., 2020). Additionally, acyltransferase plsY/0117, which catalyzes the 

conjugation of fatty acid and glycerol moieties at the membrane was found to limit the 

production of the downstream intermediate PA. We attribute both of these effects to their low 

counts in the reported proteomics of Syn3A (Breuer et al., 2019) and adjusted the counts 

to values similar to those observed in other bacterial species (Table S2 and STAR Methods, 

Lipid metabolism). Their low counts are likely due to the fact that both are multiple domain 

membrane proteins, which are known to be underreported by proteomics when only a 

trypsin digest is used (D. Gonzalez, personal communication).

Balance of genetic information processes and metabolism

Due to reduction in its minimal genome, Syn3A has few remaining transcription/translation/

transport regulatory proteins and must adjust the fluxes through the cellular subsystems 

to maintain stable growth. The simplified map of the reaction network with fluxes from 

a representative cell from the well-stirred model early in its cell cycle demonstrates 

the balance among use of ATP and GTP, nucleotide metabolism, and glycolysis (Figure 

4A). The glycolysis pathway and nucleotide metabolism are connected through the PYK 

reactions converting all (d)NDPs to (d)NTPs, which results in the shared usage of pep 

with glucose uptake. Syn3A exclusively makes pep by the action of enolase at the end of 

glyolysis, generating two pep per glucose taken up. Because the glucokinase was removed 

in genome reduction (Breuer et al., 2019), we assume that the only way Syn3A can 

phosphorylate glucose is by PtsG in the phosphorelay. According to our kinetic model, 

if the cell runs out of pep, there is no way to continue glycolysis or phosphorylate NDPs 

except ADP, which can be converted to ATP by the reversible ATP synthase. On average, if 

PYK reactions use more than half of the pep formed, less glucose will gradually be taken 

up and the cell will run out of pep and cease to take up glucose. Roughly 16% of the cells 

in a total ensemble of 207 cells in the well-stirred simulations experienced pep’s shortage, 

leaving 174 cells that could successfully complete a cell cycle.

Previous studies have indicated the possibility of PYK, PFK, and GAPD being rate-limiting 

reactions of glycolysis (Iwami and Yamada, 1980; Boscá and Corredor, 1984); however, 

fructose-1,6-bisphosphate aldolase (FBA) appears to control the overall flux of glycolysis 

in Syn3A according to our simulations, which agrees with the findings of Kitamura et al. 

(2021). FBA has a low experimental proteomics count of 227 relative to the other glycolytic 

enzymes in Syn3A, having counts of 400 or greater. Relative to other bacteria, Syn3A 

appears to have a lower FBA count (Table S1), so in parameterizing the simulations, the 
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count of FBA was scaled to 775 based on the enzyme’s concentration in E. coli so that 

kinetic parameters would better match the known equilibrium constant for the reaction. 

The FBA reaction is almost always at its maximum rate and is the slowest step in upper 

glycolysis in our models. The rates of the reactions in lower glycolysis are dictated by how 

much flux goes through the FBA reaction.

The balance of metabolic reactions also affects the rates of genetic information reactions 

through the monomer-dependent polymerization reaction rates discussed in STAR Methods 

(Genetic information processing). The time-dependent rates of each elongation reaction 

(DNA replication, transcription, and translation) scaled to its maximum rate for dnaA/0001 

expression are shown in Figure 4B. The single cell in orange has only one complete DNA 

replication event occur in its cell cycle, and the green cell has a second. Their replication 

rates are at the maximum until the cell runs low on dNTPs (< 0.01 mM) (Figure S4), 

in this case dATP (data not shown). The slowdown gives the cell time to import more 

deoxynucleosides and generate more dNTPs. The rate of replication will fluctuate from 

minute to minute as long as the cell runs low on a particular dNTP. In general, DNA 

replication rate is the most frequently affected of the genetic information processes with its 

average (black) going as low as 75% of the maximum.

There are no significant deviations in the transcription and translation rates for the cell with 

a single replication event (orange) (Figure 4B), as the instantaneous pool sizes of NTPs 

and charged tRNA remain high enough to not slow down any rates. For cells with multiple 

replication events (green), more RNA are transcribed, potentially depleting concentrations of 

NTPs, thereby reducing its transcription rate. This slowdown in transcription leads to pauses 

during which nucleosides can be taken up and phosphorylated.

Translation is infrequently altered because the amount of charged tRNA (aa:tRNA) depends 

directly on the uptake of amino acids, which are present in millimolar concentrations in the 

medium. So even though cells will sometimes run low on amino acids, a brief slowdown is 

enough for them to import more amino acids and recover their charged tRNA levels (>102 of 

each aa:tRNA).

Time-dependent ATP costs in the minimal cell quantify the cell’s significant energy costs

A key feature of our model is the explicit tracking of every energy molecule used by 

activated reactions in both metabolism and genetic information processes. Already in 

1973, Stouthamer (1973) comprehensively calculated the amount of ATP required for the 

formation of a microbial cell based on the studies available on energetic costs at the time. He 

broke down the ATP demands of a cell into requirements for formation of polysaccharides, 

proteins, lipids, RNA, and DNA, uptake of amino acids, phosphate, and ions, and turnover 

of RNA. He notes that exactly accounting for transport reactions is difficult and little 

information on their ATP costs were available at the time, so only a few transport reactions 

are included in his calculations. More recently, a comprehensive review of the literature and 

calculations for both bacteria and eukaryotes (Lynch and Marinov, 2015) assigned costs for 

the synthesis of macromolecules and determined the total ATP costs for DNA replication, 

transcription, and translation.
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While the previous reviews calculated ATP costs for overall cell formation, we advance 

ATP cost calculations to single-cell, single-reaction resolution as a function of time for the 

cellular networks of Syn3A including both metabolism and genetic information processing, 

which is made possible by fully dynamical kinetic modeling. Figure 5A shows the ATP 

generated and used as functions of time for a representative cell from the well-stirred 

simulations. Note that these plots do not represent the number of phosphate bonds made 

and broken, but the number of ATP molecules being used. Another notable difference is that 

tRNA charging is only counted as one ATP, whereas it is typically counted as two phosphate 

bonds (Lynch and Marinov, 2015). The charging reactions still convert ATP to AMP and 

pyrophosphate in the simulations (Figure S3), but because the metabolic network explicitly 

accounts for the ATP cost of regenerating an AMP to an ADP through the ADK1 reaction 

(Figure S1). tRNA charging is counted as a single ATP cost in Figure 5. Additionally, 

because translation elongation uses GTP instead of ATP, it is not shown in the cost plot, but 

it is twice what we defined as the ATP cost of charging tRNAs from two GTP per amino 

acid: one during the loading of an aa:tRNA into the A site of the ribosome and a second 

during translocation to the next step on the mRNA (Lynch and Marinov, 2015).

The total ATP generated at each time step is close to or slightly greater than the total 

ATP used. As discussed earlier, the maximum ATP production is 45,000 ATP per second 

assuming no other NTPs are being made by PGK or PYK. Roughly 35,000 ATP are made 

per second initially (Figure 5A). As the cell grows, the number of proteins and associated 

rates of metabolic reactions increase, giving rise to the overall increase in both the ATP 

production and cost over the cell cycle. The growth is not perfectly smooth or linear because 

the protein counts and reaction rates depend on stochastic gene expression and timing of 

DNA replication events. To better compare the relative ATP cost of each activated process, 

we plot their fraction of the total ATP cost for a cell with a single replication event (Figure 

5B, left) and a cell with multiple replication events (Figure 5B). The highest cost in Syn3A 

is for metabolic reactions, in particular the PFK reaction in upper glycolysis using 75% of 

the total metabolic cost.

Quantifying the exact cost of activated transport reactions has been a difficult challenge in 

both the energy calculations by Stouthamer (1973) and Lynch and Marinov (2015), as well 

as in other recent whole-cell models (Karr et al., 2012; Macklin et al., 2020). Because each 

transport reaction is simulated independently, we know their exact ATP costs by recording 

the fluxes through each reaction. Unlike most organisms, which have synthesis pathways for 

most of its building blocks, Syn3A has been reduced to the point where it relies on having to 

transport them in. From crystal structures of related transporters, it is clear that the majority 

of them contain ATPase domains that require, on average, at least one ATP for every nutrient 

molecule imported (Santos et al., 2018). It is assumed here that one ATP is used for every 

molecule taken up. The cost of active transport is approximately twice the ATP cost of tRNA 

charging (roughly 5,000:2,500 ATP per second), making it one of the largest energetic costs 

in the minimal cell. This is the most exact calculation of the costs of transport presented to 

date and reveals how transport reactions are critical for a minimal cell, which relies almost 

entirely on nutrients from its environment.
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In Mycoplasmas, the ATP synthase typically breaks down ATP and pumps out protons to 

maintain a basic intracellular environment (Benyoucef et al., 1981a, 1981b). The reversible 

kinetics for ATP synthase depend on the ATP, ADP, and phosphate levels inside the cell. 

While ATP synthase accounts for roughly 10% of the overall ATP costs for the majority of 

the time, in response to low ATP levels in the cell, it can momentarily change direction.

Below the cost of ATP synthase come in descending order tRNA charging, transcription 

elongation, mRNA degradation, RNA material cost, DNA replication elongation, and 

membrane protein insertion via translocation by SecY. DNA replication only takes place 

during part of the cell cycle. Its ATP costs typically occur early in the cell cycle (Figure 5B, 

left) and again late in the cell cycle (Figure 5B, right) when initiation of another replication 

event occurs. The fluctuations reflect changes in the rate of DNA replication.

Time-dependent concentrations show consistent average behavior and large population 
variability

Homeostasis is a property of a normal cell to maintain constant intracellular concentrations 

over a cell cycle suggesting that upon experiencing a perturbation whether from the 

environment or an intracellular reaction, it responds by adjusting its biochemical pathways 

to bring the concentrations back into an acceptable range for stable functioning of its 

networks (Agozzino et al., 2020). The prevailing wisdom is that some degree of regulation 

is required to control any large fluctuations. The time traces for a representative selection 

of metabolites and macromolecules from the well-stirred simulations are shown in Figure 

6. The complete time traces of all chemical species and reaction fluxes are provided 

in Data S1. The dNTP concentrations decrease late in the cell cycle for cells where 

multiple replication events have occurred because they are being incorporated into new 

chromosomes. For dATP and dTTP, it appears that the same cells maintain average 

concentrations that are relatively constant over the whole cell cycle. The concentrations of 

dGTP and dCTP both continually increase over the cell cycle, which calls for investigating 

the possibility of any regulation on the uptake of their precursor deoxynucleosides or 

the thioredoxin reactions converting GDP and CDP to dGDP and dCDP in nucleotide 

metabolism. The concentrations of UTP and CTP are fairly constant throughout most of 

the cell cycle, likely because the only annotated way to make new CTP in Syn3A is by 

converting UTP to CTP through a CTP synthase reaction CTPS2 in nucleotide metabolism 

(Figure S1). ATP and GTP, on the other hand, continue to increase over the cell cycle in both 

cells with single and multiple replication events.

Even though homeostasis can be observed for a population, there can be significant variation 

among individual cells due to stochastic fluctuations in gene expression. Some of the largest 

variations in our simulations were for phosphate (PI), pyrophosphate (PPI), and fructose 

bisphosphate (fdp). Cells with multiple replication events have a wide range of phosphate 

levels at the end of the cell cycle. In contrast, cells with only a single replication event return 

to consistently lower phosphate levels after the first replication event is complete. PPI is 

given off from DNA replication reactions, so cells with multiple replication events will see 

a broader range of PPI and therefore PI levels. While such high concentrations have been 

reported in yeast (Park et al., 2016), they may be inaccurate for Syn3A. Syn3A still has the 
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gene phoU/0428 coding for a phosphate regulator, so it is a primary candidate to be included 

in a complexified model that includes regulation.

As discussed earlier, the FBA reaction limits the rate of glycolysis in our kinetics. As long 

as the enzyme performing the reaction, fructose-1,6-bisphosphate aldolase (FbaA), is at its 

average concentration or lower, FBA will be going slower than upper glycolysis, and its 

substrate, fdp, can build up by tens of millimolars. In cells that generate more FbaA enzymes 

or take up less glucose, there is less significant buildup or even no buildup resulting in the 

fdp pool being lower, even less than 10 mM.

Examples of three proteins, the nucleoside transporter ATP-binding protein (rnsA/0010), 

pyruvate kinase (pyk/0221), and fructose-1,6-bisphosphate aldolase (fbaA/0131), are 

provided in Figure 6. The concentrations of RnsA, FbaA, and Pyk all share similar behavior, 

being slightly diluted over the first part of the cell cycle and then increasing until the end of 

the cell cycle. Reactions for protein degradation are not included, so this is purely a volume 

effect where the number of proteins is not increasing to match the increased volume. The 

farther away a gene is from the origin, the more exaggerated this effect becomes because of 

the delay between the start of replication and when a gene gets doubled.

To gauge proteome-wide homeostasis, the scaled protein counts for all proteins reported in 

the proteomics data (Breuer et al., 2019) with counts of 10 or greater excluding ribosomal 

proteins, a total of 350/452 proteins, at the end of a cell cycle are shown in the histogram in 

Figure 6. Ribosomal proteins are excluded from this plot because their counts do not reflect 

the 503 ribosomes observed in cryo-ET, with many having counts fewer than 300. For a 

protein to maintain a near-constant concentration, its count must double over a cell cycle as 

the volume doubles. On average, the overwhelming majority of proteins end the cell cycle 

with 1.75 to 2.25 times their initial protein counts. Outliers include proteins whose genes are 

longer than 4,000 nt on the low end and priB/0026 on the high end, which has a transcript 

only 441 nt long.

Agreement between hybrid well-stirred and spatial simulations

To gauge the quality of our parameterized well-stirred hybrid CME-ODE model to 

reproduce the results of the 3D spatially resolved hybrid RDME-gCME-ODE model 

with diffusion (see Video S1), we compare counts of mRNAs for genes involved in 

genetic information processes, nucletoide pools, protein distributions, and mRNA half-life 

distributions (Figure 7). The mRNA counts in the spatial model are higher on average likely 

due to the difference in transcription rates between the two models (see STAR Methods, 

Transcription). The spatial model has lower concentrations of nucleotides (Figures 7C and 

7D) than the well-stirred model, which can be tied to two factors: first, more nucleotides 

are being incorporated into mRNA, and second, the current spatial model does not include 

DNA replication, which initiates, on average, around 10 min in the well-stirred model 

(Figure 3B). With the genes for the nucleoside transporters being close to the origin, their 

genes would be duplicated early in the cell cycle. Consequently, the spatial model should 

have fewer nucleoside transporters, which would result in slightly lower uptake rates of 

nucleosides. Scaled protein counts are compared in Figures 7E and 7F. The slightly higher 

counts produced in the well-stirred simulations reflect that partial replication events have 
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taken place in a few of the cells within the first 20 min. Finally, mRNA half-lives are 

compared between the two methods (Figures 7G and 7H), where the well-stirred half-lives 

depend on the active degradosome statistics in the spatial model (STAR Methods, mRNA 

Degradation). The well-stirred model has longer half-lives on average than the half-lives in 

the spatial model, with average half-lives of 3.4 min and 1.97 min, respectively.

DISCUSSION

We report here the results from fully dynamical kinetic models, both for the well-stirred 

homogeneous (CME-ODE) and 3D (RDME-CME-ODE) spatially resolved scenarios, for 

a living minimal bacterial cell. We provide the time-dependent information about the 

dynamic rates of genetic information processes, the 148 known metabolites, 452 proteins 

and mRNAs, 29 tRNAs, 503 ribosomes, and DNA undergoing over 7,000 reactions. With 

its reduced genome of 543 kbp and 493 genes, the minimal cell JCVI-syn3A has retained 

only a few genes for regulatory proteins and functional small RNAs. In our present kinetic 

models, regulation can only occur through gene expression and the rate forms for the various 

genetic information processes and metabolic reactions. We have not included explicitly 

known regulatory proteins like PhoU (phoU/0428) and the riboswitches TPP and SAM, 

as the kinetic parameters and time-scales of conformational changes in the riboswitches 

are still being investigated (Scull et al., 2021). The simulations based on the hybrid well-

stirred (CME-ODE) whole-cell kinetic model have already given us quantitative insight 

into how the cell balances the demands of metabolism, genetic information, and growth 

over a cell cycle. From the emergent behaviors arising from the well-stirred and spatially 

resolved stochastic-deterministic simulations presented here, we can begin to understand the 

principles of life for this minimal cell when little regulation is present.

By emergent, we specifically mean behaviors defining the state of the cell (time-dependent 

concentrations, patterns, reaction rates, and correlations) that arise from simulations of the 

kinetic models and are not imposed. Such a behavior is the relationship among stochastic 

gene expression, cell growth, and progression of the cell cycle (Figure 3). Formation of 

a complete DnaA filament along the single-stranded DNA near the origin determines the 

timing of initiation of DNA replication. Cell growth as measured by increasing surface area 

is controlled in our model solely from lipid metabolism and translation of the mRNAs for 

lipid enzymes and membrane proteins. In an earlier work (Peterson et al., 2015), we showed 

experimentally, theoretically, and computationally the effects of DNA replication or gene 

copy number on the variance in mRNA distributions and ultimately the protein distributions, 

and this prior study guided the development of the kinetic model. As most growth studies 

are carried out on a population of cells, the results in this figure suggest a range of doubling 

times to be expected at a single-cell level. Importantly, given the dependence of the DnaA 

binding rate to its abundance and inverse dependence to the cell volume, the expected 

number of replication initiation events should exhibit a distribution as it does here. Lipid 

metabolism based on the lipidomics study in Figure S2 leads to cell volume/surface growth 

that doubles the volume shortly after the first replication event in approximately 65 min and 

doubles the surface area in a range from 88 to 112 min.
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Based on average time-dependent fluxes emerging from the simulations, the cells react 

to depletion of either the nucleotide or amino acid pools by slowing down replication, 

transcription, or translation (Figures 4 and S4A–S4F). While, on average, the cells are able 

to maintain these pools, the change in rates allows them to recover from the imbalance. 

Syn3A monitors its internal state through the metabolic network and modifies its rate 

of replication, transcription, and translation in response to the concentrations of dNTPs, 

NTPs, and aa:tRNAs, respectively. The rate of glycolysis in our kinetics is limited by the 

fructose-1,6-bisphosphate aldoase (fbaA/0131) and the PYK reactions (pyk/0221), which 

require pep to convert any (d)NDP to (d)NTP. With the removal of glucokinase in the 

genome reduction, pep is essential for the transport of glucose into the cell and its 

phosphorylation to g6p. An imbalance between upper and lower glycolysis and nucleotide 

metabolism does occur in a small fraction of the cells, which stop growing due to a depletion 

of pep.

The kinetic model allows the cell-wide uses of ATP to be monitored (Figure 5), which 

revealed that the costs of active transport of ions, amino acids, and nucleosides in Syn3A are 

comparable to other significant costs such as translation, as first suggested by Stouthamer 

(1973). This increased cost reflects the simplicity of this organism and its dependence 

on communication with its environment. Because Syn3A lacks oxidative phosphorylation, 

the cell depends almost entirely on glycolysis for formation of ATP. This results in 

significant sensitivity to the levels of glycolytic enzymes and therefore the stochastic genetic 

information processing reactions that express the enzymes.

In general, average metabolite concentrations generated from the model (Figure 6) show 

reasonable agreement to the values reported by Park et al. (2016) in E. coli, but the 

cell-to-cell variation in the kinetic models over a cell cycle is broader than the predicted 

range. This discrepancy certainly calls for regulation in some cases such as the uptake of 

(deoxy)nucleosides, uptake of inorganic phosphates, and formation of some metabolites that 

build up to large concentrations in some cells such as prpp and fdp.

In summary, the emergent behaviors are validated by several experimental results. 

The simulations accurately double the protein counts from experimental genome-wide 

proteomics. While our results are not in perfect agreement with qPCR origin-to-terminus 

ratios, our kinetics also reflect that many Syn3A cells experience multiple replication events 

per cell cycle. Our model predicts an average surface area doubling time of roughly 98 

min, which is close to the experimentally measured doubling time (Breuer et al., 2019) 

in rich medium of 105 min. Also emergent are fractions of active complexes and the 

distribution of mRNA half-lives from the spatial model. The fraction of active RNAP is 

similar to the fraction reported by Bremer and Dennis (2008). The average of the distribution 

of mRNA half-lives is similar to the average reported for M. gallisepticum (Kirk and 

Morowitz, 1969), and the distribution having a long tail out to 15 min has also been 

observed in B. subtilis (Hambraeus et al., 2003). At the moment, no experiments have been 

done to measure the number of active degradosomes in Syn3A and is a prediction to be 

validated in future experiments. While the predicted distribution of half-lives is in agreement 

with genome-wide studies carried out on related organisms, it awaits confirmation from 

ongoing transcriptomics studies. The hybrid CME-ODE whole-cell kinetic model requires 
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roughly 4 h to calculate the behavior of a cell over a maximum cell cycle of 120 min. 

The hybrid model is straightforward to complexify by adding additional reactions before 

proceeding to the full spatial hybrid RDME-CME-ODE model, which is computationally 

more demanding. For example, the reintroduction of the glucokinase into the kinetic model 

restored those unhealthy cells, which halted glycolysis due to the shortage of pep. The 

genetic reintroduction still needs to be carried out to validate this prediction.

Limitations of the study

Current simulations predict a lower ratio of origins to termini formed in DNA replication 

than observed in the qPCR experiments, which comes from restricting the formation of 

replication forks on the daughter chromosomes to occur only after complete replication 

of the mother chromosome and from starting each simulation with a single circular 

chromosome. In the future, we will consider multiple cell cycles starting from daughter 

cells each possibly containing a chromosome with multiple replication forks. Extending the 

simulations over several cell cycles would allow us to obtain statistics about cell divisions 

and multiple initiations of DNA replication events and DnaA filament formation.

The RDME-CME-ODE simulations are currently limited by having the degradosome, 

RNAP, and ribosome complexes all initialized in inactive states. Starting from an inactive 

state results in the initial transience in Figures 1M–1O, where the first few minutes of 

simulation are dominated by the complexes reaching steady-state processing of mRNAs, 

which may be overshadowing other interesting phenomena. In the absence of experimental 

knowledge of the average active complexes in Syn3A, the initial transience emphasizes 

importance of diffusion and how the ensemble-averaged results of the spatial model could 

be used to parameterize probabilistic factors in the well-stirred CME-ODE kinetic model, 

which account for diffusion. Future simulations with averaged occupation states will address 

this limitation. Besides the lack of explicit regulatory factors discussed above, the reactions 

to modify nucleobases in DNA and rRNA have been neglected and the time-dependent 

assembly mechanisms of protein complexes and ribosomes have been absorbed into the 

overall rates. Regulation is important and will be included in future models. No kinetic 

model for formation of FtsZ/FtsA filament and septum formation prior to formation of the 

daughter cells is considered. In the future, these processes will be addressed as we modify 

the spatially resolved kinetic model to allow a change in cell morphology, DNA replication, 

and ribosome biogenesis similar to the rule-based model we created for DNA replication in a 

slow-growing and dividing E. coli cell (Earnest et al., 2016).

STAR★METHODS

RESOURCE AVAILABILITY

Lead contact—Further information and requests for resources and reagents should 

be directed to and will be fulfilled by the Lead Contact, Zaida Luthey-Schulten 

(zan@illinois.edu).

Materials availability—This study did not generate any new unique cell strains or 

reagents, however the JCVI-syn3A and JCVI-syn3B bacterial strains are available to 
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researchers through the JCVI and Codex DNA, Inc under a material transfer agreement 

through John Glass (jglass@jcvi.org). Note that to handle JCVI-syn3A and JCVI-syn3B, 

United States scientists must obtain a United States Veterinary Permit for Importation 

and Transportation of Controlled Materials and Organisms and Vectors from the U.S. 

Department of Agriculture Animal and Plant Health Inspection Service. The organisms 

require Biosafety Level 2 containment.

Data and code availability

• qPCR data have been deposited at Mendeley Data:(https://doi.org/10.17632/

nprw2h5tx6.1) and are publicly available as of the date of publication. DOIs 

are listed in the key resources table.

• All original code has been deposited at https://github.com/Luthey-Schulten-Lab/

Lattice_Microbes and https://github.com/Luthey-Schulten-Lab/Minimal_Cell 

and is publicly available as of the date of publication. DOIs are listed in the 

key resources table.

• Any additional information required to reanalyze the data reported in this paper 

is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Bacterial strains—The principal mycoplasmal strains used in this study are JCVI-syn3A 

(GenBank: CP016816.2) and JCVI-syn3B, which is genetically identical to JCVI-syn3A 

except is has a synthetic DNA landing pad to allow for easy introduction of new genes. 

These strains were propogated in the SP4 and defined medium compositions listed in the 

key resources table. JCVI-syn3A and JCVI-syn3B were handled in labs with permits for 

Biosafety Level 2 containment.

Defined medium—In a continuing effort to completely define the minimal external 

environment sufficient to support growth of Syn3A, increasingly defined media have been 

developed. Our current iteration is based on the defined medium developed and fully 

described by Rodwell (Rodwell, 1983) which supports growth of Mycoplasma mycoides 
subspecies including the natural precursor of JCVI-syn1.0, Mycoplasma mycoides subsp. 
capri str. GM12 (Rodwell medium designation C5). This medium did not support growth 

of Syn3A. Defined components were therefore empirically added based on i) predictions 

from the analysis of metabolic pathways for Syn3A (Breuer et al., 2019), ii) components of 

defined media reported for growth of M. pneumoniae (Yus et al., 2009) and iii) a defined 

component of SP4 medium (CMRL-1066). The complete description of the medium is given 

in the key resources table and Table S1. In all cases lipid delivery was provided using 

KnockOut (KO) serum replacement as a source of albumin (Garcia-Gonzalo and Izpisúa 

Belmonte, 2008). Concentrations of assorted constituents in this medium served as the basis 

for simulated parameters in the model. A subset of the components of the defined medium 

were used to simulate transport reactions in metabolic reactions. The subset was selected as 

each component present in a transport reaction in the metabolic reactions.
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Adaptation of Syn3A was accomplished by progressive dilution of SP4 cultures into the 

defined medium. Cultures were maintained as previously described (Hutchison et al., 2016) 

in static liquid culture at 37 ° C, monitoring growth with the pH indicator phenol red for acid 

production. Mycoplasma growth was confirmed by plating dilutions of adapted cultures onto 

solid agar SP4 medium to identify and quantify colonies.

METHOD DETAILS

Background for stochastic cell simulations—The computational methods in this 

study employ both deterministic and stochastic reaction solvers and communication between 

them. Before discussing specific construction of the hybrid simulations of Syn3A, we must 

first introduce the stochastic simulation program Lattice Microbes (LM) (Roberts et al., 

2013; Hallock et al., 2014; Earnest et al., 2018). Stochastic simulations are necessary when 

reactions involving few particles such as those in genetic information processing and the 

charging of the tRNAs can lead to large variations in the state of the cell (Taniguchi et 

al., 2010). LM stochastically simulates reactions without (in the well-stirred homogeneous 

scenario) and with the explicit inclusion of particle diffusion to account for the spatially-

heterogeneous intracellular environment. For example, ribosome and nucleoid regions are 

distinct from cytoplasmic, membrane, and peripheral membrane regions, and we allow 

different reactions r to take place in each with a different propensity ar and stoichiometry 

Sr. In our spatially-resolved reaction-diffusion master equation (RDME) simulations, a cubic 

lattice is imposed on the cell and the system is divided into subvolumes v centered about 

the lattice points. Within each subvolume the reactions are assumed to be well-stirred and 

simulated using the Gillespie stochastic algorithm (Gillespie, 1977). Diffusion of particles 

from one subvolume to another is described by a diffusion operator, and the overall 

evolution of the state of the cell is given by the combined RDME.

dP (x, t)
dt = RP (x, t) + DP (x, t) = ∑

v

v
∑

r

R
−ar xv P xv, t + ar xv − Sr P xv − Sr, t

+∑
v

v
∑

ξ

i, j, k
∑

α

N
−dαxvα × P (x, t) + dα xv + ξ

α + 1 P x + 1v + ξ
α − 1v

α, t .
(Equation 2)

The state of the cell x represents all the species (genes, RNAs, and proteins) present at 

any instant of time. The first term is the chemical master equation (CME) probabilistic 

description of the subvolume-localized reactions for every subvolume in the system and the 

second term is the diffusion operator D for each particle type α in the x, y, and z directions 

specified by i, j, and k. For clarity, within the context of the spatially-resolved simulations, 

we will use the term local CME to describe the modeling of subvolume-localized stochastic 

reactions and the term global CME to describe the modeling of cell-wide stochastic 

reactions between species assumed to be well-stirred in the full cellular volume. In the 

whole-cell simulations presented in this study, we combine the above simulation methods 

with ordinary differential equation (ODE) solvers in hybrid methods that use the results 

of each method to update the particle counts of the subsequent method in a backward-

updating fashion (Bianchi et al., 2018), which we present schematically in Figure S3. LM 

allows for periodic communication between its stochastic CME and RDME solvers and 
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other simulation methods, such as an ordinary differential equations solver for metabolic 

reactions. The time step for communication, τ, is a parameter based on general timescale 

separation between the reactions in the metabolism, which are modeled by ODEs, and 

the reactions involved in the gene expression, which are modeled by a CME/RDME, that 

have significantly longer times between individual reactions. The communication times for 

linking these two methodologies were proven for similar metabolic and gene expression 

reactions (where regime separation was again chosen based on varying reaction propensities) 

in a genetic switch in yeast (Bianchi et al., 2018). The accuracy and efficiency for a series 

of communication times was reported there, even to the numerical limit of a computationally 

“exact” implementation of the algorithm, where communication occurs after the firing of 

each stochastic reaction. The choice of this parameter does affect simulations (Figure 2 

in Bianchi et al. (2018)), however the size of these effects diminishes substantially as the 

communication time step is decreased from the minute to single second scale. In these 

simulations, we used a communication time step of 1 s.

In the spatial RDME model, the genetic information processes are simulated as reactions 

and diffusion into and out of each local subvolume. Specifically, RNAP diffuses to the 

location of the start of the gene and binds to it. Later it is released along with the transcript 

at the end of the gene. mRNA can diffuse and bind to either the ribosomes or degradasomes. 

These reactions communicate with a global CME model of transcription elongation kinetics 

and tRNA charging kinetics, which are assumed to take place anywhere within the cell 

volume. Information about the stochastic reactions that occurred during the time interval of 

length τ are communicated to the ODE kinetic model for metabolism, the ODE solver is 

then run for an identical time interval, and the final state of the ODE model is used to update 

the state of the stochastic reaction system. The entirety of this procedure is shown in Figure 

S3.

Below we discuss more thoroughly the RDME, CME, and ODE solvers, and the combined 

hybrid algorithms. After introducing how the cellular architecture and DNA configurations 

are created from cryo-electron tomograms using the theory of a circular self-avoiding 

polymers (Gilbert et al., 2021), we discuss the construction of the spatial model for 

Syn3A that includes the full kinetic model of metabolism. A detailed description of lipid 

metabolism requires use of information coming from the lipidomics studies by the Saenz 

group which we provide at the end of the methods. The minimal cell simulation programs 

are available at https://github.com/Luthey-Schulten-Lab/Minimal_Cell

LM interface for creating spatial simulations: jLM—The algorithms discussed in 

the subsections below use the new release of LM, Lattice Microbes v2.4 (https://github.com/

Luthey-Schulten-Lab/Lattice_Microbes), which comes with a new user interface package 

designed to be used in Jupyter Python notebooks: jLM. LM v2.4 has a more user-friendly 

installation. (The programs and user manuals are available through Github address in 

Resources and our website). jLM has an improved interface for generating initial conditions 

for spatially resolved simulations, including constructing cell geometries such as those 

shown in Figures 1B–1E, defining diffusion rates and rules, and defining reactions. To check 

the initial setup of the physical cell and the simulations, jLM includes visualization of 

cell geometries using active rendering, table visualization for particle diffusion coefficients, 
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and table visualization of reaction details such as subvolume localization and the particles 

involved in the reaction. jLM allows for incorporation of data such as cryo-electron 

tomograms where we can include cell features directly into cell architecture in simulations 

as long as positional data about the cellular features is annotated. For diffusion, the 

simulations require diffusion probabilities for each particle between each region defined 

in the simulation, for example between the membrane and cytoplasm, as well as diffusion 

probabilities within the region. While this sounds daunting at first to define so many 

diffusion probabilities for many species, jLM allows the user to define global diffusion 

rules that will be set for all particles in the simulation which can be later modified. To 

define any one diffusion rule, jLM takes the particle name, subvolume region (meaning the 

region in which the particle currently resides), destination subvolume region, and diffusion 

coefficient as inputs. To define reactions, jLM takes a list of substrates, list of products, and 

rate constant as inputs where the rate constant is earlier defined giving a value and reaction 

order as inputs.

Overview of deterministic and stochastic simulation methods—Here, we 

describe individually the three simulation methods used to model the chemical kinetics 

in order of increasing temporal and spatial complexity. At the lowest level of complexity, we 

model the time-evolution of metabolite concentrations using ordinary differential equations 

(ODEs). We solved the deterministic initial value problem for the ODE system modeling 

the metabolic reactions using the LSODA solver within the ODEPACK software suite 

(Hindmarsh, 1983; Petzold, 1983). The LSODA solver has implementations of multistep 

methods via the Adams or BDF methods for both stiff and non-stiff systems of ODEs. We 

used the backward differentiation formula method, with order varying between 1 and 5, to 

solve the stiff ODE system of metabolic reactions. The initial conditions for the enzyme 

counts and metabolite concentrations for the metabolic reactions are in Table S1 and are 

based on the proteomics data from (Breuer et al., 2019) and metabolomics data primarily 

from (Park et al., 2016) and (Yus et al., 2009). Based on the cryo-electron tomograms 

for Syn3A (Gilbert et al., 2021), we assumed the initial radius of Syn3A of 200 nm and 

cell volume of 0.0335 fL. Missing or questionable data was supplemented by comparative 

analysis to E. coli, M. florum, and B. subtilis. The kinetic parameters are listed in Table S2.

To write the metabolic reactions into a system of ODEs that can be numerically evaluated 

by the ODE solver, we use a custom python package named odecell. This package was 

designed to have a simple application programming interface (API) for defining rate forms, 

specifying kinetic parameters, and assigning reactants and products for individual reactions. 

The package odecell comes with some predefined simple rate forms such as first and second 

order kinetics, but most reactions in the whole-cell model have a custom rate form defined 

for the random binding model of enzyme kinetics. Once all reactions have been defined 

and parameters, reactants, and products have been assigned, odecell is used to pass the 

time-evolution equation for every metabolite to the ODE solver discussed above.

The chemical master equation (CME) is an equation describing the time-evolution of a well-

stirred system of reacting particles. Like other master equations, it models the probability 

of the system being found in a set of different states and the transitions between those 

states. In the case of the chemical master equation, the states are different combinations 
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of discrete counts of particles and the system transitions between states as a result of 

chemical reactions. Under the well-stirred condition, the chemical reactions are equally 

probable between any reactant particles in the system volume. The system is assumed to be 

Markovian and the transition probabilities are conditionally dependent on the current state 

and the parameterization of the transition probabilities. Given this assumption, realizations 

of the system’s time-evolution can be simulated using the Gillespie algorithm and its 

variants. Ensembles of those realizations can then be used to reconstruct the time-evolution 

of the probability distribution of system states. The advantage of a stochastic CME model 

of chemical kinetics versus a deterministic ODE model is that the CME model reports the 

distribution of system states (and fluctuations), rather than only the mean concentration. 

This is especially relevant for systems with low copy numbers, such as models of genetic 

information processing, where the fluctuations and mean are of a similar order of magnitude.

At the greatest level of complexity, we use the reaction-diffusion master equation (RDME) 

to model diffusion and reactions within Syn3A. The RDME is a spatially-resolved version 

of the chemical master equation, where the system is now a set of connected subvolumes 

and the system state is the distribution of particles across that set of subvolumes. The system 

state changes by particles diffusing between subvolumes or reacting within subvolumes. The 

reactions among particles in a subvolume are handled as well-stirred and can be simulated 

using the same methods as the CME.

We sampled the stochastic initial value problems for the CME and RDME systems using 

the newly-released version 2.4 of Lattice Microbes (LM) (Roberts et al., 2013; Hallock et 

al., 2014; Earnest et al., 2018), a GPU-based stochastic simulation software for chemical 

kinetics. The CME system was sampled using the implementation of the Gillespie direct 

algorithm and the RDME system was sampled using the implementation of the multi-

particle diffusion algorithm. The reaction network for the CME system was constructed 

using the pyLM subpackage, a problem-solving environment that provides Python bindings 

to access the underlying LM code written in C++. The spatial model and reaction network 

for the RDME system were constructed using the new jLM subpackage, which extends the 

functionality of pyLM to include real-time visualization and interrogation of the system 

using ipywidgets within Jupyter notebooks. The simulations and analyses presented below 

were performed using Python scripts and Jupyter notebooks that are listed within the Key 

Resource Table.

Construction of JCVI-syn3A cell geometry and DNA configurations—We model 

the spatially-resolved kinetics using a RDME formalism and simulate the system using 

LM, which necessitates recreating the geometry of cells in a cubic lattice representation. 

Centered about the lattice sites are cubic reaction subvolumes. Particles within a common 

subvolume are assumed to be well-stirred and the subvolume-localized reactions proceed 

in a manner identical to the CME. Particles may also diffuse between subvolumes that are 

directly adjacent and share a face. The selection of the lattice size is an essential step in the 

creation of the spatial model. Through a constraint introduced by the greatest diffusion rate, 

the lattice size and maximum timestep are interdependent, i.e., a greater lattice size permits 

greater maximum timesteps (Roberts et al., 2013). Ultimately, the balance between increased 

spatial-resolution and computationally-achievable timescales is a choice on the part of the 
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modeler. Previous LM simulations of ribosome biogenesis in the model Gram-negative 

bacterium E. coli used a lattice with dimensions of 32 × 32× 192 sites (196,608 total 

sites) and a lattice size of 32 nm, with timesteps of 25 μs (Earnest et al., 2016). Syn3A 

is approximately one-tenth of the physical size of E. coli and we chose a lattice size of 

8 nm to realize the effects of spatial heterogeneities in the small system, while allowing 

for simulations over biologically-relevant timescales. The dimensions of the lattice used 

for the Syn3A model is 64 × 64× 64 sites (262,144 total sites). The location of reactions 

and diffusion are controlled by manipulating the types of individual lattice sites, which in 

turn associate the surrounding subvolume with a region of the cell. For example, translation 

reactions are prohibited from occurring in subvolumes associated with the chromosome. 

In another example, proteins may diffuse from subvolumes associated with the ribosomes 

into neighboring cytoplasmic subvolumes, but the inverse is prohibited. Constructing the 

spatial-model can be decomposed into three essential steps: 1) creating the cell architecture 

on a cubic lattice by manipulating the site types, 2) specifying the rates for reactive and 

diffusive events, along with their region-based rules, and 3) placing the particles within the 

model.

We created single-cell architectures of Syn3A cells, including the ribosome distribution and 

chromosome configurations, using the cryo-ET and self-avoiding polymer model decribed 

in our previous work (Gilbert et al., 2021). In summary, there are four steps to the 

process. 1) Syn3A cells were imaged using cryo-ET by the lab of Elizabeth Villa at UCSD 

and ribosome coordinates were determined by applying an iterative binary classification 

procedure (Tegunov and Cramer, 2019) to tomographic reconstructions of Syn3A cells. 

A cell observed to have roughly a 200 nm radius contained 503 ribosomes distributed 

nearly-randomly throughout the cell. In a few cases, neighboring ribosomes were so close 

that possible polysomes ranging in size of 2–5 ribosomes could be identified, and we include 

them in our treatment of translation (Figure 1A). For comparison, M. florum contains 1,600 

to 2,100 ribosomes (Matteau et al., 2020) which correpsonds to 650 to 850 ribosomes when 

scaled to the volume of Syn3A. A larger ribosome count is not surprising because of the 

faster doubling time of M. florum.

2) Assuming the ribosomes to be spherical with a radius of 10 nm, the ribosomes were 

placed in the lattice representation using seven 8 nm lattice sites arranged as a star. 3) We 

modeled the 543 kbp circular chromosome of Syn3A as a lattice polymer on a 4 nm lattice 

cubic lattice (11.8 bp per monomer). This lattice polymer model was constrained to be 

self-avoiding and circular, a type of model also known as a self-avoiding polygon (SAP). 

The 4 nm lattice was made to be coincident with the 8 nm cubic lattice, and the chromosome 

model was also constrained to avoid the ribosomes and remain within the membrane.

Ensembles of chromosome configurations constrained by the transformed tomogram data 

(ribosomes and membrane) were then generated using a Monte Carlo algorithm that 

alternated between freely-growing the SAP through the insertion of monomers and then 

equilibrating the lattice model while subject to a simplified Hamiltonian containing a 

nearest-neighbor excluded volume term and a bending potential based on the assumed 

persistence length of dsDNA.
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4) Finally, a coarse-graining procedure was applied to the configurations to localize up to 

eight of the 4 nm monomers within the 8 nm lattice sites, this is shown as the spheres 

embedded in the orange lattice sites in Figure 1B. Upon completion, 46,188 sequence-

specific DNA particles, each representing an 11.8 bp portion of Syn3A’s chromosome, were 

distributed among the 8 nm lattice sites according to the final positions of the monomers 

in the 4 nm lattice polymer model of the chromosome. An example of a Syn3A cell 

geometry with the ribosomes and DNA particles is shown Figure 1C. There were few 

intrachromosomal interactions in the preliminary 3C-Seq map, and only a small number 

of possible DNA looping interactions were identified (Gilbert et al., 2021). The lack 

of intrachromosomal interactions was hypothesized to be caused by a lack of persistent 

supercoiling, which may result from two factors present in Syn3A: 1) a low abundance of 

the nucleoid-associated protein HU, which can stabilize plectonemic loops resulting from 

supercoiling, and 2) a relatively high abundance of topoisomerases and gyrases, which can 

relax translation-induced supercoiling (Gilbert et al., 2021). The limited number of possible 

DNA looping interactions were assumed to be unsupercoiled loops created by SMC protein 

complexes. Due to the uncertainty about nature of the interactions in the preliminary 3C-seq 

map, the whole-cell simulations in this study used chromosome configurations without DNA 

looping present. The DNA configurations for the independent RDME simulations were 

chosen from an ensemble of over 100 possible configurations, so that no two simulations 

contained the same configuration. Within the spatially-resolved model, the lifetime of a 

gene’s mRNA transcript is strongly-dependent on the proximity of the gene’s to ribosomes 

and the membrane-associated degradosomes. We evaluated the uniqueness of the DNA 

configurations in our study by comparing the radial distances from the center of the cell for 

all 493 gene end sites. There were significant variations between the 8 configurations we 

selected with an average difference in radial distances of approximately 50 nm.

Initialization of proteins, mRNAs, and tRNAs—Having placed the ribosomes and 

circular DNA, we create the rest of the cellular architecture by specifying regions of the 

cell. Within spatially-resolved LM simulations, this is done by manipulating the lattice site 

types that the individual reaction subvolumes are centered about. To do this, we use new 

functionality in the jLM subpackage, in which the user can specify the parametric form 

of select three-dimensional shapes and jLM will generate matching lattice representations. 

Additionally, jLM allows for logical set operators to be used to compose multiple lattice 

representations to create more complex geometries. If a particle restricted to a region 

may freely diffuse to every subvolume within that region during the course of an RDME 

simulation, then we refer to that region as being contiguous. All lattice sites in the 

simulation space are initialized as belonging to the extracellular region. We first create a 

lattice representation of a sphere with a radius of 200 nm and define those lattice sites 

as belonging to the cytoplasm region. Within the spatially-resolved reaction model, the 

outermost layer of the cytoplasm is defined as a separate outer-cytoplasm region, so that 

peripheral membrane complexes, such as the degradosome, can be treated independently 

from transmembrane complexes. We next create this outer-cytoplasm region by using jLM to 

compose a spherical shell that is exterior and adjacent to the cytoplasm region, a minimum 

of one subvolume in thickness, and contiguous. In the final step, we create the membrane 
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region by using jLM to compose a spherical shell that is exterior and adjacent to the 

outer-cytoplasm region, a minimum of one subvolume in thickness, and contiguous.

Once the cellular architecture has been constructed, we place other macromolecular 

complexes such as degradosomes and transporters, mRNA, and proteins as shown in 

Figures 1D and 1E. The degradosome is a complex that consists of a membrane-

bound endoribonuclease scaffold (RNase Y), two metabolic enzymes (enolase and 

phosphofructokinase), an RNA helicase, a 3′ to 5′ exoribonuclease (RNase R or a putative 

exoribonuclease), and two 5′ to 3′ exoribonucleases (RNases J1 and J2) (Cho, 2017). The 

3′ to 5′ exoribonuclease that typically binds most favorably in Gram-positive bacteria is 

PNPase. However, since PNPase isn’t present in JCVI-syn3A, we assume one of the other 

two 3′ to 5′exoribonucleases present in the cell can take its place. The degradosome breaks 

down mRNA by first cleaving messengers with RNase Y, unwinding any dsRNA using the 

helicase, and then degrading the fragments from end to end using the exoribonucleases. 

We assume the stoichiometry of all degradosome components to be 1, so we take the 

minimum proteomics count among the components to determine the total number of 

complete degradosomes: 120 shared by RNase J1 (rnjA/0600) and the putative degradosome 

helicase (0410).

Proteins are initialized to their counts from the genome-wide proteomics for Syn3A (Breuer 

et al., 2019). The 93 membrane proteins making up roughly 9,000 of the 77,000 proteins 

in the proteomics are randomly distributed in the membrane. Proteins not reported in the 

proteomics or with counts less than 10 are initialized with a count of 10. 10 was chosen as 

the default protein count because the average uncertainty among all proteins over the three 

replicate mass spec experiments performed by Breuer et al. (2019) was ± 5. See Table S1 for 

all initial counts used in the simulations.

In the absence of transcriptomics data, mRNA are initialized using information from 

previous simulations. Well-stirred simulations were run to long times without replication 

reactions (1 h cell time) for 100 cells to get average mRNA counts that will be accurate for 

early times in the cell cycle when only one chromosome is present. From these simulations, 

the time-average count of each mRNA was calculated over the 100 cells. The initial 

mRNA counts for every gene were independently sampled from Poisson distributions with 

mean parameters equal to their respective time-averaged mRNA counts in the steady-state 

simulations. Following mRNA initialization, the cells have 150 total mRNA particles on 

average. tRNA are initialized to 200 tRNA per isoform in the genome. The counts of tRNAs 

were determined by scaling a total count of roughly 200,000 tRNAs in E. coli (Neidhardt 

and Umbarger, 1996), which corresponds to roughly 6,000 total tRNAs in Syn3A when 

scaled by cell volume. Syn3A has a total of 29 tRNA isoforms, and the total count was 

partitioned evenly among all species and rounded to counts of 200 tRNAs per isoform. Each 

protein, mRNA, and tRNA are initialized as randomly distributed in their respective region 

in the cell. For comparison, M. florum contains roughly 18,000 total tRNAs and 420 total 

mRNAs (Matteau et al., 2020) which correspond to roughly 7,000 tRNAs and 170 mRNAs 

when scaled to the volume of Syn3A.
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Ribosomes and DNA are assumed to be stationary in this present model. Diffusion 

coefficients of proteins were set to 1.0 μm 2/s (Earnest et al., 2015, 2016). Diffusion 

coefficients of all RNA were calculated using a modified Stokes-Einstein equation (Werner, 

2011)

D = kBT
6πηRH

(Equation 3)

where the hydrodynamic radius RH was calculated using the equation

RH = 3mmLRNA
4πNAρ

1/3
, (Equation 4)

which assumes the globular RNA to be approximately spherical. To calculate the 

hydrodynamic radii, a molar mass mm of 337 g mol−1 per nucleotide (the average molar 

mass of AMP, UMP, GMP, and CMP) and density ρ of 1.8 g cm−1 (Werner, 2011) were used 

along with the length of the RNA LRNA in nucleotides and Avogadro’s number NA. The 

viscosity h was caluclated using a measured mRNA diffusion coefficient of 0.03 μm2/s in E. 
coli for a mRNA 4,000 nt in length (Golding and Cox, 2004). From the measured diffusion 

coefficient and mRNA length, the viscosity was back calculated to be 1.2 Pa s using the 

hydrodynamic radius and modified Stokes-Einstein equations. The temperature was assumed 

to be 310 K. mRNAs are allowed to diffuse into ribosome subvolumes, but proteins were 

excluded once they leave the ribosome after translation. From the fastest diffusion rate, the 

diffusion coefficient used for protein diffusion, and the lattice spacing of 8 nm, the time step 

of the simulation was set to 30 μs. The diffusion coefficients can all be found in Table S2.

Genetic information processing—The set of genetic information processing reactions 

improve upon the model by Thornburg et al. (2019) that simulates DNA replication initiation 

and elongation, transcription of all 493 genes, degradation of all 452 mRNA, and translation 

of all 452 proteins in the CME model. As in the recent studies on B. subtilis (Johnson 

et al., 2020), we continue to assume that transcription is decoupled from translation. We 

again simulate the elongation reactions of each process under the well-stirred assumption 

of the chemical master equation using the Gillespie. The genetic information processes 

now also include directly effects of diffusion of RNAP and mRNA and their binding 

to the DNA, ribosomes, and degradosome including diffusion and spatial heterogeneity 

using the reaction-diffusion master equation (RDME). In the hybrid CME-ODE simulations, 

there are no binding reactions because the whole cell is assumed to be well-stirred, but 

the effects of diffusion are included as probabilistic prefactors multiplying kcat involving 

the active numbers of RNAP, ribosomes, and degradosomesd. In the RDME-gCME-ODE 

(RDME-ODE), particles must diffuse to one another to undergo a chemical reaction. For 

example, mRNA must diffuse to degradosomes to get degraded and to ribosomes to be 

translated. Counts of all proteins, mRNA, and tRNA are initialized in the same way 

as in the spatially resolved model discussed above. In the CME-ODE model, the DNA 

replication, transcription, and translation elongation reactions are all modeled using an 

enzyme-catalyzed, template-driven polymerization mechanism based on the general rate 

form (Thornburg et al., 2019)
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νpolymerization
CME − ODE

= kcat

1 + K0
[Enzyme]

KD1KD2
Monomer1 Monomer2

+ ∑i
niKDi

Monomeri
+ Lpolymer − 1

NTemplate (Equation 5)

This equation was first derived in Hofmeyr et al. (2013) for the case where the enzyme is 

more abundant than its template polymer. Each reaction type requires the DNA, RNA, or 

protein sequence to determine the polymer length Lpolymer and the number of each monomer 

type in the sequence ni. This rate form includes the binding of the enzyme (DNAP, RNAP, 

or ribosome) to the template polymer (ssDNA or mRNA) because of the assumption that 

the templates and enzymes are well-stirred when using the chemical master equation. The 

binding step is accounted for through K0/[Enzyme]. Dissociation constants of monomers 

KD (dNTPs, NTPs, or aa:tRNAs respectively) to the respective enzyme enter in the rate 

form for the first two monomers in the sequence Monomer1 and Monomer2 as well as in 

the summation over all monomer types i in the polymer. Since the reactions are simulated 

stochastically, these rates are calculated using the time-dependent counts of their respective 

templates NTemplate rather than their concentrations. NTemplate is typically less than 6 and 

enzyme counts are typically greater than 100. Thornburg et al. (2019) assumed that the pools 

of monomers would remain constant over the cell cycle and that the polymerization rates are 

dominated by the total length of the polymer product. As long as the monomer pools remain 

high, this assumption is reasonable, but not all cells have large nucleotide and amino acid 

pools. Here we use time-dependent pool sizes updated once per minute so that the genetic 

information processing reactions can respond dynamically to the metabolism. The kinetic 

parameters appear in Table S2.

In our spatially-resolved model, we do not simulate the reactions for DNA replication since 

we only simulate the first 20 min of the cell cycle. The model still includes reactions to 

transcribe all 493 genes, degrade all 452 mRNA, and translate all 452 mRNA into proteins. 

The polymerization rates in the spatial model do not include the binding step of the enzyme 

to the template and instead simulate separate binding reactions that require the RNAP 

to diffuse to genes and mRNA to diffuse to degradosomes and ribosomes. The general 

polymerization rate form using this assumption was derived to be

νpolymerization
RDME − ODE

= Kcat
KD1KD2

Monomer1 Monomer2
+ ∑i

niKDi
Monomeri

+ Lpolymer − 1
NEnzyme:Template (Equation 6)

Rather than depending on the time-dependent template counts, the rates are now dependent 

on the count of the enzyme-template bound state NEnzyme:Template, for example NRNAP:gene;i 

once the enzyme and/or template has diffused to the other and bind. All sequences were read 

from the Syn3A NCBI entry (CP016816.2) using Biopython (Cock et al., 2009)

DNA replication initiation: Thornburg et al. (2019) identified the three neighboring 9 

bp affinity sites where domain DnaA(IV) is known to bind to dsDNA based on the 
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crystallographic study (PDB: 1j1v and PDB: 3r8f) from Erzberger et al. (2006); Duderstadt 

et al. (2011). We simulate reactions for DnaA(IV) binding to the 9 bp high affinity site next 

to the origin, TTATCCACA, and subsequent binding to two neighboring low affinity sites 

(7/9 bp matches 2 and 1 bp away). The binding of the three DnaA(IV) molecules to the 27 

bp opens the dsDNA is assumed to allow the further binding of domain DnaA(III) to the 

neighboring AT rich region on the genome. The binding of DnaA(III) requires 3 nt along the 

ssDNA (Duderstadt et al., 2011), so the AT region of 90 nt would create a filament of 30 

DnaA proteins to stabilize a bubble large enough for the replicating machinery represented 

by DNA polymerase to enter and begin replication. The kinetics of replication initiation 

depend directly on the instantaneous cell volume and number of the multi-domain protein 

DnaA.

ν = kon[DnaA] − koff = kon/NAV (t) NDnaA − koff (Equation 7)

This equation represents the formation rate of a DnaA filament along single-stranded DNA 

near the origin. Both kon and koff for the binding of DnaA(III) were measured using 

single molecule FRET (Cheng et al., 2015). The on and off rates compete with each other 

depending on the available DnaA and the concentration dependence on the cell volume V. 

Because the replication initiation reactions are treated stochastically, the equation using the 

number of DnaA (NDnaA) is used. The on rate is calculated using Avogadro’s number (NA) 

and the initial cell volume for the first replication initiation event. Once the chromosome is 

doubled late in the cell cycle, it is assumed based on Figure 3D that the volume has doubled. 

The on rate for replication initiation events on the two daughter chromosomes later in the 

cell cycle are then recalculated using the doubled volume. Based on these kinetics, if the 

number of DnaA doubles faster than the volume, it is likely that another replication initiation 

event will occur and the cell will have more than two chromosomes at the end of its cell 

cycle.

DNA replication elongation: Once a filament 30 DnaA long has formed, we initiate 

replication forks proceeding in both directions around the circular chromosome. Thornburg 

et al. (2019) had DNA replication duplicate all genes at the same time after the whole 

chromosome was copied. Here, we duplicate genes one at a time in both directions in order 

from origin to terminus using the elongation rate

νDNA replication
CME − ODE

= 100 bp/s
1 + K0

[DNAP ]
KD1KD2

dNTP1 dNTP2
+ ∑i

niKDi
dNTPi

+ Lgene + Lintergenic − 1
Nreplication fork:gene (Equation 8)

As the replication fork proceeds along the chromosome, we update which gene it is at 

to be used as the template polymer Nreplication fork:gene in the polymerization rate. While 

we simulate the translation of all proteins involved in the DNAP, we use the count of 

the α subunit of DNAP as a representative count based on stoichiometry of the complex. 

In the duplication reaction for each gene, we include the intergenic region following the 

gene in the rate of elongation to accurately simulate the time of elongation for the whole 

chromosome, making the total length of polymerization Lgene + Lintergenic. We do not treat 
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Okazaki fragments and assume the lagging strand is duplicated at the same time as the 

leading strand without any time delays. The dNTP costs of the leading and lagging strands 

are both accounted for by communication with the instantaneous pools in the metabolism 

every minute. DNA replication uses 1 ATP as an energy molecule per bp.

Transcription: We transcribe each protein-coding gene individually using the 

polymerization rate

νtranscription, mRNA
CME − ODE

= Spromoter × Nactive RNAP /493 genes × 20 nt/s

1 + K0
[RNAP ]

KD1KD2
NTP1 NTP2

+ ∑i
niKDi
NTPi

+ LmRNA − 1
Ngene (Equation 9)

Since the RNAP could read any of the 493 genes, we include the probabilistic factor 

Nactive RNAP=493genes which is the probability of an active RNAP reading one of the 493 

genes. To achieve a doubling time range in the well-stirred simulations that is close to 

the experimentally observed doubling time (Breuer et al., 2019), a lower fraction of active 

RNAP is assumed than was calculated in the spatial simulations. Rather than the 33% 

calculated, 16% of RNAP was selected to be active in the well-stirred simulations (Bremer 

and Dennis, 2008). The higher fraction of active RNAP results in larger counts of mRNA 

and therefore also larger counts of proteins, including the membrane proteins growing the 

membrane surface area and lipid synthesis proteins, increasing the growth rate of the cell 

(data not shown). We estimate the number of active RNAP Nactive RNAP using the count of 

187 RNAP in Syn3A (Breuer et al., 2019), which together with the active fraction predicts 

30 active RNAP in Syn3A. Each gene is not equally likely to be read, though, so we include 

a factor to simulate promoter strength Spromoter. We use the assumption of Thornburg et al. 

(2019) that the genome-wide proteomics can be used to calculate proxies for the promoter 

strength of each gene as the proteomics count of the protein product of the gene divided 

by the average proteomics count of 180. An upper limit is enforced equal to the rRNA 

operon elongation rate of 2×85 nt/s, one factor of 85 nt/s per operon. We do not simulate 

any operonal structures for protein-coding genes and transcribe each gene individually. Once 

transcriptomics data becomes available for Syn3A to determine operonal structures, we can 

incorporate transcription of operons into this model. Transcription reactions use 1 ATP as an 

energy molecule per nt.

Transcription of tRNA also includes the probabilistic factor of an active RNAP to be reading 

a particular gene, but does not include a promoter strength. No operons are assumed for 

transcription of tRNA. This results in the tRNA transcriptipon rate taking the form

νtranscription, tRNA
CME − ODE

= Nactive RNAP /493 genes × 20 nt/s

1 + K0
[RNAP ]

KD1KD2
NTP1 NTP2

+ ∑i
niKDi

[NTP ]i
+ LtRNA − 1

Ngene (Equation 10)
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Because Syn3A still has genes nusG/0840 and nusB/0107, both of which are factors 

required for rRNA transcription antitermination (Torres et al., 2004), we use an accelerated 

rate of 85 nt/s for transcription of the RNAP on the rRNA operons (Ryals et al., 1982). 

Thornburg et al. (2019) assumed that 2 RNAP will always be transcribing each of the rRNA 

operons based on counts of RNAP reading the rRNA operons in E. coli reported by Bremer 

and Dennis (2008). We assume that if a RNAP is transcribing a rRNA it will transcribe the 

whole operon for both rRNA operons in Syn3A. So in transcription of rRNA we assume 

that the polymer length entering into the transcription rate is the length of the whole rRNA 

operon LrRNA operon including intergenic space, making the rRNA-specific polymerization 

rate

νtranscription, rNNA
CME − ODE

= 2 × 85 nt/s
1 + K0

[RNAP ]
KD1KD2

NTP1 NTP2
+ ∑i

niKDi
[NTP ]i

+ LrRNA operon − 1
Ngene (Equation 11)

Since reactions are not included for post-transcriptional modifications, the products of this 

reaction are separated 16S, 23S, and 5S rRNA.

In the spatial model, the RNAP have to diffuse to a gene, which are in fixed positions in 

these simulations, to transcribe it. The transcription rate for mRNA still includes the proxy 

promoter strength defined above, but takes on the modified form

vtranscription, mRNA
RDME − ODE

= Spromoter × 20 nt/s
KD1KD2

NTP1 NTP2
+ ∑i

niKDi
NTPi

+ LmRNA − 1
NRNAP :gene (Equation 12)

The rate of transcription has a set maximum of 85 nt/s to match the elongation rate of the 

rRNA operon and a lower limit of 10 nt/s. Since each gene is unique and distinguishable 

in the cell, these reactions are simulated in the global CME once the RNAP has bound to 

a gene using the time-dependent bound state NRNAP:gene. In moving these reactions to the 

global CME, which is reinitialized at every communication time of 1 s, the transcription 

rates are calculated using the instantaneous NTP pool sizes. Because gene order or position 

in the chromosome is known for each DNA configuration, we place the products of 

transcription at the end of the gene being transcribed, thereby taking into account gene 

directionality.

The elongation rates of transcription for tRNA and rRNA are similarly modified in the 

spatial model. Rather than multiplying the rRNA operon elongation rate by 2 to mimic the 

effect of having 2 RNAP on the operon, the spatial model allows for 2 RNAP to bind to and 

read the operon at any one time.
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νtranscription, tRNA
RDME−ODE

= 20 nt/s
KD1KD2

NTP1 NTP2
+ ∑i

niKDi
NTPi

+ LtRNA − 1
NRNAP :gene (Equation 13)

νtranscription, rRNA
RDME − ODE

= 85 nt/s
KD1KD2

NTP1 NTP2
+ ∑i

niKDi
NTPi

+ LrRNA operon − 1
NRNAP : gene (Equation 14)

mRNA degradation: The rate of the mRNA degradation reactions are influenced by 

the results of the spatially-resolved simulations by using the predicted number of active 

degradosomes. The rate form used for mRNA degradation is

νmRNA degradation
CME − ODE = N active degradosomes

452 mRNA types
88 nt/s
LmRNA

NmRNA (Equation 15)

where NmRNA is the number of one unique type of mRNA and the probability of 

a degradosome selecting one type of mRNA is the number active degradosomes, 18 

degradosomes predicted by the spatial model, divided by 452 mRNA types from the 

genome. The rate of degradation is then determined by a velocity of 88 nt/s measured 

for the exoribonuclease RNase R using optical tweezers (Fazal et al., 2015) divided by the 

length of the mRNA. mRNA degradation uses 1 ATP as an energy molecule per nt broken 

down.

To simulate the binding reaction of an mRNA to a degradosome in the spatial model, a 

binding rate of mRNA to RNase Y was calculated using a measured 11 cleaving events 

per protein per cell for Rnase E in E. coli Mackie (2013), an protein analogous to Rnase 

Y in Syn3A. Once an mRNA diffuses and binds to a degradosome, which is fixed to the 

membrane in these simulations, it is assumed that the mRNA has been cleaved and cannot 

unbind as a functional mRNA. The mRNA is then decayed at a rate equal to a velocity of 88 

nt/s measured for RNase R Fazal et al. (2015) divided by the length of the mRNA.

Translation: The polymerization rate of translation is modified by a model for polysomes 

both in the hybrid well-stirred CME-ODE and spatially-resolved RDME-ODE simulations. 

We improved upon the polysome model assumed by Thornburg et al. (2019) using polysome 

density estimated by Gilbert et al. (2021) and the predicted fraction of active ribosomes in 

the spatial model presented in this study (Thornburg et al., 2019). A cell roughly 200 nm 

in radius consisting of 503 ribosomes was estimated to have 25% of ribosomes participating 

in polysomes from cryo-ET. Our spatial model predicts that roughly 45% of ribosomes 

will be actively translating at any one time in Syn3A. Of the 45% of ribosomes that are 

active, in our well-stirred model we assume all 25% of ribosomes in polysomes are active 

(Pactive polysome), leaving 20% of active ribosomes as single ribosomes (Pactive ribosome). 

These prefactors make our overall rate of translation
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νtranslation
CME − ODE

= Pactive polysome × Lmax polysome + Pactive ribosome × 12 aa/s

1 + K0
[Ribosome]

KD1KD2
AA: tRNA1 AA: tRNA2

+ ∑i
niKDi

AA: tRNAi
+ Lprotein − 1

NmRNA (Equation 16)

If the mRNA is read by a polysome, we assume a polysome spacing of 120 nt to determine 

the size of polysome Lmax polysome that can be reading the mRNA estimated from a 

distribution of polysome sizes in E. coli (Brandt et al., 2009). We enforce the polysome 

size to be one fewer ribosome than the spacing allows so that the whole mRNA can be read 

by each ribosome in the polysome simultaneously. Polysome sizes estimated from the two 

cryo-ET methods applied to Syn3A (Gilbert et al., 2021) range from 2 to 13, but in our 

well-stirred CME-ODE model we enforce an upper bound of 15 ribosomes in a polysome 

which was the largest polysome size reported in experimental distributions from cryo-ET by 

Brandt et al. (2009). Translation uses 2 GTP as energy molecules per amino acid: one during 

the loading of an aa:tRNA into the A site of the ribosome and a second during translocation 

to the next step on the mRNA (Lynch and Marinov, 2015).

The translation rate in the spatial model does not include any prefactors for polysomes, 

making the rate of translation for the full length of a protein

vtranslation
RDME − ODE

= 12 aa/s
KD1KD2

AA: tRNA1 AA: tRNA2
+ ∑i

niKDi
AA: tRNAi

+ Lprotein − 1
NRibosome:mRNA (Equation 17)

Since ribosomes are in fixed positions in these simulations, it is required that the mRNA 

diffuse to a ribosome and bind before translation reactions occur. Therefore the rate of 

translation is dependent on the count of mRNA bound to a ribosome NRibosome:mRNA. If 

two of the same type of mRNA, for example coding for DnaA, were bound to ribosomes at 

different locations in the cell, they would be indistinguishable in the global CME method. 

Because the two would be indistinguishable, the simulation would not know where to put the 

products of translation inside the cell, so these reactions are locally evaluated in their own 

subvolumes in the RDME portion of the simulation.

The spatial RDME-ODE simulations take into account polysomes from the ribosome 

positions in cryo-ET. Polysome clusters are assigned using a center-to-center distance of 

20 nm between ribosomes, and we assigned polysome clusters ranging from 2 ribosomes to 

5 ribosomes for the small cell (200 nm radius) used in the spatial simulations. For clusters 

of 2 ribosomes, order of the polysomes in the ribosomes is assigned randomly. For clusters 

of 3 or more ribosomes in a polysome, the two ribosomes at the ends of the polysome 

are determined as the ribosomes with the greatest total distance from each ribosome in the 

polysome. From those two ribosomes, the start and end are randomly assigned. Then, from 

the start ribosome, order is assigned as the next nearest-neighbor until reaching the ribosome 

at the end of the polysome.
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In the translation reactions for polysomes, the mRNA is allowed to bind to any ribosome in 

the polysome. Once a polysome translation reaction is complete, the simulation again checks 

if the mRNA will be released or passed to the next ribosome in the polysome. The first 

ribosome reading the mRNA reads the full length of the mRNA using the translation rate for 

a single ribosome producing a protein of length Lprotein. Once the first translation reaction is 

complete, the simulation checks if the next ribosome in the polysome order is occupied. If 

the ribosome is occupied or if it is at the end of the polysome, the mRNA and protein come 

off and diffuse away. If the next ribosome is free, then the mRNA is passed to that ribosome 

which will undergo a translation reaction at the rate

νpolysome translation
RDME − ODE

= 12 aa/s
KD1KD2

AA: tRNA1 AA: tRNA2
+ ∑i

niKDi
AA: tRNAi

+ 40 aa − 1
NRibosome:mRNA (Equation 18)

only reading the last 40 amino acids of the protein sequence, corresponding to the polysome 

spacing of 120 nt used in the well-stirred model. This treatment of polysomes results in 

accurate timing of proteins coming off of polysomes for the metabolic reactions while 

reducing the number of intermediate states that need to be tracked over the course of the 

simulation.

Membrane Protein Insertion: In Syn3A, membrane proteins are inserted via a 

translocation reaction by the SecA-SecY complex. In the CME-ODE model, we assume that 

newly translated membrane proteins in the cytoplasm will find a SecY under the well-stirred 

assumption. The rate of the insertion reaction is then the elongation rate of SecY (50 aa/s 

(Serdiuk et al., 2019)) divided by the length of the protein multiplied by the cytoplasmic 

number of that protein

νinsertion = 50 aa/s
Lprotein

× Nprotein cytoplasmic (Equation 19)

The elongation rate of SecY was calculated from the insertion ratio of LacY measured 

in phospholipid liposomes using atomic force microscopy in units of membrane inserted 

segments per second (Serdiuk et al., 2019). The SecA-SecY complex has an associated 

ATP cost for the power stroke motion used to insert membrane proteins. From FRET 

measurements and molecular dynamics simulations, it has been estimated that the complex 

moves 10 amino acids per stroke using 1 ATP per stroke (Park et al., 2014; Chen et al., 

2015; Catipovic and Rapoport, 2020), so we assume a cost of 1 ATP per 10 amino acids in 

our insertion reactions.

For a membrane protein to be inserted into the membrane in the spatial model, it must 

first diffuse to a SecY, which are in fixed, but random positions in the membrane in these 

simulations. We assume that the rate of binding of a membrane protein to the SecY is fast 

using a rate of 106 M−1s−1 once the membrane protein has diffused to the SecY. The protein 

is then inserted at a rate equal to a velocity of 50 aa/s divided by the length of the protein.
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Sensitivity of polymerization reactions: The most critical parameter to assess the 

sensitivity in the genetic information processing polymerization reactions is the ratio of KD 

for each respective enzyme associating with their respective monomers to the concentration 

of the monomers themselves (KD /[M]), for example NTPs associating with an RNAP before 

their incorporation into the nascent transcript. The value of these KD’s affects the monomer 

concentration at which the rate of polymerization is reduced from its maximum, and we 

demonstrate how this ratio affects the overall rates of polymerization in Figure S4. Rates 

in all plots of Figure 4 are calculated relative to the maximum polymerization rates. The 

plot for general polymerization (Figure S4G) shows the case when all KD/[M] ratios are 

being changed simultaneously, which would show the same trend regardless of reaction type 

because of the identical rate law. When the monomer concentration is in equilibrium with its 

binding site, i.e., KD=M = 1, the overall rate of polymerization is halved. We also see that 

for the polymerization reactions to be at their maximum rate, the monomer concentration 

needs to roughly 100 times ecause than the KD. The reaction will stop almost entirely once 

the monomer concentration is 100 times less than the KD.

Figures S4H–S4J used the sequences of the gene, mRNA, and protein for dnaA/0001 

because it is representative of the average monomer contents in Syn3A. For replication, we 

show the rate’s dependence on the KD/[M] ratio (Figure S4H) as well as the sensitivity 

to the dATP and dNTP concentrations using the KD used in the simulations (Figure S4A 

and Figure S4B). The dependence on the KD/[M] ratio only shows what happens as the 

ratio is varied for a single dNTP, dATP, because varying all of them simultaneously would 

result in the general plot discussed above. When the dATP concentration is equal to the KD, 

the overall rate of DNA replication elongation is reduced by roughly 25%. The rate does 

is not reduced by 50% ecause dATP only makes up roughly 35% of the summation over 

monomer types. The black line in the plot shows that for the initial dATP concentration 

and KD used in the simulation are in the regime at which the DNA elongation rate is at its 

maximum, but is close to being reduced. The other two plots show the dependence on the 

replication elongation rate on the concentration of dATP and all dNTPs using the KD from 

the simulations (0.001 mM). If all dNTP’s drop below 0.1 mM or if dATP goes below 0.01 

mM, the rate of replication elongation will decrease.

Transcription shows a similar trend looking at the KD/[M] ratio for ATP (Figure S4I) with 

the transcription rate being reduced roughly 25% when the ATP concentration is equal to the 

KD. The trend is similar because the A content of the mRNA is similar to that of the gene. 

The transcription rate is also plotted as a function of ATP and all NTP concentrations using 

the KD from the simulations (0.1 mM) (Figure S4C and Figure S4D). These plots show that 

if all NTPs go below ~ 5 mM or ATP goes below 1 mM the transcription rate will decrease. 

Because there are 20 amino acids contributing to the composition of proteins, the translation 

rate is less sensitive to individual levels of charged tRNAs. This is reflected in the KD/[M] 

ratio plot (Figure S4J) where the charged isoleucine tRNA was used as the example. When 

the concentration of charged lysine tRNA is equal to the KD, the overall rate of transcription 

is reduced by less than 10%. Because charged tRNA counts are small, the translation rate 

is plotted as a function of their count rather than concentration, still using the KD used in 

the simulation (Figure S4E and Figure S4F). These plots show that the transcription rate is 
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already on the cusp of decreasing with 200 tRNA per isoform and won’t start decreasing 

until fewer than 100 tRNA are charged for charged isoleucine tRNA.

Metabolism

Metabolic rates and initial parameterization: To simulate metabolic reactions, we use the 

rate form for a random binding model for enzymatic reactions

νRandom Binding

=
kf[E]∏i

substrates [i]/KM, i − kr[E]∏j
products [j]/KM, j

∏i
substrates 1 + [i]/KM, i + ∏j

products 1 + [j]/KM, j − 1
(Equation 20)

In this rate form, [E] is the concentration of enzyme, i and j are the reactants and products, 

and KM, i = E−i [i]/ E+i , where E−i  is the enzyme without substrate/product i bound and 

E+i  is the enzyme complexed with substrate/product i (Alberty, 2003; Liebermeister and 

Klipp, 2006; Liebermeister et al., 2010; Noor et al., 2016).

Initial estimates for every kinetic parameter and metabolite concentration in the metabolic 

reactions were determined using Parameter Balancing (Liebermeister et al., 2010; Lubitz 

and Liebermeister, 2019), a software that estimates parameters within biochemical reaction 

networks using Bayesian estimation and prior distributions derived from user-inputted 

surveys of kinetic data. Our survey of reported experimental measurements for forward 

and reverse catalytic rate constants (kf and kr ), equilibrium constants (Keq), and binding 

constants (KM,i) for each reaction were obtained from the online databases BRENDA 

(Chang et al., 2021) and TECRdb (NIST) (Goldberg et al., 2004). Parameters reported 

for mutants were excluded from the survey. When no published results for the Keq were 

available from TECRdb, they were generated from the thermodynamic analysis program 

Equilibrator (Flamholz et al., 2012) at biologically relevant pH and temperatures. Values of 

intracellular small molecule concentrations were collected from experimental metabolomics 

studies in E. coli and M. pneumoniae (Park et al., 2016; Yus et al., 2009). This survey of 

experimental measurements serves as input for the Parameter Balancing software, which 

produces as output estimates of the kinetic parameters and metabolite concentrations. 

These estimates can additionally be made to satisfy thermodynamic constraints, namely the 

Haldane relationship between the kinetic (kf, kr, KM) and thermodynamic (Keq) quantities. 

To summarize briefly, the Bayesian estimation within the Parameter Balancing procedure 

uses prior normal or log-normal distributions with specified means and standard deviations. 

When possible, the means and standard deviations of the prior distributions are equal to 

the sample statistics calculated from the inputted survey of values from the literature and 

databases, but are set to default values (for example 0.1 mM for means of metabolite 

concentrations) in the absence of reported values. Even in the absence of reported values, the 

Haldane relationships still impose the thermodynamic constraint of the equilibrium constant 

Keq on the predicted kf, kr, and KM.

One can go to https://www.parameterbalancing.net/pb/static/css/css_template/

documentation.html for further details on the default prior distributions. The equilibrium 
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constants are not explicitly present in the random binding Michaelis-Menten like rate 

laws (Equation 20) that are utilized for ODE simulation of metabolic reactions in the 

final kinetic model, but they were accounted for in generating the values for kf, kr, and 

KM. The Parameter Balancing procedure calculates standard deviations for each estimated 

parameter. These standard deviations are dependent on the inputted survey of experimental 

measurements (i.e., concentrations and kinetic parameters from the literature and databases) 

and inform the modeler of uncertainty in the estimated parameters. For the most part, the 

standard deviations of the estimated parameters are relatively small fractions of the mean 

values used as parameters in kinetic simulations.

After the initial estimation of the parameters and concentrations in the metabolic network, 

two methods were used to further improve the selection of parameters and initial 

concentrations: 1) time-averaged reaction fluxes in the kinetic model of metabolism were 

compared to steady-state fluxes predicted by flux balance analysis and 2) Gibbs free 

energies of the reactions in the kinetic model were compared to experimental measurements 

and free energies predicted on the basis of equilibrium thermodynamics.

Comparison to steady-state flux balance analysis: The flux-balance analysis model 

(FBAm) by (Breuer et al., 2019) was modified to match the reaction network simulated 

in the kinetic model. Modifications include the updated lipid composition in the biomass 

expression based on the lipidomics experiments (Figure S2), removal of the “non-

quantifiable” ATP cost, and any added/removed reactions in individual subsystems detailed 

below in Central Metabolism (Figure 2), Nucleotide Metabolism (Figure S1), and Lipid 

Metabolism (Figure S2). All other model details, such as uptake reaction flux constraints, 

were maintained from the model given in Breuer et al. (2019). FBAm solutions were 

evaluated using the publicly available program COBRApy (Ebrahim et al., 2013), with 

JCVI-syn3A biomass production, and therefore BIOMASS reaction flux, being the objective 

function. The doubling time obtained via the optimization process is approximately 96 min, 

closely matching the mostly commonly observed kinetic model doubling time of 97 min 

and the experimentally observed doubling time of 105 min. The final set of concentrations 

and kinetic parameters used to initialize the simulations are provided in Tables S1 and S2, 

respectively.

The fluxes from the FBAm are directly compared to the average CME-ODE fluxes over 

three periods of the cell cycle in Table S3, specifically 0 to 20 min when replication is 

initiating, 20 to 60 min during DNA replication elongation and volume growth, and 60 

to 100 min once the volume has doubled and the cell is dividing, possibly with more 

DNA replication elongation events. While most of the fluxes are comparable, there are 

some significant differences between the steady-state fluxes and the ODE fluxes even 

after adjusting parameters, some due to the nature of the FBAm. The FBAm is designed 

to optimize production of “biomass” at the fastest rate possible, meaning production of 

the components necessary to double the cell as quickly as possible. Because of this 

optimization, several reactions end up unused as they would slow down or not contribute 

to biomass production, some by consuming ATP (for example through activated transport) 

that does not contribute directly to necessary biomass components. An example of a reaction 

that slows down biomass production is amino acid uptake. Amino acids can be taken up 
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through either a proton symporter or active transport. While there are reactions to take 

up amino acids through an active transporter, the FBAm steady-state solution generates 

no flux through those uptake reactions, indicated by their fluxes being 0 mM/s in the 

FBAm in Table S3, because it can take up amino acids without using any ATP through the 

symporter reactions. Using only the symporters minimizes the ATP used for amino acid 

uptake, allowing the FBAm to use the ATP elsewhere to maximize the rate of production 

for other cell components. An example of reactions that don’t contribute directly to biomass 

production are the RNDR1 and RNDR2 reactions in nucleotide metabolism that convert 

ADP to dADP and GDP to dGDP, respectively. Because both dADP and dGDP can be made 

by directly taking up their deoxynucleoside precursors, it is not necessary to convert ADP 

or GDP to dADP or dGDP, hence the FBAm has no flux through the RNDR1 and RNDR2 

reactions.

A reaction that does not directly use ATP, but can reduce the overall ATP formed is GAPDP 

in central metabolism. GAPDP converts g3p to 3pg through a redox reaction with NADP to 

NADPH. Although this reaction does not use ATP, any flux that passes through this reaction 

is flux that does not go through PGK to produce ATP because GAPDP bypasses PGK in 

the main glycolysis pathway. Due to this ATP opportunity cost, no flux is observed through 

GAPDP in the FBAm solution.

Another significant difference comes with the correlation between nucleoside uptake and 

acetate secretion. Because Syn3A lacks the pyruvate dehydrogenase E1 genes pdhA and 

pdhB and therefore its reaction, the only way for Syn3A to secrete acetate is by the 

connection to nucleotide metabolism through 2-deoxyribose-1-phosphate (2dr1p). Once a 

deoxyadenosine or deoxyguanosine is taken up, it can either be phosphorylated to its dNMP 

form or the deoxyribose can be removed to make the respective nucleobase through a 

PUNP reaction, giving off a 2dr1p molecule. The 2dr1p molecule is then converted to 

acetate through a series of reactions in central metabolism, converting one ADP to ATP 

in the process. Therefore, for each deoxyadenosine and deoxyguanosine converted to a 

nucleobase, the cell can net 1 ATP. This causes the FBAm to optimize to only take up the 

deoxynuleosides for the adenine and guanine pathways in nucleotide metabolism, because 

if the cell takes up the regular nucleoside, it costs one ATP to take up the molecule and 

no ATP are recovered whereas the ATP for transport is recovered if the cell takes up a 

deoxynucloside and removes the deoxyribose. In Table S3 this is reflected by the ADNabc 

and GSNabc fluxes being 0 mM/s for the FBAm. This also causes the fluxes through the 

DADNabc and DGSNabc reactions to be higher in the FBAm than in the kinetic model. 

The lower fluxes through DADNabc and DGSNabc in the kinetic model then result in lower 

fluxes through the acetate secretion pathway, some of the reversible reactions even running 

the opposite direction among the population of cells once the fluxes are averaged over time.

The total combined uptake of nucleosides and deoxynucleosides is higher in the kinetic 

model than in the FBAm. The FBAm accounts for cellular generation of only one additional 

copy of the chromosome over the cell cycle in its biomass expression (Breuer et al., 2019). 

In reality, the DNA is only duplicated for part of the cell cycle, so the cell needs to take 

up deoxynucleosides quickly enough to make the first new chromosome after roughly 70 

min (Figure 3). The FBAm assumes a uniform mRNA half-life of 1 min among all mRNA 
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(Breuer et al., 2019) and that most of the nucleotide costs for transcription are in making 

rRNA. In our kinetic model, there is a distribution of mRNA half-lives, resulting in some 

mRNA being more stable, having more counts on average, and therefore requiring more 

nucleotides. This results in the need for higher rates of nucleoside uptake to meet the 

demands of transcription.

Comparison of free energy calculations: The Gibbs free energy change of any reaction in 

the system is given by

ΔG = ΔG0 + RT logQ, (Equation 21)

where Q is the reaction quotient

Q =
∏i

products [i]
∏j

substrates [j]
(Equation 22)

and ΔG0 is the standard Gibbs free energy of the reaction

ΔG0 = ∑
i

products
νiμi

0 − ∑
j

substrates
νjμj

0, (Equation 23)

as calculated using the component-contribution method for each of the reacting species 

(Flamholz et al., 2012). Due to the relation between the Gibbs free energy change and the 

forward and backward fluxes, ΔG = − RT log J+/J− , the standard Gibbs free energy may 

alternatively be calculated from the rate law (Equation 20) and kinetic parameters as

ΔG0 = − RT log
kf∏i

productsKM, i

kr∏j
substratesKM, j

. (Equation 24)

As discussed above, equilibrium constants for metabolic reactions were collected from 

Equilibrator and TECRdb. From these equilibrium constants, ΔG0 was calculated. ΔG0 was 

also calculated using Equation 24 and the final set of kinetic parameters (kcat’s and KM’s). 

Agreement between the standard Gibbs free energy, ΔG0, calculated from equilibrium 

thermodynamics (equilibrium constants) versus kinetics (rate law and kinetic parameters) 

served as a guiding criteria in the refinement of the final set of kinetic parameters. The 

time-averaged metabolite concentrations from the well-stirred model were used to calculate 

the reaction quotient, Q, of each reaction in the central metabolism. The free energy changes 

of the reactions, ΔG, were then calculated using Equation 21 with the common Q and either 

the ΔG0 from Equilibrator or the kinetic parameters. These two cases are plotted together in 

Figure S6A. For each reaction, the kinetic parameters were adjusted such that the differences 

in the free energies calculated from kinetic parameters and those generated by Equlibrator 

were minimized. While the free energies for most reactions are similar using the final 

model parameters, there are a few notable deviations. First, the fructose-1,6-bisphosphate 

aldoase (FBA) reaction has a deviation of roughly 20 kJ/mol due to a difference in the 

equilibrium constant from Equilibrator and the resulting equilibrium constant from the 
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kinetic parameters. Although there is a possible set of parameters from BRENDA to bring 

the free energies into closer agreement, the parameters selected were required to make the 

reaction go in the forward direction at a rate matching the flux in the FBAm. This is the 

same case for the DRPA and TPI reactions. The transaldolase reaction (TALA) will be better 

parameterized when the gene catalyzing this reaction is annotated as it is currently subject to 

the default protein count value in the absence of a proteomic value related to a specific gene.

The main glycolysis pathway carries the greatest flux in the entire metabolic network of 

Syn3A. Others have discussed the cumulative free energy change throughout the main 

glycolysis pathway to indicate the strong favorability of the reactions (Flamholz et al., 

2013; Park et al., 2016). The cumulative free energy change through the glycolysis pathway 

of our model of Syn3A is plotted in Figure S6B where the free energy of each reaction 

is summed proceeding in order down the glycolysis reactions. The plot shows an overall 

free energy change of roughly −80 kJ/mol from the start to end of glycolysis. Other 

studies have reported overall free energy changes from −30 to −70 kJ/mol (Flamholz et 

al., 2013; Park et al., 2016), indicating that the kinetic parameters selected for the glycolysis 

reactions approximately reproduce the thermodynamics observed in other organisms. The 

main deviation here is again with the FBA reaction where the kinetic parameters result in 

a free energy drop of roughly 25 kJ/mol which has been reported to be less than 10 kJ/mol 

(Flamholz et al., 2013; Park et al., 2016).

Finally, to get a sense of reversibility the forward, reverse, and net reaction rates along the 

glycolysis pathway are plotted in Figure S6C. These rates were calculated by separating 

the forward and reverse rates in Equation 20 using time-averaged enzyme and metabolite 

concentrations from the well-stirred model. The larger the gap between the forward and 

reverse rate, the more irreversible the reaction is in our model. The PFK and PYK 

reactions were already annotated as irreversible, but the gaps in FBA and PGK also indicate 

that the forward direction is significantly more favorable in the model. This is due to 

the concentrations of the products of both reactions being significantly lower than the 

concentrations of the substrates, resulting in significantly slower reverse reaction rates than 

forward.

Sensitivity analysis for external metabolite concentrations: Sensitivity analysis for 

external metabolite concentrations in the defined medium (Table S1) was also carried out. 

In doing this, we found that almost all the external metabolite concentrations (for example 

ions, phosphate, glycerol, cholesterol, etc.) used in this formulation were not growth limiting 

(when compared to the FBAm fluxes required to achieve optimized biomass formation), 

except when the phosphate concentration was set too low (< 1 mM). This phosphate 

growth medium adjustment was tested experimentally in an attempt to observe the efficacy 

of an alternative buffer composition, but this modification resulted in no significant 

cellular growth, confirming the kinetic model prediction. Other metabolites present in near 

growth limiting medium concentrations are spermidine (which is involved in DNA charge 

stabilization) and the amino acid aspartate (primarily used in protein translation). The 

program and the results of the sensitivity anylysis are provided in the analysis programs 

for the well-stirred model (CME-ODE) on Github. The plot of the phosphate example is 

provided in Figure S7.

Thornburg et al. Page 38

Cell. Author manuscript; available in PMC 2023 March 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Central metabolism: The kinetic model of central metabolism begins with a detailed 

mechanism of the glucose uptake phosphorelay as shown in Figure 2. The mechanism starts 

with the reversible phosphorylation of protein encoded by ptsI/0233 with a phosphate group 

from phosphoenolpyruvate (pep). This phosphate group is then passed to ptsH/0694, then to 

crr/0234, to membrane-bound ptsG/0779, and finally to the glucose taken up by ptsG/0779. 

The genes for each of the phosphorelay enzymes present in JCVI-syn3A are considered 

essential in the genome-wide transposon mutagenesis essentiality study and structures are 

known for each component in other bacteria (Breuer et al., 2019; Jeckelmann and Erni, 

2019). Second-order rate constants for each of the reactions in the mechanism, including 

the reverse reactions, were measured using transient-state kinetic methods in work pioneered 

by Meadow and coworkers (Rohwer et al., 2000; Meadow et al., 2005a, 2005b). Their 

rate constants were implemented for each step of the phosphorelay mechanism except for 

the final reaction where glucose is transported through the membrane by phosphorylated 

PtsG and the phosphate is transferred from the ptsG/0779 to the glucose to form glucose-6-

phosphate (g6p). For that reaction, a second-order rate constant was estimated from a 

glucose uptake rate measured using C13 labeling, a proteomics count of ptsG/0779, and a 

media concentration of external glucose all reported in a single study in M. pneumoniae 
(Yus et al., 2009). Experimental proteomics counts were used for each of the phosphorelay 

enzymes and the extracellular glucose concentration was fixed at the concentration in the 

growth medium (Table S1).

Before further testing of kinetic parameters, we removed the non-quantifiable ATP cost 

included in the steady-state flux balance analysis model by Breuer et al. (2019), accounting 

for approximately 41% of the ATP expenses in their model (Breuer et al., 2019). This 

cost was included assuming there are other significant ATP costs not accounted for in the 

metabolic network or gene expression and was estimated using a non-quantifiable ATP cost 

calculated in a model of M. pneumoniae. We construct our model for the metabolic reactions 

assuming the majority of the ATP costs are being accounted for through known metabolic 

reactions and genetic information processes.

When removing the non-quantifiable ATP cost from the network, we simultaneously 

removed the pyruvate dehydrogenase PDH_E1 and PDH_E2 reactions leading to the acetate 

secretion pathway. The genes coding for the E1 subunits of pyruvate dehydrogenase 

(pdhA and pdhB) were removed during genome reduction after being classified as 

unessential (Breuer et al., 2019). We removed the PDH_E2 reaction because it requires 

the modifications made to the pyruvate dehydrogenase complex (PdhC) after the PDH_E1 

reaction, which has been genetically removed. The E2 (pdhC/0227) and E3 (pdhD/0228) 

components of pyruvate dehydrogenase still remain in the genome and are part of another 

acetate secretion pathway that begins with 2-deoxyribose-1-phosphate (2dr1p), a side 

product from nucleotide metabolism reactions. The E3 component is involved in reaction 

PDH_acald that adds co-enzyme A (coa) to acetylaldehyde. The flux through this pathway 

is two orders of magnitude smaller than when PDH_E1 was present, therefore significantly 

less ADP will be converted to ATP through this pathway and the secretion of acetate is 

much reduced. However, the amount of ATP conversion lost by removing this pathway is 

approximately the same flux as the non-quantifiable ATP cost in the steady-state flux model.
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With the defined medium in which glucose is the only sugar present, we made modifications 

to the set of possible uptake reactions. The defined medium contains no mannose, 

glucosamine, or acetyl-D-mannosamine, so we removed the respective transport reactions 

for those metabolites and left only the main glucose transporter. The defined medium 

contains no mannose, glucosamine, or acetyl-D-mannosamine, so we removed the transport 

reactions for each of these metabolites. Without their uptake, we removed all pathways 

processing these sugars, which all lead to f6p generation (Breuer et al., 2019).

We also tried to remove the NAD oxidase reaction (NOX) since the gene coding for the 

enzyme was removed during genome reduction. However, NOX appears to be critical in 

maintaining the balance of NAD and NADH in Syn3A. GAPD and lactate dehydrogenase 

(LDH_L) achieve redox/charge balance via NAD/NADH, but because we assume Syn3A 

can secrete pyruvate, not all of the flux through glycolysis will pass through LDH_L going 

to lactate secretion. This leads to a slight imbalance between GAPD and LDH_L and 

requires another reaction to convert NADH to NAD, so we leave the NOX reaction for this 

function, assuming one of the proteins of unknown function fulfills this task. The default 

protein count of 10 proteins is used to simulate the kinetics for NOX.

Finally, when comparing the fluxes to the steady-state FBAm and the kinetic parameters to 

the known equilibrium constants, one adjustment was made in the protein counts along the 

main glycolysis pathway. The enzyme for the fructose-1,6-bisphosphate aldolase (FBA) 

reaction coded by gene fbaA/0131 has a lower protein count than any other protein 

along the main glycolysis pathway in the reported proteomics for Syn3A (227 proteins 

compared to roughly 400 for most other enzymes). The lower count made it such that 

the required parameters to have the reaction go in the forward direction resulted in an 

equilibrium constant that made the free energy deviate by 50 kJ/mol from the known free 

energy calculated from the known equilibrium constant (see Figure S6). The comparative 

proteomics study (Table S1) was used to scale the count of the FBA enzyme to the same 

concentration as the FBA enzyme in E. coli, resulting in an initial FBA count of 775 

proteins. The increased protein count allowed for the net flux per enzyme to be reduced 

while still maintaining the required flux through the FBA reaction, thereby enabling a 

change in the kinetic parameters to those with a lesser disparity in the forward versus reverse 

rates and a standard free energy with a reduced deviation of 20 kJ/mol.

Amino acid metabolism: As Syn3A only contains salvage reactions for the cellular 

building blocks, it does not synthesize amino acids and requires them to be taken up by 

two transport mechanisms: AA permeases (0876, 0878, and 0886) and the ATP-dependent 

Opp (0165–0169). Breuer et al. (2019) assumed the Opp transporter to take up tetrapeptides, 

however the defined growth medium does not contain polypeptides, only individual amino 

acids. Given the contents of our defined medium, we assume that the Opp transporter 

can also take up amino acids and the ATP costs are proportional to the flux through this 

competing pathway. The AA permeases take up the amino acids, but with different affinities. 

Once amino acids are taken up in Syn3A, some are used in reactions in Nucleotide and 

Cofactor metabolisms, but the primary use of the amino acids is protein synthesis. For all 

amino acids except glutamine, we use the same mechanism for charging their respective 

tRNAs, even though it is well-known that there are two classes of aminoacyl-tRNA 
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synthetases (for review see Ibba et al. (2005)) that can function as either monomers or 

dimers. We first bind the tRNA synthetase with an ATP, then its respective amino acid, and 

finally its uncharged tRNA with the anticodon for the amino acid. Once all three substrates 

are associated, we simulate a conversion step where all products leave the synthetase; the 

tRNA is charged with the amino acid, and ATP is converted to AMP and PPi. Amino acid 

uptake is treated in the deterministic ODE kinetics, but we treat the charging mechanism 

stochastically since the reactions involve changing the states of two marcomolecules with 

small counts: the tRNA synthetases and the tRNAs. The stochastic reaction scheme is shown 

in Figure S3.

In the mischarging mechanism for GLN tRNA, we first simulate the reactions described 

above charging a GLN tRNA with GLU using glutamyl-tRNA synthetase. The mischarged 

tRNA is then handled by the glutamyl-tRNA amidotransferase. The transferase is first bound 

with the mischarged tRNA, then ATP, and finally either a GLN or ASN amino acid. The 

complex then undergoes a conversion step giving off ADP, phosphate, GLU if GLN was 

bound, ASP if ASN was bound, and GLN-charged GLN tRNA. The amidotransferase had a 

lower affinity for the ASN according to parameters found in BRENDA (Chang et al., 2021).

Nucleotide metabolism: The nucleotide metabolic network of Syn3A has previously been 

established as a series of salvage reactions (Breuer et al., 2019), which rely on the 

import of nucleotide precursors in the form of ribo- and deoxy-nucleosides. The nucleotide 

metabolism serves as the connection between the genetic information processing and the 

rest of the cellular metabolism by providing the necessary NTPs and dNTPs for use in 

the construction of the RNA and DNA. The reactions can be separated into two distinct 

reaction types: transport reactions (all reactions responsible for the uptake of the precursors) 

and salvage reactions (all non-transport reactions). A schematic diagram of the updated 

nucleotide metabolic network is presented in Figure S1.

Nucleotide transport is performed by the ribonucleoside ATP binding cassette (rnsABC) 

transporter protein, which contains four subunits: two permease domains (rnsD/0008 and 

rnsC/0009), an ATP binding domain (rnsA/0010), and a substrate-binding domain (rnsB/

0011). The rnsABC system takes up all ribo- and deoxy-nucleosides needed by the 

cell. Breuer et al. (2019) postulated that Syn3A could uptake nucleobases because the 

parent organism has this ability, however no gene has been assigned to the function 

nor has the uptake been confirmed via experiment. Therefore, uptake of nucleobases is 

not simulated in the present kinetic model. Based on growth medium components (Table 

S1), uptake of cytidine, uridine, adenosine, guanosine, 2-deoxycytidine, 2-deoxyadenosine, 

2-deoxyguanosine, and thymidine is possible by the cell. However, cytidine is not used by 

the cell (see Figure S1), so its uptake is not simulated. Nucleotide transport reactions were 

modeled using the random binding model with parameters from the literature. Webb and 

Hosie (2006) characterized the rnsABC system of Streptococcus mutans and measured the 

binding constants for cytidine, uridine, and adenosine. Since only the ribonucleosides were 

measured, the values for the deoxy-forms were assumed to be the same. In the case of 

guanine nucleoside derivatives the Km for adenosine was used, and similarly the uridine 

Km was also used for thymidine. All kinetic parameters used to simulate the transport of 

nucleotides into the cell can be found in Table S2.
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Pyruvate kinase, (pyk/0221) and phosphoglycerate kinase (pgk/0606) share similar 

enzymatic function in Syn3A. Their primary function is to generate energy (ATP) for 

the cell via central metabolism using ADP, but the additional activity of these enzymes 

provides formation of other NTP/dNTP from NDP/dNDP. In many bacteria this process 

is performed by nucleoside diphosphate kinases (ndk), however Mycoplasmas and Syn3A 

do not have ndk (Pollack et al., 2002). Parameters derived from activities measured in 

Mycoplasmas by Pollack et al. (2002) were used to develop the kinetic parameters. The 

activity relative to ADP for the two enzymes has been measured under saturated substrate 

conditions in several Mycoplasmas (Pollack et al., 2002). Using the parameters for ADP 

as the substrate, the catalytic rate constants for the PGK and PYK reactions were modified 

using the relative activities for the other substrates as measured by Pollack et al. (2002) and 

the affinity constants for all other substrates were assumed to be equal to that of ADP for the 

corresponding enzyme.

CTP synthase (pyrG/0129) was found in Syn3A forming CTP from UTP (reaction CTPS2) 

using an amino donor glutamine catalyzed by ATP Breuer et al. (2019). Additional activity 

for CTP synthase converting dUMP to dCMP (reaction CTPSDUMP) was predicted for 

Syn3A resulting from the fact that dUMP was a dead-end in the network and this secondary 

activity being the most probable solution (Breuer et al., 2019). In other organisms such as 

S. cerevisiae and Lactococcus lactis, their respective CTP synthases have activity toward 

dUTP Pappas et al. (1999); Willemoës and Sigurskjold (2002). Validation of this secondary 

activity has yet to be confirmed in Syn3A, however broader substrate specificity is common 

in Mycoplasma (Breuer et al., 2019; Pollack et al., 2002). Parameters for the CTPS2 reaction 

were curated from the literature pipeline with a minor adjustment in the product catalytic 

rate constant for better agreement with the FBAm steady state fluxes reported in (Breuer 

et al., 2019). In the case of the secondary functionality, CTPSDUMP parameters were used 

from CTPS2 for analogous metabolites due to a lack of parameters in the literature.

Phosphatase activity has been observed experimentally in Mycoplasmas and was predicted 

to be in the nucleotide metabolism of Syn3A (Breuer et al., 2019). This activity was 

proposed for the deoxymononucleotides (dAMP, dGMP, dUMP, and dTMP), however no 

gene was assigned for these reactions. Recently, using mass spectrometry and single gene 

deletion studies of Syn3A on wild-type and mutant Syn3A, a gene was identified responsible 

for the hydrolase activity against the mononucleotides (Haas et al., 2021). Gene 0066 was 

identified as dUMP phosphatase primarily acting on dUMP and dTMP, which agrees with 

previous experimental results from the literature (Neale et al., 1983). The dUMPase was 

also observed to act on dGMP and dAMP albeit less than dUMP, which is agreement with 

experimental data from other Mycoplasma (Neale et al., 1983). As a result reactions NTD1, 

NTD5, NTD6, and NTD8 have been assigned to be catalyzed by the protein coded by gene 

0066 and simulated in the kinetic model. Parameters were gathered and tested using the 

process outlined above (Table S2). Although other hydrolase activity is predicted, no other 

hydrolase activity is accounted for in the kinetic model due to a lack of gene assignment(s).

Syn3A relies on purine-nucleoside phosphorylase (punA/0747) activity for conversion of 

ribo- and deoxy-nucleosides to their respective nucleobase form (Breuer et al., 2019). 

Previously the PunA activity was only expected toward adenine and guanine nucleosides 
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(Breuer et al., 2019). With no uracil transport (due to no gene with the function) or 

deoxyuridine transport (due to no deoxyuridine in the external media), the cell can only 

bring in uracil nucleotide derivatives via uridine transport. McElwain and Pollack (1987) 

provided evidence of punA/0747 activity toward uridine in related Mycoplasma. Parameters 

for the uridine to uracil formation catalyzed via punA/0747 (reaction PUNP5) were obtained 

and implemented in the kinetic model as described above.

Lipid metabolism: Typically there are three main processes by which Mycoplasmas can 

build lipid pools: direct incorporation of lipids, lipase activity, and lipid synthesis (Figure 

S2) (Gaspari et al., 2020). However, in Syn3A all identified lipases were removed in the 

genome reduction from Mycoplasma mycoides subsp. capri str GM12 to JCVI-syn1.0 and 

then to Syn3A. For this reason, incorporation of lipids such as phosphatidlycholine (PC) or 

sphingomyelin (SM) and cholesterol (Chol) from the media remains the key mechanism for 

rapid alteration of cellular lipid biomass as shown by the lipidomics analysis from the Sáenz 

laboratory in Figure S2B. A phospholipid synthesis pathway from glycerol and fatty acids 

(palmitate and oleate) taken up from the media passively, to produce phosphatidylglycerol 

(PG) and cardiolipin (CLPN) remains in place. Inspiration for the design of the main 

pathway (Breuer et al., 2019) from fatty acids to phosphatidylglycerol was available from 

a previous attempt to create a lipid synthesis model for a minimal cell (Castellanos et al., 

2007) as well as other mycoplasma lipid synthesis pathways (Blötz and Stülke, 2017). In 

addition, synthesis of glycolipids via the sugar moieties from the UDP-glucose pathway 

(connected to the Central Metabolism by reaction PGMT) and with the lipid intermediate 

diacylglycerol to produce galactosyl diacylglycerol (GAL-DAG/galfur12 gdr) is present. It 

was assumed that pgpB/0214 could catalyze the PAPA reaction linking the phospholipid and 

glycolipid synthesis paths via phosphatidate phosphatase side activity in addition to its role 

in synthesis of phosphatidylglycerol. This phosphatase side-activity by PgpB was speculated 

in Breuer et al. (2019) and observed in E. coli by Dillon et al. (1996).

The model was parametrized via a similar procedure to that described for the other 

metabolic modules by inputting data from Equilibrator (Flamholz et al., 2012), BRENDA 

(Chang et al., 2021), and a manual search of the SABIO-RK kinetic database (Wittig et 

al., 2012) (for a few parameters, such as the foward catalytic rate constant for the AGPAT 

reaction) and Parameter Balancing (Lubitz et al., 2010; Lubitz and Liebermeister, 2019) in 

Metabolic Rates and Initial Parameterization. Since the majority of the enzymes involved in 

lipid synthesis are membrane embedded or peripheral membrane proteins, these were more 

likely to suffer from poor proteomics coverage, as was previously discussed, so adjustments 

were made to obtain agreement to FBAm fluxes using values selected from the comparison 

to other organisms (Table S1).

Important to note are the lipid related processes that have not been modeled in this work. 

While lipids in the model are incorporated into the membrane directly (PC, SM and Chol) 

or synthesized at the membrane (PG, CL, etc.) we do not include the activity of flippases 

(ywjA/0371 and jwjA/0372) (Quentin et al., 1999) that transition lipids between the inner 

and outer leaflet of the membrane. Without a detailed composition of the inner and outer 

leaflet relative to each other for each of the modeled lipid classes and with the expectation 

that the energy cost of this process is likely small compared to more costly gene expression 
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processes, flippase activity is not included in the present model. In addition, we do not 

include potential activity of phospholipase A1 or A2 which allow for acyl chain scavenging 

from various phospholipid species because these enzymes have not yet been genetically 

identified in Syn3A.

Crucially, due to the completion of further experimental studies suggested in Breuer et al. 

(2019) we have increased our knowledge about the lipid composition of Syn3A and have 

thus updated the lipid biomass and metabolic pathways from those previously presented. 

In addition to a membrane glycolipid component, Breuer et al. (2019) also identified the 

production of a lipid bound capsular polysaccharide (CPS, hereafter referred to as capsule) 

as a component of the Syn3A membrane architecture. M. mycoides, the parent organism 

of Syn3A produces a galactofuranose based capsule (Schieck et al., 2016). However, 

upon studying both JCVI-Syn1.0 and Syn3A, by Gas Chromotography/Mass Spectrometry 

(GC/MS) it appears that JCVI-syn1.0 produces a capsule, while Syn3A does not (K. 

Dybvig, personal communication). While leading to a simplification of the UDP-Glucose 

pathway to be responsible only for glycolipid production and not for production of CPS, 

this information does bring into question the function of gene 0113 which was previously 

speculated to be an epsG-like capsule producing polymerase (Breuer et al., 2019). This 

gene could still be active in the process of protein glycosylation, an important process 

in Mycoplasmas (Jordan et al., 2013; Daubenspeck et al., 2015), but this is yet to be 

determined.

Beyond demonstrating the absence of a capsule in Syn3A we conducted lipidomics studies 

to gain an increased understanding of the lipid makeup of the cell (Sáenz Group TU-

Dresden). The updated lipid species molar percentages are presented in Figure S2. A crucial 

caveat to this data is that due to the heavy dependence on lipid incorporation for Syn3A that 

the lipidomic makeup observed is likely substantially dependent upon the growth medium 

that is used. However, this is the clearest picture of Syn3A lipid makeup to date, and it is 

therefore used to parameterize the lipid biomass and growth model used in our simulations.

Interestingly, cholesterol which is typically absent from many bacterial membranes, but is 

present in those of Mycoplasma (Razin and Tully, 1970) in order to help maintain membrane 

integrity and fluidity, is present in a relatively higher proportion in Syn3A compared to its 

parent organism M. mycoides. While not previously predicted in the Lipid Biomass given 

in Breuer et al. (2019) uptake of SM and PC by Mycoplasmas has been previously shown 

by Kornspan and Rottem (2012) and was confirmed by lipidomic analysis for Syn3A. If 

we consider the difference between the SP4–FBS serum that was used to grow the cells 

analyzed in Figure S2B and the SP4–KO media typically used to grow Syn3A cells, it seems 

reasonable that this amount of SM and cholesterol are present. In addition, cholesterol is 

highly correlated with high sphingomyelin concentration and lower PC concentration, since 

sphingolipids attract cholestserol while PC repels it (Clejan and Bittman, 1984; Lönnfors et 

al., 2011; Gaspari et al., 2020; Kornspan and Rottem, 2012). Uptake rates for cholesterol, 

PC, and SM are fitted to approximately obtain (at cell doubling) the measured lipidomic 

biomass mole fractions observed in the lipidomics studies (Figure S2B). The relative ratio of 

the main phospholipids (CL and PG) observed increased relative to what had been observed 

in earlier studies of Mycoplasma (Plackett, 1967) and reported in Breuer et al. (2019).
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The molar percentages of each lipid species obtained via lipidomic analysis were then used 

to rescale the lipid biomass of Syn3A from the values reported previously, by assuming 

that the cellular dry weight fraction of non-capsule lipid compounds to be the same fraction 

given in Breuer et al. (2019). This mass fraction of approximately 7.5% or 0.8 fg was then 

divided between the lipid species observed in the lipidomic analysis according to their molar 

percentages in Figure S2. The additional assumption of a constant glycolipid component of 

the lipid dry weight fraction (which was subtracted out from the total lipid biomass) was 

maintained. The notion that the glycolipid biomass fraction stays approximately constant 

for the growth medium and membrane has been previously observed in M. pneumoniae 
(Gaspari et al., 2020) and agrees with our findings. A flux balance analysis study of the 

metabolic model containing the rescaled biomass and updated metabolic pathways given in 

this work gave a growth rate of 97 min which falls within the range of simulated doubing 

times of this study (88–112 min) and is close to the experimentally measured doubling time 

of 105 min (Breuer et al., 2019).

With the experimentally refined metabolic pathways and lipid biomass in place we 

developed a simulated cell growth model based on synthesis and incorporation of 

each particle making up the membrane. Lipids and membrane proteins, each with 

a specific surface area contribution, are dynamically added to the membrane via 

synthesis, incorporation, and translocation over the duration of the cell cycle. Surface 

area contributions per lipid species were obtained from monolayer experiments (Sáenz 

et al., 2012) and molecular dynamics (MD) studies (Jo et al., 2009) (Table S2). Cell 

growth occurs via a process shown in Figure 3D where the cell initially experiences 

simultaneous membrane surface area and cell volume growth until the cell volume is 

doubled. Translocation of integral membrane proteins was simulated by a process in which 

each protein is translocated at the cost of 1 ATP per 10 amino acids as was observed in 

Catipovic and Rapoport (2020). After volume doubling, additional membrane surface area is 

produced to pinch off and separate the two spherical Syn3A daughter cells of volume equal 

to the initial simulation conditions. Such a constant increase of cell volume per generation 

follows the “sizer principle” that has been observed experimentally for slow-growing Gram-

negative and Gram-positive bacterial cells (Wallden et al., 2016; Facchetti et al., 2017).

Lipidomics

Lipid extraction for mass spectrometry lipidomics: Mass spectrometry-based lipid 

analysis was performed by Lipotype GmbH (Dresden, Germany) as described by 

Sampaio et al. (2011). Lipids were extracted using a two-step chloroform/methanol 

procedure (Ejsing et al., 2009). Samples were spiked with internal lipid standard 

mixture containing: cardiolipin 14:0/14:0/14:0/14:0 (CL), ceramide 18:1;2/17:0 (Cer), 

diacylglycerol 17:0/17:0 (DAG), hexosylceramide 18:1;2/12:0 (HexCer), lyso-phosphatidate 

17:0 (LPA), lyso-phosphatidylcholine 12:0 (LPC), lyso-phosphatidylethanolamine 17:1 

(LPE), lyso-phosphatidylglycerol 17:1 (LPG), lyso-phosphatidylinositol 17:1 (LPI), lyso-

phosphatidylserine 17:1 (LPS), phosphatidate 17:0/17:0 (PA), phosphatidylcholine 17:0/17:0 

(PC), phosphatidylethanolamine 17:0/17:0 (PE), phosphatidylglycerol 17:0/17:0 (PG), 

phosphatidylinositol 16:0/16:0 (PI), phosphatidylserine 17:0/17:0 (PS), cholesterol ester 

20:0 (CE), sphingomyelin 18:1;2/12:0;0 (SM), triacylglycerol 17:0/17:0/17:0 (TAG) and 
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cholesterol D6 (Chol). After extraction, the organic phase was transferred to an infusion 

plate and dried in a speed vacuum concentrator. 1st step dry extract was re-suspended in 

7.5 mM ammonium acetate in chloroform/methanol/propanol (1:2:4, V:V:V) and 2nd step 

dry extract in 33% ethanol solution of methylamine in chloroform/methanol (0.003:5:1; 

V:V:V). All liquid handling steps were performed using Hamilton Robotics STARlet robotic 

platform with the Anti Droplet Control feature for organic solvents pipetting.

MS data acquisition: Samples were analyzed by direct infusion on a QExactive mass 

spectrometer (Thermo Scientific) equipped with a TriVersa NanoMate ion source (Advion 

Biosciences). Samples were analyzed in both positive and negative ion modes with a 

resolution of Rm/z = 200 = 280000 for MS and Rm/z = 200 = 17500 for MSMS 

experiments, in a single acquisition. MSMS was triggered by an inclusion list encompassing 

corresponding MS mass ranges scanned in 1 Da increments (Surma et al., 2015). Both MS 

and MSMS data were combined to monitor CE, DAG and TAG ions as ammonium adducts; 

PC, PC O-, as acetate adducts; and CL, PA, PE, PE O-, PG, PI and PS as deprotonated 

anions. MS only was used to monitor LPA, LPE, LPE O-, LPI and LPS as deprotonated 

anions; Cer, HexCer, SM, LPC and LPC O- as acetate adducts and cholesterol as ammonium 

adduct of an acetylated derivative (Liebisch et al., 2006).

Quantitative PCR protocol—The relative amounts of the different regions of the 

genome present in syn3A cells were measured by quantitative PCR (qPCR). PCR primer 

pairs were designed that amplify at the origin, at the terminus and halfway between the 

origin and the terminus of the Syn3A genome. That last point is hereafter called the quarter 

point. The sequence for the approximate Origin of replication qPCR 106 bp amplicon 

comprising Syn3A basepairs 354–459, which is in the gene dnaA/0001, is 

GCATTAGGCATTGTTGGCATAAATCCAGCACGAACGATGT with reverse primer 

TCCCATTCCAGATTCACCATAAA. The sequence for the approximate Quarter way 

around the genome 137 bp amplicon comprising Syn3A basepairs 138,342–138,478, which 

is in the gene pdhC/0227, is 

GCTGACATAGGTGAAGGTCTAACAGAAGGAACAGTCGCTGAAGTTTTAGTTAAA

GTTGGTGATGTTGTTAAAGAAGGACAATCATTATACTTTGTTGAAA 

CTGATAAAGTAAACAGTGAAATACCTGCTCCAGTGGC with reverse primer 

GCCACTGGAGCAGGTATTT. The sequence of the approximate Terminus of replication 

qPCR 39 bp amplicon comprising Syn3A basepairs 271,774–271,783, which is in the gene 

plsX/0419, is GCATTAGGCATTGTTGGCATAAATCCAGCACGAACGATGT with 

reverse primer ACATCGTTCGTGCTGGATTTA. The bolded sequences are the forward 

primer locations and the underlined sequences the reverse primer locations. Note that in the 

Terminus amplicon, the primers overlap by 3 bp. Primers were designed using The 

Integrated DNA Technologies PrimerQuest Tool (https://www.idtdna.com/PrimerQuest/

Home/Index) set for a maximum amplicon length of 150 base pairs.

To enable normalization of the three different qPCRs, we designed and had Integrated DNA 

Technologies synthesize a 319 base pair synthetic DNA molecule that contained one copy 

of each of the three qPCR amplicons. This qPCR standard molecule contains each of the 3 
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amplicons plus 3 bases at the ends of each amplicon and either 10 or 14 bases at the ends of 

the molecule:

AAAATTTTGTAATCGGTGCAAGTAATGAACAAGCTTTTATAGCAGTTCAAACAGTA
AGTAAAAATCCTGGGATTTCTTATAATCCA 
TTGTTTATTTATGGTGAATCTGGAATGGGAAAATTAGCATTAGGCATTGTTGGCATA
AATCCAGCACGAACGATGTTATTTTGCTGACATAGGTGAAGGTCTAACAGAAGGAA
CAGTCGCTGAAGTTTTAGTTAAAGTTGGTGATGTTGTTAAAGAAGGACAATCATTA
TA 
CTTTGTTGAAACTGATAAAGTAAACAGTGAAATACCTGCTCCAGTGGCTGGAAAA

ATTGCAG

In the molecule, all qPCR amplicon sequences are italicized, the forward primers are bolded, 

and the reverse primers are underlined. The inter-amplicon and flanking bases are not 

italicized. To prepare the qPCR standard molecule for use in qPCRs, the molecule was 

amplified using the primers AAAATTTTGTAATCGGTGC as the standard forward and 

CTGCAATTTTTCCAGCCAC as the standard reverse. The amplicon were electrophoresed 

on agarose gels and the correct size band was excised and purified using a QIAquick Gel 

Extraction Kit according to the manufacturer’s instructions. All qPCR sequences and their 

locations on the genome are in Table S4.

To prepare Syn3A cells for qPCR analysis, a 100 μL aliquot of cells grown in SP4 media 

(Williamson and Whitcomb, 1975) supplemented with 17% KnockOut Serum Replacement 

(hereafter called SP4KO) was mixed with 900 μL of fresh SP4KO. Multiple two fold 

dilutions of this cell suspension were then made by serially transferring 500 μL aliquots 

to tubes containing 500 μL of fresh SP4KO. A total of 15 dilutions were made and these 

tubes were capped and incubated at 37°C overnight. The stage of growth was determined 

by the color of the phenol red pH indicator, which is a component of SP4KO. As the cells 

metabolize glucose, they release acid, which causes the normally red SP4KO to turn orange 

and then yellow. The next day the highest dilution tube that was yellow was selected as the 

stationary phase culture. The most concentrated tube that had not begun transitioning from 

red to orange was designated exponential phase culture.

To prepare the Syn3A genomic DNA for qPCR analysis, 10 μL of the exponential and 

stationary phase cultures were diluted 1:100 in water, incubated at 98°C for 10 min in a 

thermocycler with a heated lid and immediately added to the qPCRs. To prepare qPCR 

control DNA templates, a set of 6 two-fold dilutions was made using the gel purified DNA. 

The qPCRs were set up as follows: 5 μL PowerUp SYBR Green Master Mix (Applied 

Biosystems), 2 μL DNA template, 0.55 μL 10 mM forward primer, 0.55 μL 10 mM reverse 

primer, 1.9 μL H2O for a total reaction volume of 10 μL.

Six replicates were made for each sample. Reactions were run in a QuantStudio 6 (Applied 

Biosystems) qPCR machine with the following program: Hotstart polymerase activation 

50°C 120 s, ramp 2.05°C/s, 95°C 120 s; amplification 45 cycles of ramp 2.05°C/s, 95°C 15 

s, ramp − 1.71°C/s, 52.9°C 15 s, ramp 2.05°C/s, 72°C 60 s; melting curve 95°C 15 s, ramp 

−1.71°C/s, 52.9°C 60 s, ramp 0.05°C/s up to 95°C. The Threshold Cycle (Ct) values were 
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calculated automatically using the QuantStudio Software (Applied Bio-systems) with the 

default parameters. Amplification plots and standard curves generated for each of the three 

regions of the genome are shown in Figure S5. Note that our standard curves are unitless. 

We did not quantify the amount of qPCR standard in the gel purified material. We simply 

used the qPCR standard to normalize the amounts of standards in the origin, quarter, and 

terminus reactions.

The amounts of origin, quarter, and terminus were each averaged among the six replicates 

separately for the exponential and stationary phase samples. Next, we set the average 

amount of exponential and stationary phase DNA in the terminus reactions to be one, and 

then determined the ratios of the origin and quarter samples to the terminus samples. The 

standard deviations were calculated as the ratio of the standard deviations for origin and 

quarter samples to the average of the terminus. The qPCR data is available on Mendeley 

Data (https://doi.org/10.17632/nprw2h5tx6.1).

QUANTIFICATION AND STATISTICAL ANALYSIS

Analysis of cell simulations—The jupyter Python notebooks used to analyze cell 

simulations are included with the programs in the Minimal Cell Github repository listed 

in the key resources table (https://github.com/Luthey-Schulten-Lab/Minimal_Cell).

Lipidomics analysis and post-processing—Data were analyzed with Lipotype 

GmbH developed lipid identification software based on LipidXplorer (Herzog et al. (2011), 

Herzog et al. (2012)). Data post-processing and normalization were performed using an 

in-house developed data management system. Only lipid identifications with a signal-to-

noise ratio > 5, and a signal intensity 5-fold higher than in corresponding blank samples 

were considered for further data analysis. For data visualization, filtering threshold of 0.2 

mol% was applied. Only those lipid species that are present in 3 biological replicates were 

considered. For class distribution plot (Figure S2), lipid species were summarized to lipid 

class and classes plotted as averages across 3 biological replicates. Cholesterol ester (CE) 

was excluded from the lipidome, as it was shown that it is not a membrane lipid.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• 3D spatial resolution of a fully dynamical whole-cell kinetic model

• Detailed single-reaction, single-cell accounting of time-dependent ATP costs

• Genome-wide mRNA half-lives emerge from length-dependent kinetics and 

diffusion

• Connections among metabolism, genetic information, and cell growth are 

revealed
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Figure 1. Workflow for whole-cell simulations
(A) Ribosome coordinates and cell boundaries are obtained from cryo-electron tomograms.

(B) The self-avoiding lattice DNA (red, white, and blue spheres) is folded around the 

ribosomes (yellow spheres).

(C) The membrane (green cubes) surrounds the ribosomes, DNA, and 200-nm radius 

cytoplasmic space.
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(D) A representative set of membrane complexes and proteins (degradosomes—red spheres, 

SecY—blue spheres, and PtsG—green spheres) are randomly distributed in the peripheral 

membrane and transmembrane space.

(E) All other macromolecules are randomly distributed throughout the cytoplasm as shown 

in all gray spheres.

(F) Some rates have been reported from single-molecule experiments such as the DnaA 

filament formation rate.

(G) Otherwise, we used the BRENDA and other databases for kinetic rates.

(H) The defined medium composition is used to determine nutrient uptake in our 

simulations.

(I) Spatial simulations require GPU acceleration. (J–L) The spatial simulations predict 

numbers of (J) active degradosomes breaking down mRNA, (K) transcribing RNAP, and (L) 

translating ribosomes.

(M) The length-dependent kinetics of mRNA decay and requiring mRNA to diffuse to 

degradosomes results in a distribution of mRNA half-lives.

(N) The average number of times each gene is transcribed over the course of the 20-min 

spatial simulations.

(O) A distribution of the average number of times each mRNA type is translated in its 

lifetime shows that every mRNA is translated at least once in its lifetime on average.

3D visualization done with VMD (Humphrey et al., 1996).
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Figure 2. The JCVI-syn3A central metabolic network
Central metabolism starts with glucose uptake via the phosphorelay mechanism shown in the 

inset including protein names and gene numbers. Red reaction names indicate reactions that 

do not have a gene annotated but are assumed to be performed by one of the uncharacterized 

proteins. ACALDt, PYRt2r, L_Lact2r, and ACt are all assumed to be non-enzymatic passive 

transport reactions. The reaction map was generated using Escher (King et al., 2015). See 

also Figures S1 and S2.
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Figure 3. Processes determining the cell cycle progression
(A) DNA replication initiation in two individual cells with and without subsequent 

replication initiation on the daughter chromosomes.

(B) Distributions of replication initiation times for 174 original chromosomes of which 141 

of the daughter chromosomes had further replication initiation events.

(C) The DNA copy number as a function of time among 174 cells. The solid line is the 

average and the shaded region represents the full range among the population.
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(D) Relative quantities of origins, quarter positions, and termini of the chromosome from 

qPCR for exponential and stationary phase cells. Error bars represent the standard deviation 

among six biological replicates. Exponential phase standard devations are 0.05 (Terminus), 

0.09 (Quarter), and 0.3 (Origin). Stationary phase standard deviations are 0.03 (Terminus), 

0.2 (Quarter), and 0.5 (Origin).

(E) The cell doubles in volume between 50 to 70 min.

(F) The cell surface area doubles between 88 to 112 min. Cells maintain a 55:45 ratio of 

protein surface area to lipid surface area over the course of a cell cycle.

See also Figure S5.
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Figure 4. The dominant connections between gene expression and cellular metabolism
(A) A simplified diagram of the ATP and GTP use, nucleotide metabolism, and glycolysis 

pathway show connections among the networks. Arrow width corresponds to rate through 

the reaction given in mM/s on the arrow. Red arrows indicate the rate-limiting steps of 

glycolysis in the simulations.

(B) If a cell runs low on dNTPs, NTPs, or charged tRNAs, the rates of the corresponding 

genetic information processing reactions are reduced (dnaA/0001). The black trace shows 

the average rate among the population with the full range in gray. The orange and green 

traces represent two individual cells. See also Figure S4.
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Figure 5. A detailed accounting of cellular ATP costs
Time-dependent ATP costs over the course of a cell cycle show the distribution of ATP costs 

among individual processes and a balance of ATP generation and usage. ATP is generated 

only in the central metabolism through the PGK, PYK, and ACKr reactions in Figure 2. ATP 

synthase uses ATP but is reversible in the kinetic model and can switch direction as seen in 

its drop in the single replication cell. Translation elongation is not included because it uses 

GTP rather than ATP (Lynch and Marinov, 2015).
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Figure 6. Simulated traces of key cellular metabolite and enzyme concentrations
Concentrations for 141 cells with multiple replication events (red) and 33 cells with 

single replication events (black) show a wide range of intracellular concentrations over the 

population: solid lines (average) and the shading (10th to 90th percentiles). A proteome-wide 

distribution of scaled protein counts shows that most proteins have their counts accurately 

doubled over the course of a cell cycle on average. The scaled protein counts represent the 

count of a protein at 105 min (experimental end of the cell cycle) divided by its initial count 

from the proteomics.
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Figure 7. A comparison of gene expression between well-stirred and spatially resolved 
simulations
(A and B) Counts of mRNA for genes coding for genetic information processing proteins.

(C and D) Intracellular concentrations (pools) of NTPs and ADP.

(E and F) Genome-wide scaled protein counts after the first 20 min of the cell cycle.

(G and H) Genome-wide mRNA half-life distributions. The 1.97-min mRNA half-life in the 

spatial model is in better agreement with a measured average half-life in M. gallisepticum.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Bacterial and virus strains

JCVI-syn3A Breuer et al., 2019 GenBank: CP016816.2

JCVI-syn3B Breuer et al., 2019 N/A

Chemicals peptides and recombinant proteins

C5-CMRL Defined Medium This study N/A (Ingredients below)

Alanine Sigma-Aldrich 05129

Arginine .HCl Sigma-Aldrich A5131

Asparagine Sigma-Aldrich A4159

Cysteine .HCL.H2O Sigma-Aldrich C7880

Glutamate Na.H2O Sigma-Aldrich G1626

Glutamine Sigma-Aldrich G3126

Glycine Sigma-Aldrich G8895

Histidine Sigma-Aldrich H6034

Isoleucine Sigma-Aldrich I2752

Leucine Sigma-Aldrich L8000

Lysine HCL Sigma-Aldrich L5626

Methionine Sigma-Aldrich M9625

Phenylalanine Sigma-Aldrich P2126

Proline Sigma-Aldrich 81709

Serine Sigma-Aldrich S4500

Threonine Sigma-Aldrich T8625

Tryptophan Sigma-Aldrich T8941

Tyrosine Sigma-Aldrich T3754

Valine Sigma-Aldrich V0500

Na2HPO4 (Sodium Phosphate dibasic) Sigma-Aldrich S0876

NaH2PO4 (Sodium Phosphate monobasic) Sigma-Aldrich S5011

KCl (Potassium Chloride) Sigma-Aldrich P3911

MgSO4 (Magnesium Sulfate) Sigma-Aldrich 246972

glycerol Sigma-Aldrich G5516

Spermine tetraHCL Sigma-Aldrich S2876

Nicotinic acid Sigma-Aldrich 72309

Thiamine HCL Sigma-Aldrich T1270

DL Lipoic (thioctic) acid ((+−)-alpha-Lipoic acid) Sigma-Aldrich T1395

CoenzymeA, sodium salt hydrate Sigma-Aldrich C3144

Adenine hemisulfate salt Sigma-Aldrich A3159

Guanine HCL Sigma-Aldrich 51030

Uracil Sigma-Aldrich U0750

Thymine Sigma-Aldrich T0376
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REAGENT or RESOURCE SOURCE IDENTIFIER

Adenosine Sigma-Aldrich A4036

Guanosine Sigma-Aldrich G6264

Uridine Sigma-Aldrich U3750

Thymidine Sigma-Aldrich T9250

Cytidine Sigma-Aldrich C122106

KnockOut™ (serum replacement) GIBCO 10828–028

Riboflavin Sigma-Aldrich R9504

Glucose Sigma-Aldrich DX0145

choline chloride Sigma-Aldrich C7017

5-Formyl-5,6,7,8-tetrahydrofolic acid calcium salt (aka folinic acid 
calcium salt hydrate)

Sigma-Aldrich F7878

dTMP (thymidylic acid); Thymidine 5’-monophosphate disodium salt 
hydrate

Sigma-Aldrich T7004

Thiamine diphosphate (Thiamine pyrophosphate) Sigma-Aldrich C8754

pyridoxal 5’-phosphate.H2O Sigma-Aldrich P3657

cholesterol Sigma-Aldrich C8667

palmitic acid Sigma-Aldrich P0500

oleic acid Sigma-Aldrich O1008

Phenol red (0.5%w/v, sterile) Sigma-Aldrich P0290

Penicillin G sodium Sigma-Aldrich P3032

CMRL 1066 10x (−) phenol red, (−) L-Glutamine, (−) NaHCO3 GIBCO ME19150L1 (ordered with 
phenol red removed)

SP4 Medium Williamson and Whitcomb, 1975 N/A (Ingredients below)

Mycoplasma Broth Base BD Biosciences 211458

Bacto Tryptone BD Biosciences 211705

Bacto Peptone BD Biosciences 211677

Bacto Yeastolate BD Biosciences 255772

Yeast Extract Solution GIBCO 18180–059

Serum (heat inactivated, fetal bovine) GIBCO 16140–071

KnockOut™ (serum replacement) GIBCO 10828–028

Critical commercial assays

Applied Biosystems PowerUp SYBR Green Master Mix Thermofisher Cat# A25741

QIAquick Gel Extraction Kit QIAGEN Cat# 28704

Deposited data

Aligned cryo-ET tilt-series Gilbert et al., 2021 EMPIAR – Accession Number: 
10686

Cryo-ET reconstruction Gilbert et al., 2021 EMDB – EMD: 23661

JCVI-syn3A reference genome Breuer et al., 2019 GenBank: CP016816.2

Mass spectrometry data of Syn3A Breuer et al., 2019 MassIVE – Accession Number: 
000081687

Proteomics of Syn3A Breuer et al., 2019 ProteomeXchange – Accession 
Number: PXD008159
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REAGENT or RESOURCE SOURCE IDENTIFIER

qPCR of Syn3A origin:quarter:terminur ratios This study Mendeley Data: https://doi.org/
10.17632/nprw2h5tx6.1

BRENDA Chang et al., 2021 https://www.brenda-enzymes.org/

Oligonucleotides

Forward qPCR primer for Syn3A origin of replication 
AATCGGTGCAAGTAATGAACAAG

Integrated DNA Technologies N/A

Reverse qPCR primer for Syn3A origin of replication 
TCCCATTCCAGATTCACCATAAA

Integrated DNA Technologies N/A

Forward qPCR primer for the quarter way point around the Syn3A 
genome GCTGACATAGGTGAAGGTCTAAC

Integrated DNA Technologies N/A

Reverse qPCR primer for the quarter way point around the Syn3A 
genome GCCACTGGAGCAGGTATTT

Integrated DNA Technologies N/A

Forward qPCR primer for the terminus point around the Syn3A 
genome GCATTAGGCATTGTTGGCATAA

Integrated DNA Technologies N/A

Reverse qPCR primer for the terminus point around the Syn3A 
genome ACATCGTTCGTGCTGGATTTA

Integrated DNA Technologies N/A

Forward qPCR primers for the qPCR control molecule 
AAAATTTTGTAATCGGTGC

Integrated DNA Technologies N/A

Reverse qPCR primer for the qPCR control molecule 
CTGCAATTTTTCCAGCCAC

Integrated DNA Technologies N/A

319 bp qPCR control molecule AAAATTTTGTAATCGGTGCAAGT 
AATGAACAAGCTTTTATAGCAGT 
TCAAACAGTAAGTAAAAATCCTG 
GGATTTCTTATAATCCATTGTTTA 
TTTATGGTGAATCTGGAATGGGA 
AAATTAGCATTAGGCATTGTTGG 
CATAAATCCAGCACGAACGATGT 
TATTTTGCTGACATAGGTGAAGG 
TCTAACAGAAGGAACAGTCGCT 
GAAGTTTTAGTTAAAGTTGGTGA 
TGTTGTTAAAGAAGGACAATCAT 
TATACTTTGTTGAAACTGATAAA 
GTAAACAGTGAAATACCTGCTCC 
AGTGGCTGGAAAAATTGCAG

Integrated DNA Technologies N/A

Software and algorithms

Code to reconstruct Syn3A cells Gilbert et al., 2021 https://github.com/brg4/
SAP_chromosome

Code for genetic information processing Thornburg et al., 2019 https://github.com/zanert2/
Thornburg_FrontMolBiosci_201
9

Code for hybrid CME-ODE model This paper https://github.com/Luthey-
Schulten-Lab/Minimal_Cell
https://doi.org/10.5281/
zenodo.5780120

Code for hybrid RDME-CME-ODE model This paper https://github.com/Luthey-
Schulten-Lab/Minimal_Cell
https://doi.org/10.5281/
zenodo.5780120

Lattice Microbes – v2.4 This paper https://github.com/Luthey-
Schulten-Lab/Lattice_Microbes
https://doi.org/10.5281/
zenodo.5780138

OdeCELL – v1.0 This paper https://github.com/Luthey-
Schulten-Lab/Minimal_Cell
https://doi.org/10.5281/
zenodo.5780120
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REAGENT or RESOURCE SOURCE IDENTIFIER

Escher – v1.7.3 King et al., 2015 https://escher.github.io/#/

VMD - v1.9.4a53 Humphrey et al., 1996 http://www.ks.uiuc.edu/
Research/vmd/

Biopython – v1.78 Cock et al., 2009 https://biopython.org/

QuantStudio Software for qPCR Applied Biosystems Inc. https://
www.thermofisher.com/us/en/
home/global/forms/life-
science/quantstudio-6–7-pro-
software.html

IDT PrimerQuest tool Integrated DNA Technologies https://www.idtdna.com/
PrimerQuest/Home/Index

Other

QuantStudio 6 qPCR instrument Applied Biosystems, Inc. Cat# A43159

QExactive mass spectrometer Thermo Scientific N/A

TriVersa NanoMate ion source Advion Biosciences N/A
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