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A 72‑hour high fat diet increases 
transcript levels of the neuropeptide galanin 
in the dorsal hippocampus of the rat
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Abstract 

Background:  Recent evidence identifies the hippocampus, a brain structure commonly associated with learning and 
memory, as key to the regulation of food intake and the development and consequences of obesity. Intake of a high 
fat diet (HFD) results in altered consumptive behavior, hippocampal damage, and cognitive deficits. While many stud‑
ies report the effects of HFD after chronic consumption and in the instance of obesity, few examine the events that 
occur following acute HFD consumption. In this study, male rats were fed either a control diet (10% fat by kcal) or HFD 
(45% fat by kcal) for 72 h. At the end of the 72-h period, serum and tissues were collected and weighed. Brains were 
rapidly frozen or formalin-fixed in preparation for qRT-PCR or immunohistochemistry, respectively.

Results:  Acute intake of HFD resulted in higher serum levels of leptin and cholesterol, with no significant changes 
in final body weight or adipose tissue mass. In the dorsal hippocampus, transcription of the neuroprotective peptide 
galanin was significantly upregulated along with a trend for an increase in brain-derived neurotrophic factor and histone 
deacetylase 2 in the rats fed HFD. In the ventral hippocampus, there was a significant increase in histone deacetylase 4 
and a decrease in galanin receptor 1 in this group. Results from immunohistochemistry validate strong presence of the 
galanin peptide in the CA1/CA2 region of the dorsal hippocampus.

Conclusions:  These results provide evidence for a distinct response in specific functional regions of the hippocam‑
pus following acute HFD intake.

© 2015 Gan et al. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://
creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided 
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate 
if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/
zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
Overweight and obesity are at epidemic levels in the 
United States and rates are rising in other countries that 
have adopted a more Western diet [1]. Consumption of 
diets rich in saturated fatty acids is commonplace in the 
United States and is pinpointed as a major factor in the 
development of obesity and resulting metabolic disease 
states [2]. Excess intake of saturated fat has also been 
implicated in the development of neurodegenerative dis-
eases such as Alzheimer’s [3, 4].

It is well established that the hippocampus is a major 
brain region involved in memory, particularly episodic 
and spatial memory [5]. However, the hippocampus is 
a heterogeneous structure with multiple projections to 
other areas of the brain involved in emotional motiva-
tion and feeding behaviors [6, 7]. A thorough review by 
Lathe highlighted the role of the hippocampus in moni-
toring the physiological environment and modulating 
an appropriate response, a major component of which is 
sensing of the endocrine and metabolic state of the blood 
and cerebral spinal fluid [8]. In fact, the blood–brain bar-
rier in the vicinity of the hippocampus is particularly 
vulnerable to the exterior environment. Two studies 
have shown a reduction in blood brain barrier integrity 
in the vicinity of the hippocampus following high fat diet 
(HFD) consumption [9, 10]. Dietary fat and cholesterol 
are able to cross the blood–brain barrier and promote 
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protein infiltration, a process that may contribute to 
the development of Alzheimer’s [9]. Behavioral effects 
can be observed rapidly after this HFD-induced insult. 
Impairments in hippocampal-specific spatial memory 
are observed after only 3–5  days on a high-energy diet 
(higher in saturated fat and glucose), with no effects of 
the diet on memory tasks that were not dependent on the 
hippocampus [11, 12]. This would suggest that the hip-
pocampus responds more rapidly to dietary insult than 
other areas of the brain.

While many studies show the impact of chronic con-
sumption of HFD on the molecular physiology of brain, 
few examine the acute response [13–16]. We investigated 
the effects of HFD consumption in a 72-h time window, 
which for humans might be the amount of time a typi-
cally healthy individual spends eating high fat foods over 
a holiday or while on vacation. Three recent studies from 
the University of Washington showed that during the 
first 3  days of high fat feeding, hypothalamic inflamma-
tion, reactive gliosis and astrocytosis were present in both 
rats and mice at this time point, and that similar gliosis 
occurred in obese human subjects [12, 16, 17]. Other 
experiments involving 72-h HFD consumption in rodent 
models have shown increased body weight, increased adi-
pose tissue mass, and increases in markers of inflamma-
tion and oxidative stress in the brain, liver, and adipose 
tissue [12, 18, 19]. Little is known about changes in hip-
pocampal gene expression following acute HFD intake.

It is now widely accepted that changes in the physi-
cal environment may be rapidly recorded in different 
regions of the brain by epigenetic mechanisms involv-
ing changes in chromatin structure [20]. For example, 
acetylation of nucleosomal histones is sensitive to dietary 
change and correlates with altered gene expression in a 
very rapid timeframe [21, 22]. Consequently, we chose 
to examine the expression levels of several enzymes 
that alter chromatin structure, as well as trophic factors, 
hormone receptors, genes associated with obesity and 
inflammation, and the neuropeptide galanin. Galanin is 
a small, highly conserved neuropeptide that is expressed 
throughout the mammalian central and peripheral nerv-
ous system [23, 24]. It is known to be involved in feed-
ing, the regulation of metabolism, neuronal excitability, 
neuroprotection, cognition, and stress, to name a few 
[25, 26]. In feeding studies, galanin is shown to be orexi-
genic, particularly stimulating the consumption of fat 
and intake of fat will alter levels of galanin mRNA in the 
hypothalamus [27]. Early changes in galanin expression 
in the hippocampus as well might help explain why ani-
mals do not self-regulate when offered a high fat diet, and 
will continue to consume until reaching a state of obesity.

We hypothesized that the gene expression profile of 
rats fed a high fat diet for 72  h would be indicative of 

hippocampal damage and a propensity towards obesity, 
meaning that we expected to see a downregulation of 
neurotrophic and neuroprotective factors, an upregula-
tion of certain epigenetic enzymes, and a downregulation 
of insulin and leptin receptors in rats fed a high fat diet 
for 72  h. However, our results show a distinct response 
in specific functional poles of the hippocampus following 
acute HFD intake, with potential mediators of neuropro-
tection at play in the dorsal hippocampus.

Results
Energy intake, body and tissue weights
Male rats given a HFD ad  libitum (45% kcal from fat) 
for 72 h did not consume more food in grams than their 
control-fed counterparts (Fig.  1a), but they also did not 
reduce their food intake to account for increased caloric 
value of the HFD and consumed more energy on each 
day of the study (p < 0.001; Fig. 1b). Results from a two-
way ANOVA show that both dependent variables, food 
intake and energy intake, were normally distributed and 
that there was homogeneity of variance between groups 
as assessed by Levene’s test for quality of variances. There 
was not a significant interaction between the effects of 
day and treatment on food intake (g) [F(2,48)  =  0.213, 
P  =  0.809], or energy intake (kcal) [F(2,48)  =  0.197, 
P = 0.822]. HFD-fed rats did not weigh significantly more 
than rats fed a control diet (10% kcal from fat) at the con-
clusion of the study (Table 1), although they did gain more 
weight during the last 24-hour period (day 3) of the study 
(p  <  0.05, Fig.  1c). There was a significant interaction 
between the effect of day and treatment on the weight 
gain (g) of the rats [F(2,48) =  0.197, P =  0.020]. There 
was no significant difference in the raw weights of white 
or brown adipose depots either alone or when combined 
(Table  1), or when they were calculated as a proportion 
of body weight (not shown). Liver weight was reduced in 
HFD-fed rats (Table 1) and this change was significant as 
a proportion of body weight (p < 0.05, not shown).

Blood and serum measures
After 72-h of a HFD, serum leptin (p  <  0.01) and total 
serum cholesterol (p  <  0.05) levels were significantly 
increased relative to controls (Table 2). There was no sig-
nificant difference in either blood glucose or serum insu-
lin levels between control- and HFD-fed rats (Table 2).

Gene expression
In the dorsal hippocampus, there was a significant 20% 
increase in transcript levels of the neuropeptide gala-
nin (p  <  0.0488; Fig.  2a). There was no change in tran-
script levels of either galanin receptor 1 or 2 (p = 0.590 
and p =  0.818 respectively; Fig.  2b, c). Also in the dor-
sal hippocampus there was a trend for an increase in 
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brain-derived neurotrophic factor and histone deacetylase 
2 (p = 0.0593 and p = 0.0604 respectively; Fig. 2d, e) in 
HFD-fed rats compared to controls.

In the ventral hippocampus of HFD-fed rats, there 
was a significant 66% decrease in transcript levels of 
galanin receptor 1 (p = 0.0153; Fig. 2b) and a significant 
14% increase in transcript levels of histone deacetylase 4 
(p = 0.0497; Fig. 2f ). There was no significant difference 
in levels of galanin or galanin receptor 2 transcripts com-
pared to controls (p = 0.978 and p = 0.220 respectively, 
Fig.  2a, c), or in transcript levels of other genes tested 
(Table 3) in either the dorsal or ventral hippocampus.

Galanin immunohistochemistry
Immunostaining for the galanin protein in brain sections 
including the dorsal hippocampus showed a strong peri-
nuclear pattern of staining in the pyramidal cells of the 
CA1 and CA2 regions (Fig. 3a–f), though differences in 
fluorescence intensity levels between treatment groups 
did not reach statistical significance (p = 0.22, Fig. 3g).

Discussion
High intake of saturated fatty acids is identified as a fac-
tor leading to cognitive impairment later in life [28]. In 
this study, we found that rats fed a HFD for only 72 h had 
significantly higher serum cholesterol than control-fed 
rats. Increased permeability of the blood–brain barrier 
has also been observed in rabbits with increased circu-
lating cholesterol [29, 30]. Other studies have linked high 
fat and cholesterol diets to damage of the blood–brain 
barrier with corresponding impairments in hippocam-
pal-dependent memory tasks [10].

Here we provide evidence that acute consumption 
of a HFD impacts the hippocampus. From our qRT-
PCR results, we found that levels of histone deacetylase 
(HDAC) transcript were trending upward in the dorsal 
hippocampus and significantly increased in the ventral 
hippocampus of HFD-fed rats. The epigenetic machinery 
tasked with modulating acetylation and methylation levels 
of DNA and histones, thus affecting gene expression, can 
be rapidly influenced by environment. HDAC activity is 

Fig. 1  Energy Intake, body and tissue weights. Eight to ten week-old male Long-Evans rats were fed diets either low in fat (light bars, n = 10) or high 
in fat (dark bars, n = 10) for 72 h. Food intake in grams (a), kilocalories (b), as well as body weight (c) were measured daily following 24 h (1 day), 48 h 
(2 days), and 72 h (3 days) on the diet. Statistics were performed using two-way ANOVA with post hoc Tukey’s HSD and Levene’s test for equality of 
variances. A p value of p < 0.05 is denoted by asterisk and a p value of p < 0.01 is denoted by double asterisk..

Table 1  Mean body parameters

After 72 h of control (n = 10) or high fat diet (n = 10), animals were weighed and 
fasted for 2 h before sacrifice. Inguinal, epididymal, retroperitoneal, omental, 
and pericardial white adipose depots; subscapular brown adipose; and livers 
were dissected and weighed. Statistics were performed using t test.

Measurement Control diet High fat diet p value

Body weights

 Body weight, initial (g) 299.4 ± 0.46 298.7 ± 0.66 0.802

 Body weight, final (g) 318.4 ± 0.445 320.1 ± 0.772 0.528

 72-Hour weight gain (g) 19.05 ± 0.36 21.28 ± 0.30 0.093

Final tissue weights

 Inguinal adipose tissue (g) 6.32 ± 0.070 6.71 ± 0.101 0.326

 Epididymal adipose tissue (g) 3.61 ± 0.049 3.89 ± 0.072 0.335

 Retroperitoneal adipose tissue 
(g)

3.31 ± 0.029 3.53 ± 0.081 0.444

 Omental adipose tissue (g) 0.183 ± 0.011 0.155 ± 0.004 0.460

 Pericardial adipose tissue (g) 0.586 ± 0.009 0.534 ± 0.015 0.380

 Total white adipose tissue (g) 14.2 ± 0.152 14.8 ± 0.178 0.376

 Subscapular brown adipose 
tissue (g)

0.43 ± 0.006 0.43 ± 0.008 0.994

 Liver weight (g) 14.4 ± 0.131 13.3 ± 0.080 0.050

Table 2  Blood and serum measures at endpoint

After 72 h of control (n = 10) or high fat diet (n = 10), animals were fasted for 
2 h before sacrifice. At the time of sacrifice, trunk blood was used to measure 
blood glucose. Blood was allowed to clot for collection of serum. Serum insulin 
and leptin were measured via ELISA and total serum cholesterol was measured 
chemically. Statistics were performed using t test. A p value of p < 0.05 is 
denoted by * and a p value of p < 0.01 is denoted by **.

Measurement Control diet High fat diet p value

Blood glucose (mg/dl) 123.0 ± 1.12 122.7 ± 1.15 0.952

Serum insulin (ng/ml) 2.40 ± 0.07 2.16 ± 0.05 0.365

Serum leptin (ng/ml) 1.55 ± 0.00 1.57 ± 0.00 0.005**

Serum cholesterol (mg/dl) 112.4 ± 0.96 128.0 ± 1.78 0.026*
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increased in instances of neuronal cell death and admin-
istration of HDAC-inhibitors has been proposed in the 
treatment of Alzheimer’s disease [31, 32]. A recent review 
by Mielcarek et al. [33] highlights the role of HDAC4 in 
neuronal cell death. Interestingly, the activity of HDAC4 
is regulated by its translocation from the cytoplasm to the 
nucleus. Wang et al. showed that in Drosophila, an impor-
tant model organism for the study of obesity and diabetes, 
feeding activated the AMPK-family kinase SIK3, which 
phosphorylated HDAC4 and promoted its sequestration 
in the cytoplasm [34]. While upregulation of HDAC4 
mRNA in the ventral hippocampus could be evidence of 
a compensatory response related lack of active HDAC4 
in the nucleus of fed rats, the feeding-induced signal for 
this pathway was reported to be insulin [34], which was 
not significantly increased in our HFD-fed animals. Addi-
tionally, rats in our study were fasted for 2 h before tissues 
were collected. Knowing that the mediator of apoptosis 
capsase-3 [17] and the inflammatory stimulator lipopol-
ysaccharide (LPS) [35] are both upregulated by HFD, 
and that both of these signals trigger the degradation of 
HDAC4 [33], it is also possible that HFD-induced degra-
dation of HDAC4 protein triggered the upregulation of 
HDAC4 transcripts that we observed in the ventral hip-
pocampus of our HFD-fed rats.

Importantly we show that transcript levels of galanin 
are upregulated in the dorsal hippocampus after just 72 h 
on a HFD. One of the many roles galanin is known to play 
in the central nervous system is that of a neurotrophic 

and neuroprotective factor [27, 36–39]. Specifically in 
the hippocampus, galanin has been implicated as hav-
ing both beneficial [26, 40, 41] and detrimental [25, 41, 
42] effects regarding learning and memory, due mainly 
to its ability to regulate neural activity in the hippocam-
pus through modulation of cholinergic transmission [43]. 
Galanin is also rapidly upregulated in septohippocampal 
neurons following either lesion of the area or blockade of 
neuronal activity [44]. Additionally, as previously stated, 
galanin is particularly involved in promoting the intake of 
fat [27], however we would expect this function of gala-
nin to be associated primarily with the ventral hippocam-
pus and we did not see a significant increase in transcript 
levels in this region. Also, we saw an increase in galanin 
only in the dorsal hippocampus, not in the ventral hip-
pocampus where there was the most significant increase 
in HDAC transcripts. While the ventral hippocampus is 
reportedly involved in emotion and motivation, the dor-
sal hippocampus and its connections to the frontal cor-
tex are critical for learning and memory [6, 7], and it is 
important to note that the function of galanin depends 
largely on the region of the brain in which it is acting 
[45–48]. Though our immunohistochemical results do 
not show a statistically significant increase in galanin 
protein signal in the dorsal hippocampus, there are some 
potential explanations for this discrepancy that would 
not necessarily negate our conclusions about galanin 
mRNA: (1) We are examining only an acute response 
(3  days) and the transcription of mRNA is more rapid 

Fig. 2  Gene expression. Dorsal and ventral hippocampal qRT-PCR results for galanin (a), galanin receptor 1 (b), galanin receptor 2 (c), brain-derived 
neurotrophic factor (d), histone deacetylase 2 (e), and histone deacetylase 4 (f). GAPDH was used as an endogenous control. Light bars indicate control 
diet (n = 10) and dark bars indicate high fat diet (n = 10). Statistics were performed using t test. A p value of p < 0.05 is denoted by asterisk and a p 
value of p < 0.01 is denoted by double asterisk.
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than the translation of protein, (2) Immunohistochem-
istry is not as reliable a method for quantifying protein 
as other methods such as Western blot, therefore these 
results are most useful to display the location of galanin 
in the dorsal hippocampus, and (3) The small sample size 
(n  =  5) of our immunohistochemistry experiment was 
likely not powerful enough to generate significant results. 
Regional- and cell type-specific studies, along with more 
extensive protein analysis, will be needed to further elu-
cidate galanin’s actions in the brain in response to acute 
HFD.

In addition to the significant upregulation of galanin 
in the dorsal hippocampus, this study also demonstrated 
a trend for an increase in the transcript levels of brain-
derived neurotrophic factor (BDNF) in the same region. 
BDNF is known to enhance hippocampal function by 
increasing neurogenesis and neurite growth, enhancing 
long-term potentiation and spatial memory, protecting 

the hippocampus against excitotoxic injury, and for its 
involvement in neurodevelopment [26, 49, 50]. This find-
ing is surprising considering the majority of the literature 
regarding BDNF and HFD points to a decrease in BDNF 
transcription following HFD, however in these experi-
ments the animals consumed the HFD for 5  weeks or 
longer [50–52]. The upregulation of BDNF and galanin in 
the dorsal hippocampus suggests that the acute response 
to HFD is entirely different than the long-term response 
and requires further study.

Despite the increase in galanin transcript in the dor-
sal hippocampus, our qRT-PCR results did not show 
changes in either galanin receptor 1 (GALR1) or gala-
nin receptor 2 (GALR2) transcripts in this region. We 
did observe a decrease in the transcript levels of GALR1 
in the ventral hippocampus. All three galanin recep-
tor genes (1, 2, and 3) are expressed in both dorsal and 
ventral hippocampus [53, 54], with GALR1 having 
exceptionally high expression in the ventral hippocam-
pus when compared to the dorsal hippocampus and the 
brain as a whole [46, 47]. Pharmacological studies point 
to GALR1 as playing a larger role in feeding than either 
GALR2 or GALR3 [54]. GALR3 has a lower affinity for 
galanin than GALR1 or GALR2 and is postulated to 
have a greater role in the periphery; therefore it was not 
chosen for analysis in this study [54, 55]. Evidence that 
galanin serves different functions in the dorsal versus 
ventral hippocampal regions is supported by our find-
ings and leads us to believe that HFD differentially regu-
lates the galanin pathway in these two regions [46, 48]. 
Galanin administration has completely opposite effects 
depending on the site of infusion, for example, decreas-
ing basal acetylcholine release in the dorsal hippocampus 
and increasing release in the ventral hippocampus [48]. 
With GALR1 being reduced in the ventral hippocam-
pus, we might expect that release of galanin here would 
be increased, causing a compensatory downregulation of 
the receptor. However, since we did not see a significant 
increase in galanin mRNA in the ventral hippocampus, 
meaning that this increased galanin is not coming from 
the ventral hippocampus itself, we hypothesize that there 
could be an increase in galanin peptide release into the 
ventral hippocampus coming from other areas of the 
brain, such as the locus coeruleus. The locus coeruleus 
is one of the major galanin-producing nuclei in the brain 
and sends direct galanergic projections to both the dor-
sal and ventral the hippocampus. However, we cannot 
verify this hypothesis with the remaining brain tissue 
from our study and do not know of studies showing a 
direct connection between high fat diet and increased 
galanin release from these neurons. Additionally, dopa-
mine, the neurotransmitter most associated with moti-
vation and reward, is activated following consumption of 

Table 3  Gene primers

Sequences for all primers used in qRT-PCR reactions.

Gene symbol Gene name Forward and reverse

GAPDH Glyceraldehyde 3-phos-
phate dehydrogenase

GGGAAACCCATCACCATCTT

CCAGTAGACTCCACGACATACT

BDNF Brain-derived neuro-
trophic factor

GAGACAAGAACACAGGAGGAAA

CCCAAGAGGTAAAGTGTAGAAGG

FTO Fat mass and obesity-
associated protein

CTGTGGAAGAAGATGGAGAGTG

CAGGACGGCAGACAGAATTT

GAL Galanin CCATTGACAACCACAGATCATTTA

CAACACTTCCTAGTCTCCCTTC

GALR1 Galanin receptor 1 GTTCCCATAGGTGTACAGAGTTC

GGTGTCTTAGTCCACAGGATTAC

GALR2 Galanin receptor 2 GGACCAAAGGGCATCTAACA

CCTACAATCCTCGGTCTTTAGC

HAT1 Histone acetyltrans-
ferase 1

TGTTTCTCCCGGGAAAGATTAC

CCCGTCTAGCATGTTGCTTAT

HDAC2 Histone deacetylase 2 CTGTCAAAGGTCACGCTAAATG

GTCCAACATCGAGCAACATTC

HDAC4 Histone deacetylase 4 AGCTGCAGGAGTTTGTTCTC

CTGTGCTGTGTCTTCCCATAC

INSR Insulin receptor CCCTGTGACCCATGAAATCTT

CGCCGATAGCTCACTTCATATAG

OBRB Leptin receptor, long 
form

GGTTGGATGGACTAGGGTATTG

CAGAATTCAGGCCCTCTCATAG

ORXR Orexin receptor CTCCTCATCGTGACACTGAAAG

GAGGAAGAGAAACTCCCACAAG

RHEB1 Ras homolog enriched in 
brain 1

GAGCCCACCACCTCAATAAT

GGGAAAGTGCAGATACCGATTA

SOCS3 Suppressor of cytokine 
signaling 3

ACCTTTCTTATCCGCGACAG

CACTGGATGCGTAGGTTCTT

SYN1 Synapsin 1 GGACGGAAGGGATCACATTATT

ACCACAAGTTCCACGATGAG
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HFD and has long provided evidence for the rewarding 
effects of high fat and highly palatable foods [56, 57]. A 
recent study by Valdivia et al. showed that dopaminergic 
neurons in the ventral tegmental area (VTA), a reward-
related brain area, are activated following only 2  h of 
HFD intake [58]. Dopamine receptor stimulation has the 
ability to modulate the effects of GALR1 activation and, 
interestingly, dopamine-galanin heteromers in the hip-
pocampus are found only in the ventral pole, not the dor-
sal [46]. It is possible that an increase in VTA dopamine 
release following HFD could project, via the mesolimbic 

dopamine pathway, to the ventral hippocampus and 
result in a feedback downregulation of GALR1-express-
ing dopamine-responsive neurons in this area.

A possible confound in our interpretation of these 
results lies in the issue of novelty. In this experiment, 
animals were maintained on the control diet prior to 
start of the experiment and only the high fat group 
was switched to a new diet. To our current knowledge, 
no connections have been made between galanin and 
exposure to a novel food. However, the hippocampus 
itself responds strongly to a variety of novel events 

Fig. 3  Galanin immunohistochemistry. Galanin immunostaining of dorsal hippocampal CA1/CA2 regions in one control (a–c) and one high fat-fed 
(d–f) rat after 72 h. Scale bars set to 30 μm. a, d show DAPI staining in blue, b, e show galanin staining in green, and in c, f the images are merged. 
Quantification of GFP signal for high fat fed (n = 3) and control fed (n = 4) rats using Image J software (g). Light bars indicate control diet and dark 
bars indicate high fat diet. Statistics were performed using t test.
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[59]. Learning and memory are critical components 
of feeding: an encounter with a food item prompts an 
animal to determine if he’s ever encountered it before, 
and to remember the experience with the food item in 
case he is to encounter it again in the future [60]. Due 
to its classical role in learning and memory, the hip-
pocampus cannot be separated from these processes. 
Importantly though, the issue of novelty also cannot be 
separated from the human experience with exposure 
to a highly palatable food. In cases of short-term high 
fat feeding in humans, such as in instances of vacation 
or holidays, exposure to and consumption of novel 
foods is likely a major contributor to caloric intake, 
and likely causes activation of similar brain pathways 
as does our model.

In this study we showed that rats fed a HFD for 72  h 
had significantly higher serum leptin than rats fed a con-
trol diet. Importantly, this change was independent of a 
significant increase in fat mass. Many studies highlight 
a neuroprotective role for leptin in the central nervous 
system. Leptin reduces neuronal apoptosis, increases cell 
survival and proliferation, and reduces damage caused by 
stroke; specifically in the hippocampus, leptin facilitates 
plasticity [61, 62]. A few studies have shown evidence of 
leptin receptors on both galanin- and BDNF-expressing 
neurons in the brain, particularly the hypothalamus, and 
that leptin indirectly mediates both galanin and BDNF 
release [63–65]. It is possible that in this 72-hour HFD 
model, the upregulation of galanin and BDNF are being 
mediated through the observed increased circulating 
leptin, but further studies are needed to determine the 
presence of this molecular interaction in hippocam-
pal neurons. Chronic HFD consumption results in cen-
tral and peripheral leptin resistance, thereby preventing 
the neuroprotective role of leptin in obesity and poten-
tially contributing to the downregulation of BDNF after 
chronic HFD consumption, as mentioned earlier.

Our observance of a reduction in liver weight after 72 h 
of high fat diet is surprising, however previous studies by 
Miller et al. and Ren et al. shed light on a possible mech-
anism. In those experiments, 72 h of high fat feeding in 
rodents down-regulated hepatic lipogenesis, possibly due 
to an inhibitory effect of the dietary fat on certain hepatic 
enzymes [19, 66]. Additionally, compared to the HFD 
group, the control animals consumed a greater propor-
tion of their calories as carbohydrate, which is likely to 
have caused increased glycogen storage in control livers 
[67] compared to livers of HFD animals, another pos-
sible explanation for the differences in final liver weight 
between the groups. It is well known that chronic high 
fat diet promotes lipid accumulation in the liver, leading 
eventually to hepatic steatosis and non-alcoholic fatty 
liver disease, but our current findings along with the 

previous studies shed light on the important differences 
between acute and chronic exposure models.

Conclusion
In conclusion, this study demonstrates a unique acute 
response to HFD consumption in the hippocampus of 
the rat. Prior to significant increases in fat mass or body 
weight, gene expression in the hippocampus is altered in 
a way that reflects a distinct response in specific func-
tional poles of the hippocampus following acute HFD 
intake, with potential mediators of neuroprotection at 
play in the dorsal hippocampus. Future studies should 
examine structural changes in the hippocampus at this 
time point to determine the level of HFD-induced insult 
after 72 h as well as examine the response of females to 
acute HFD, as there is evidence for sex differences in this 
model [19].

Methods
Animals and feeding
Twenty male, 8–10  week-old Long-Evans rats (200–
250  g) were purchased from Harlan (Indianapolis, IN, 
USA). Upon arrival rats were housed individually and 
adapted to the rodent facility and to a low-fat control 
diet (Control, Table  4, D12450B; Research Diets; New 
Brunswick, NJ, USA) for 11–16 days. Rats were weight-
matched and either maintained on the control diet 
(n =  10) or switched to a high-fat diet (HFD; n =  10; 
Table  4, D12451; Research Diets; New Brunswick, NJ, 
USA). Rats had access to the diets and water ad  libi-
tum throughout the experiment. Food intake and body 
weight were monitored daily. Rooms were temperature 
(22 ± 2°C) and humidity controlled and kept on a 12:12-h 
light/dark cycle. All institutional and national guidelines 
for the care and use of laboratory animals were followed. 
All protocols for this experiment were approved by the 
University of Georgia Institutional Animal Care and Use 
Committee (AUP #A2013 09-005-Y1-A0) prior to the 
start of this experiment.

Tissue collection
After 72 h of dietary treatment, rats were fasted for 2 h 
then anesthetized with inhaled isoflurane anesthesia 
(2.5%) and euthanized by decapitation. Trunk blood was 
collected immediately for measurement of glucose (Free-
Style® Lite Blood Glucose Monitoring System; Abbot 
Diabetes Care, Abbot Park, IL, USA) and then allowed 
to clot for 30  min before serum was collected for fur-
ther analysis. The brain was removed from the skull and 
weighed. The left hemisphere was rapidly frozen on dry 
ice for RNA isolation and the right hemisphere was fixed 
in 4% formaldehyde (Avantor; Center Valley, PA, USA) 
for 28  h and flash frozen for immunohistochemistry. 
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Inguinal, epididymal, retroperitoneal, omental, pericar-
dial, and subscapular brown fat depots, along with the 
liver, were removed, weighed, and frozen in liquid nitro-
gen for long-term storage.

ELISA
Serum insulin was measured using a rat/mouse-specific 
ELISA kit (EZRMI-13 K; Millipore; Billerica, MA, USA). 
Serum leptin was measured using a rat-specific ELISA kit 
(EZRL-83K; Millipore; Billerica, MA, USA). Total serum 
cholesterol was determined using a cholesterol reagent 
set (C7510; Pointe Scientific; Ann Arbor, MI, USA). All 
kits were used according to the manufacturers instruc-
tions and spectrophotometric measurements were made 
on a Flex Station 3 (Molecular Devices; Sunnyvale, CA, 
USA).

Quantitative reverse transcription polymerase chain 
reaction
Total RNA from the dorsal and ventral hippocam-
pus was isolated using E.Z.N.A. Microelute Total RNA 
Kit (Omega Bio-Tek; Norcross, GA, USA) and quanti-
fied using a Nanodrop spectrophotometer (ND-1000; 
Thermo Scientific; Wilmington, DE, USA). 100  ng of 
RNA went into each reverse transcription reaction using 
the High Capacity cDNA Reverse Transcription Kit 
(436814; Life Technologies; Grand Island, NY, USA) and 
a Thermocycler (Professional Thermocycler, Biometra; 
Goettingen, Germany) to synthesize cDNA. Using cDNA 
produced from a 5 ng equivalent per sample, expression 

levels of transcripts for brain-derived neurotrophic fac-
tor (BDNF), fat mass and obesity-associated protein 
(FTO), galanin (GAL), galanin receptor 1 (GALR1), 
galanin receptor 2 (GALR2), histone acetyltransferase 1 
(HAT1), histone deacetylase 2 (HDAC2), histone deacet-
ylase 4 (HDAC4), insulin receptor (INSR), the long form 
of the leptin receptor (OBRB), orexin receptor (ORXR), 
ras homolog enriched in brain 1 (RHEB1), suppressor of 
cytokine signaling 3 (SOCS3), and synapsin 1 (SYN1) were 
determined by qRT-PCR. Primers were designed using 
the NCBI online database (http://www.ncbi.nlm.nih.gov) 
and sequence specificity of each primer pair (Table 3) was 
confirmed using Primer-BLAST (http://www.ncbi.nlm.
nih.gov/tools/primer-blast/index). Efficiency of primers 
for a single target sequence was determined by examin-
ing dissociation curves for each primer set and choosing 
the set that best amplified only our region of interest. In 
each RNA sample the level of glyceraldehyde 3-phos-
phate dehydrogenase (GAPDH) transcripts was used as 
an endogenous control. Quantitative real-time PCR was 
performed with SYBR green reaction mix (4309155; Inv-
itrogen; Carlsbad, CA, USA) using a 7500 system from 
Applied Biosystems to determine cycle threshold (CT) 
values. For analysis of CT values, each sample was run in 
triplicate and those triplicates were averaged to assign CT 
values for each sample and each gene. Relative quantity 
was determined using the ddCt method [68].

Immunohistochemistry
Ten μm-thick coronal brain sections taken on a cryostat 
(CM3050; Leica; Buffalo Grove, IL, USA) were used for 
immunofluorescence analysis to examine galanin (1:200 
dilution, T-4334; Peninsula Laboratories T-4334; San 
Carlos, CA, USA) immunoreactivity in the hippocam-
pus. Tissues were washed with PBST (PBS +  0.1% Tri-
ton X100) prior to antigen retrieval with 10 mM sodium 
citrate (pH 6.0). Tissues were blocked in 3% PBST 
(PBS + 3% BSA + 0.4% Triton X100) for one hour before 
being incubated with the primary antibody overnight in 
a humidified chamber at 4°C. The next day tissues were 
washed with PBST then incubated with the secondary 
antibody (1:500, Alexa 488; Abcam; Cambridge, MA, 
USA) and DAPI (1  mg/ml diluted 1:500; Thermo Sci-
entific; Waltham, MA, USA). Slides were washed again 
and coverslips were mounted with glycerol (G7893, 70% 
in water; Sigma-Aldrich; St. Louis, MO, USA). Images 
were captured on an Olympus IX81 Motorized Inverted 
Fluorescent Microscope (Center Valley, PA, USA) and 
quantified by calculating corrected total cell fluores-
cence [CTCF  =  Integrated density  −  (area of selected 
cell × mean fluorescence of background readings)] using 
Image J software (NIH; Bethesda, MD, USA).

Table 4  Diet composition (research diets)

Description of diets provided to rats for the duration of the study (n = 10/diet).

Diet Control High fat diet

Catalog number D12450B D12451

Form Pelleted Pelleted

Macronutrients (kcal%)

 Total fat 10 45

 Soybean oil 5.5 5.5

 Lard 4.4 39.4

 Protein 20 20

 Carbohydrate 70 35

 Cholesterol 167.8 mg/kcal 54.4 mg/kcal

 Total kcal/gm 3.85 4.73

Fat and carbohydrate content (kcal%)

 Soybean Oil 5.55 5.55

 Lard 4.44 39.3

 Corn Starch 31.1 7.17

 Maltodextrin 10 3.45 9.86

 Sucrose 34.5 17.0

http://www.ncbi.nlm.nih.gov
http://www.ncbi.nlm.nih.gov/tools/primer-blast/index
http://www.ncbi.nlm.nih.gov/tools/primer-blast/index
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Statistical analysis
The data are presented as the mean ± standard error of 
the mean (SEM) for all measurements. A t test (inde-
pendent, by groups) was used to compare values between 
the Control and the HFD groups using Statistica software 
7.1 (StatSoft; Tulsa, OK, USA). For food intake, energy 
intake, and weight gain over 3 days, a two-way ANOVA 
was used to examine the effects of day and treatment, 
with variance between groups assessed by Levene’s test 
for quality of variances and post hoc Tukey’s HSD test 
using SPSS Statistics 20 (IBM; New York City, NY, USA). 
A value of p  <  0.05 is denoted with * while a value of 
p < 0.01 is denoted with **.

Endnote
Please note that Dr. Clifton A. Baile died on May 19, 
2014, close to the completion of this work.
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