
RESEARCH ARTICLE

Characterizing the influence of transportation

infrastructure on Emergency Medical Services

(EMS) in urban area—A case study of Seoul,

South Korea

Jungwoo Cho1, Myoungsoon You2, Yoonjin Yoon1*

1 Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology

(KAIST), Daejeon, South Korea, 2 Department of Public Health Science, Graduate School of Public Health,

and Institute of Health and Environment, Seoul National University, Seoul, South Korea

* yoonjin@kaist.ac.kr

Abstract

In highly urbanized area where traffic condition fluctuates constantly, transportation infra-

structure is one of the major contributing factors to Emergency Medical Service (EMS) avail-

ability and patient outcome. In this paper, we assess the impact of traffic fluctuation to the

EMS first response availability in urban area, by evaluating the k-minute coverage under 21

traffic scenarios. The set of traffic scenarios represents the time-of-day and day-of-week

effects, and is generated by combining road link speed information from multiple historical

speed databases. In addition to the k-minute area coverage calculation, the k-minute popu-

lation coverage is also evaluated for every 100m by 100m grid that partitions the case study

area of Seoul, South Korea. In the baseline case of traveling at the speed limit, both the area

and population coverage reached nearly 100% when compared to the five-minute travel

time national target. Employing the proposed LoST (Loss of Serviceability due to Traffic)

index, which measures coverage reduction in percentage compared to the baseline case,

we find that the citywide average LoST for area and population coverage are similar at

34.2% and 33.8%. However, district-wise analysis reveals that such reduction varies signifi-

cantly by district, and the magnitude of area and population coverage reduction is not always

proportional. We conclude that the effect of traffic variation is significant to successful urban

EMS first response performance, and regional variation is evident among local districts.

Complexity in the urban environment requires a more adaptive approach in public health

resource management and EMS performance target determination.

Introduction

Emergency Medical Service (EMS) is a time-critical service that depends on other critical

infrastructures including transportation network. In highly urbanized area where traffic condi-

tion fluctuates constantly, transportation infrastructure is one of the major contributing
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factors to reliable EMS serviceability and patient outcome [1–6]. Understanding dependency

of EMS on transportation infrastructure requires a multi-faceted analysis incorporating

diverse information such as EMS dispatch locations, transportation network topology, and

traffic speed information.

One of the most common EMS serviceability performance measures is the k-minute cover-

age area, which calculates the maximum area that can be reached within k-minute from a spe-

cific EMS dispatch location. Although there have been numerous researches to evaluate the k-

minute EMS coverage on transportation network based on Geographic Information System

(GIS) [7–12], one fundamental shortcoming of most GIS-based studies is that EMS coverage

area is calculated with a simple set of assumptions on travel distance and speed, such as Euclid-

ean distance and speed limits. Although such assumptions on travel distance and speed are

often accepted, they might not reflect the reality in a highly urbanized environment, where

temporal and geographical traffic fluctuations are too diverse to model with simple preset

values. Although recent adoption of real-time speed information bridges some of the gaps

between simple preset speed values and reality [13,14], it only applies to the tactical decision of

the current event, lacking the system-wide strategic EMS policy perspectives.

In this research, we generate 21 traffic scenarios, representing speed variation in three times

of day and seven days of week time periods, based on multiple historical speed datasets. More

specifically, 21 speed profiles are generated based on multiple citywide speed data sources for

each link in the road network topology. Once the speed profiles are imposed on GIS, shortest-

time travel routes from the EMS dispatch location are calculated. As a baseline case, traveling

at speed limit is evaluated and used in the performance analysis.

The performance of EMS serviceability is measured in coverage reduction in percentage

compared to the baseline case of speed limit, which we call the Loss of Serviceability due to

Traffic (LoST). In addition to the commonly adopted k-minute coverage area, we also evaluate

the k-minute population coverage to assess the influence of traffic variation to the population

served. A case study is conducted in the city of Seoul with travel time target of 5 minute using

total of 7,035 speed profiles for 335 road links. GIS analysis is performed using 100m by 100m

grids to achieve effective and flexible aggregation for further statistical analyses.

Current literatures

There have been numerous efforts to measure the EMS coverage, ranging from simple

assumption of Euclidean distance to sophisticated method of network-based service area cal-

culation. For example, Bauer et al. measured the area coverage by generating a circle with a

radius of 10 km around the health care facility [15]. Others have adopted a more refined

approach considering the transportation network topology. Liu et al. and Tansley et al. gen-

erated network-based area coverage within network distances of fixed kilometers to identify

regions with low accessibility [8,11]. Peleg et al. produced 8-minute service areas to assess

the performance of EMS response by counting the number of past incidents located in the

service areas [7]. GIS is the preferred analysis tool implemented in a number of similar stud-

ies because of its advantages in a) storing road networks and origin/destination information

in databases, b) calculating costs between origins and destinations on transportation net-

works with traffic delays, and c) presenting results under a certain time or distance threshold

[16].

Despite the efforts to integrate transportation networks in the assessment of EMS service-

ability, most studies assumed that ambulances travel at road speed limits [8,10,12,17]. Such

assumption has been widely adopted in several EMS ambulance travel time prediction models

[18–21], as well as in various ambulance allocation and reallocation models [9,22].
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There also have been several attempts to utilize the historical speed data; Peleg and Pliskin

utilized district-level historical traffic data to assign ambulance speeds that vary by district and

by time [7]. More recently, Lam et al. used EMS log data to model travel time in congested and

uncongested hours [9]. Although those studies succeeded in overcoming the simple assump-

tion on travel speed, the extent of utilized speed information is limited to district, ignoring the

link-level variation in the road network. Adopting speed values at the road link-level further

improves the robustness of traffic modeling such as shortest-time travel route estimation, espe-

cially in highly urbanized areas. However, challenges lie in (1) whether such data is obtainable,

and (2) how one should measure the EMS travel time performance with such dataset. In this

paper, we address both challenges by conducting a case study of Seoul, South Korea, where

link-level speed dataset is available, and travel time performance is measured by EMS coverage

reduction both in geographical area and population.

Materials and methods

Analysis is carried out in two steps as illustrated in Fig 1. In the first step, the 21 link-wise

speed profiles are generated using historical speed data, which represents speed variation in

three times of day and seven days of week periods. Speed profiles are imposed on the road net-

work topology using GIS, in which the study area is partitioned into 100m by 100m grids to

allow flexibility for further analyses. Both geographical area and population coverage are calcu-

lated based on the shortest-time routes on the actual road network, and coverage is summa-

rized at the citywide and district-wise level. In the following step, performance analysis is

conducted based on the proposed Loss of Serviceability due to Traffic (LoST) index, and the

elasticity between the area and population reduction is measured.

Study area

We select the city of Seoul, S. Korea as our case study area. The city is populated with more

than 10 million residents, which is more than one fifth of the nation’s total population. The

city is divided into 25 local districts, and each individual district is served by 3 to 8 EMS sta-

tions as shown in Fig 2. There are 114 EMS stations in total, among which 103 are equipped

with a single ambulance, while the remaining 11 stations are equipped with two ambulances.

A typical EMS response vehicle is staffed by three personnel, one EMT-basic, one EMT-inter-

mediate, and one trained driver [23]. The city enacted a five-minute golden time rule in 2014,

which aims to achieve 74% EMS calls responded within 5 minutes by 2017 [24].

Data

EMS dispatch station location. Location of 114 ambulance stations in Seoul is collected

from the Korea Transport Database, and each station is geo-located on ArcGIS 10.1.

Transportation network topology. Road network topology of Seoul is extracted from

Korea Transport Database, and ArcGIS Network Analyst tool is used to analyze the road

network.

Population data. Population data is obtained from XsDB of BIZGIS, which is available in

100m by 100m grid unit. Population data which totals for 29,111 grid squares were collected.

Road link speed. We employed two publicly available speed data sources to generate road

link speed profiles for 21 traffic scenarios—the link-level annual average speed database and

the district-wise annual average speed database. The link-level database contains annual aver-

age speed of 335 road links for three time-of-day categories: morning peak (07:00–10:00),

afternoon off-peak (12:00–15:00), and evening peak (17:00–20:00). On the other hand, the dis-

trict-wise database provides the annual average speed of the district for each of seven days of

Impact of traffic variation to EMS first response in urban area
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week. Combining two speed data sources yields 21 speed profiles for each road link, as

explained in the following subsection.

Link speed profile generation

Since link-level speed is provided only by time of day without the day-of-week information,

the district-wise day-of-week speed information is utilized to obtain the weight factor
vn;d
vn;d

,

which is then applied to the time-of-day speed value to generate the link speed by day of week.

Specifically, for each link l in the road network, the speed at time period p on day d is obtained

Fig 1. Two-step modeling and analysis framework to assess the impact of transportation

infrastructure to EMS.

https://doi.org/10.1371/journal.pone.0183241.g001

Fig 2. 25 local districts and 114 EMS dispatch station locations in Seoul, S. Korea.

https://doi.org/10.1371/journal.pone.0183241.g002
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as shown below.

vs
l ¼ vp

l �
vn;d

vn;d
ð1Þ

, where

vs
l : speed of link l under traffic scenario s

vp
l : speed of link l at time period p

vn,d: speed in district n on day d

vn;d ¼

P
dvn;d

jDj

s 2 S ¼ P � D

P = {p: morning, afternoon, evening}

D = {d: Mon, Tue, Wed, Thr, Fri, Sat, Sun}

n: local district

k-minute coverage calculation

The study area is partitioned into a 100m by 100m grid, resulting in the total of 29,211 grids.

For each grid, the k-minute coverage is calculated based on reachability to the grid from 114

EMS stations within k minutes. The shortest-time travel route on the actual road network is

obtained between the closest EMS station to the grid, as illustrated in Fig 3.

Let ts
g be the travel time to the center of grid g to the closest EMS station under traffic sce-

nario s. We define the indicator function 1k(g) of the grid to denote whether the grid g is cov-

ered within k minutes from one of the EMS stations.

1kðgÞ ¼
1; if ts

g � k

0; otherwise

(

ð2Þ

Now, given a collection of grids Γ, the k-minute area coverage Areas
G
ðkÞ and population

coverage Pops
G
ðkÞ is defined as follows.

Areas
G
ðkÞ ¼

X

8g2G
1kðgÞ ð3Þ

Pops
G
ðkÞ ¼

X

8g2G
1kðgÞ � ðpopulation at grid gÞ ð4Þ

Although evaluating 29,211 grids for 21 traffic scenarios might seem cumbersome and com-

putationally expensive, the advantage of such setup is clear once the indicator function value is

assigned; one can conduct various analyses using flexible area definition—the whole city, dis-

tricts or specific area of interest. In this paper, we present the citywide and district-wise

analyses.

Impact of traffic variation to EMS first response in urban area
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Loss in Serviceability due to Traffic (LoST)

To measure the effect of traffic condition to the EMS serviceability, we propose the Loss in Ser-
viceability due to Traffic (LoST) defined as follows.

LoSTs
areaðG; kÞ ¼ 1 �

Areas
G
ðkÞ

Areabaseline
G
ðkÞ

ð5Þ

LoSTareaðG; kÞ ¼
P

sLoSTs
areaðG; kÞ
jSj

ð6Þ

LoSTs
popðG; kÞ ¼ 1 �

Pops
G
ðkÞ

Popbaseline
G
ðkÞ

ð7Þ

LoSTpopðG; kÞ ¼
P

sLoSTs
popðG; kÞ
jSj

ð8Þ

LoST represents the percentage reduction in k-minute coverage compared to the baseline

case due to traffic changing conditions. The larger LoST value is, the more severe the effect of

traffic in the area of interest is.

To characterize the gaps between the area and population coverage, we calculate the ratio

rk
G
¼

LoSTpopðG;kÞ

LoSTareaðG;kÞ
, which naturally yields the elasticity of coverage. In other words, ρΓ measures

Fig 3. Illustration of per-grid evaluation of k-minute coverage using the shortest-time route.

https://doi.org/10.1371/journal.pone.0183241.g003
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the percent reduction in average population coverage when there is 1% reduction in mean

area coverage in Γ.

Results and discussion

Citywide k-minute coverage

Distributions of citywide area and population coverage are shown in Fig 4, with travel time

threshold k increasing from 1 to 12 minutes. Baseline results of traveling at speed limit show

that 75% of city area and population is covered within 2 minutes, and nearly 100% is served

within 5 minutes in both categories. When varying traffic scenarios are applied, we find that

between 5 and 6 minutes are required to cover 75% of the city on average, and more than 11

minutes are required to serve nearly 100% of city area and population. Considering the 5-min-

ute EMS travel time target, the probability of missing the target is 34.5% for the area and 33.6%

for the population on average. In the following section, breakdown analysis of district-wise

performance is presented using k = 5 minutes.

District-wise 5-minute coverage

Area coverage. Areas
G
ð5Þ and LoST s

areaðG; 5Þ for all 25 local districts Γ � {A, B, C, . . ., Y}

along with the baseline case coverage are summarized in Fig 5. We observe that mean coverage

area varies greatly by district, ranging from 39.2% to 92.5%. The district-wise LoSTarea(Γ, 5)

shows mean and standard deviation of 34.2% and 3.6%. In other words, impact of traffic fluc-

tuation is estimated to reduce the area coverage by 34.2% on average. In the most severe case

of district A, coverage reduction is expected to be 56.7% on average and reaches 65.7% in the

worst case. One important insight is that coverage reduction is distinctive by district and

hardly homogeneous.

Population coverage. Pops
G
ð5Þ and LoST s

popðG; 5Þ for all 25 local districts Γ � {A, B, C, . . ., Y}

along with the baseline case coverage are summarized in Fig 6. We observe a similar trend with

the area coverage, with significant variation in 5-minute coverage by district ranging from

43.2% to 94.3%. The LoSTpop(Γ, 5) shows mean of 33.8% and standard deviation of 3.7%. The

district A, which has the most severe reduction in the area coverage turns out to be the top dis-

trict in population loss with 60.7% reduction on average. Note that some districts such as district

B, C, D show larger LoSTpop(Γ, 5) than LoSTarea(Γ, 5), indicating that area and population reduc-

tion is not always proportional.

Comparison between area and population coverage with ρΓ.
In Fig 7, pairwise per-district LoSTpop(Γ, 5) and LoSTarea(Γ, 5) values are shown in the scatter

plot. Overall, the gap between area and population coverage seemed to be well contained. Sim-

ple calculation of difference between LoSTpop(Γ, 5) and LoSTarea(Γ, 5) reveals that 12 of 25 dis-

tricts show smaller LoSTpop than LoSTarea, suggesting that half of the city is more sensitive to

traffic fluctuation with respect to the serving population than the area. The values of LoSTpop

and LoSTarea are presented in S1 Table.

To further characterize such gaps, the ratio ρΓ2{A,B,C,. . .,Y} between LoSTpop and LoSTarea is

calculated and the results are shown in Fig 8. The citywide ρΓ of 0.99 indicates unit elasticity

between area and population coverage. However, some districts depart from the citywide unit

elasticity. In district Q where the ρΓ has its minimum of 0.78, 1% reduction in area coverage

results in 0.78% reduction in population coverage. On the other hand, in district X where the

ρΓ has its maximum of 1.31, 1% reduction in area coverage results in 1.31% reduction in popu-

lation coverage. The wide range of ρΓ suggests that local variations in urban area like Seoul is

Impact of traffic variation to EMS first response in urban area
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Fig 4. Citywide k-minute coverage distributions. (a) Area coverage. (b) Population coverage.

https://doi.org/10.1371/journal.pone.0183241.g004

Fig 5. 5-minute area coverage by district. (a) Area coverage. (b) Area LoST, LoST s
areaðG; 5Þ.

https://doi.org/10.1371/journal.pone.0183241.g005
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complex to characterize, and the public health policy such as EMS resource management

should take such heterogeneity into consideration and needs to take more adaptive approaches

in making the policy decisions and performance evaluation.

Conclusions

In this paper, we proposed a framework to characterize the influence of traffic fluctuation to

EMS first response serviceability in highly urbanized area, and conducted a case study in the

city of Seoul, South Korea. Total of 21 traffic scenarios representing the three time-of-day and

seven day-of-week variations are generated based on the actual historical traffic data, and

imposed on transportation network topology. In addition to adopting the commonly used k-

minute coverage concept to evaluate the EMS serviceability, we proposed to include and com-

pare the population coverage as well. The Loss of Serviceability due to Traffic (LoST) is pro-

posed to measure reduction in coverage, and the gap between area and population coverage is

analyzed based on the concept of elasticity.

Fig 6. 5-minute population coverage by district. (a) Population coverage. (b) Population LoST,

LoST s
popðG; 5Þ.

https://doi.org/10.1371/journal.pone.0183241.g006
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Baseline case of traveling at speed limit shows that almost all city area is served within 5

minutes, which is the performance target enforced by the city. When evaluated for the 21 traf-

fic scenarios against the baseline case, the average citywide reduction in area and population

coverage values are similar at 34.2% and 33.8%, respectively. However, district-wise analysis

reveals that some districts show more than 50% reduction in both the area and population cov-

erage, while one district shows reductions less than 10% in both categories. We also find that

the magnitude of reduction is not always proportional between the area and population cover-

age, and some districts show nearly 30% more reduction in served population compared to the

area coverage.

We conclude that EMS first response performance is highly dependent on the changing

condition of transportation infrastructure. Moreover, summarizing such dependency for the

Fig 7. District-wise LoSTpop and LoSTarea. (a) Scatter plot of mean LoSTpop and LoSTarea. (b)

Geographical illustration of LoSTarea. (c) Geographical illustration of LoSTpop.

https://doi.org/10.1371/journal.pone.0183241.g007

Fig 8. Ratio ρΓ of area and population coverage LoST shown by district.

https://doi.org/10.1371/journal.pone.0183241.g008
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city as a whole can be misleading since regional variation is evident among local districts.

Although such conclusions are based on our case study, the analysis framework employed in

this research can readily be applied to other urban area as long as three data sources are avail-

able—speed data, road network topology and population data. Our research demonstrates the

importance of understanding the dependency and implication of transportation infrastructure

to public health service such as EMS in an urban environment. It is evident that a more adap-

tive approach is required in urban public health policy decision to plan beyond the simple set

of assumptions on related urban infrastructure. We believe that the proposed framework can

be effectively incorporated in various EMS policy decisions, including the resource allocation

problem as well as the performance target determination such as golden time rule.

Supporting information

S1 Table. Loss in Serviceability due to Traffic (LoST) by district.

(PDF)
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