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The ability of palaeontologists to correctly diagnose and classify new fossil
species from incomplete morphological data is fundamental to our under-
standing of evolution. Different parts of the vertebrate skeleton have
different likelihoods of fossil preservation and varying amounts of taxo-
nomic information, which could bias our interpretations of fossil material.
Substantial previous research has focused on the diversity and macroevolu-
tion of non-avian theropod dinosaurs. Theropods provide a rich dataset
for analysis of the interactions between taxonomic diagnosability and
fossil preservation. We use specimen data and formal taxonomic diagnoses
to create a new metric, the Likelihood of Diagnosis, which quantifies the
diagnostic likelihood of fossil species in relation to bone preservation poten-
tial. We use this to assess whether a taxonomic identification bias impacts
the non-avian theropod fossil record. We find that the patterns of differential
species abundance and clade diversity are not a consequence of their relative
diagnosability. Although there are other factors that bias the theropod fossil
record that are not investigated here, our results suggest that patterns of rela-
tive abundance and diversity for theropods might be more representative of
Mesozoic ecology than often considered.
1. Introduction
In order to understand past ecology and key evolutionary changes, palaeontol-
ogists must be able to correctly estimate relative or absolute species abundance
and diversity [1]. The imperfection of the fossil record means spatial, temporal
and sampling biases [2–9] likely limit our knowledge, with many recent studies
attempting to understand connections between apparent biological patterns
and biases [10–17], and to quantify the level of ‘missing’ information in the
fossil record [18–26]. However, a critical but less examined factor influencing
interpretations is our ability to correctly identify fossil species [27–33]. In the
tetrapod fossil record, inconsistent fossilization not only occurs on large spatial
and temporal scales, but also across the individual bones of the skeleton.
Furthermore, unique characters diagnosing species or wider clades (autapo-
morphies and synapomorphies) are also differentially distributed across the
skeleton depending on the individual species or taxonomic group. Therefore,
if the diagnostic characters of a particular taxonomic group are present on
bones that are commonly preserved in the fossil record, palaeontologists
should be able to more readily identify those fossils and distinguish species.
The variable likelihood of preservation of individual bones and the variable
distribution of taxonomically informative characters across the skeleton could
therefore play pivotal roles in estimates of past abundance and diversity.
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Figure 1. A diagrammatical representation of the process and methodology behind the Likelihood of Diagnosis (LoD) metric.
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Here,we investigatewhether a taxonomic identificationbias
is present in non-avian theropod dinosaurs. Theropods are
one of the most intensively studied groups of fossil vertebrates
[34–36], with a substantial interest in their macroevolutionary
patterns [2,6,8,11–13,15,17,37–44], and they provide a rich
source of data to explore connections between fossil preser-
vation and taxonomic diagnosability. Owing to the abundant
identification of fossils of some individual species, for example,
Allosaurus fragilis in the Morrison Formation (e.g. [45,46]), we
hypothesize that certain theropod subgroups are ‘easier’ to
identify than others owing to fortunate combinations of bone
preservation potential and distribution of diagnostic characters
across the skeleton, leading to higher quantities of discoveries.
We exclusively test for this potential bias on a global scale by
quantifying the diagnostic quality of the fossil material of each
theropod species and statistically comparing this to estimates
of abundance at different taxonomic and spatio-temporal scales.
2. Material and methods
(a) Likelihood of Diagnosis metric
We updated (August 2020) an existing skeletal completeness data-
set [25] to obtain the presence/absence data for each individual
skeletal element (elements occurring within series (e.g. teeth, ver-
tebrae, ribs and digits) were treated as one individual element; see
electronic supplementary material) of all published non-avian
theropod species (except those known only from isolated teeth
[32]) and 69 unnamed, but phylogenetically informative, speci-
mens previously included in cladistic analyses [47]. The total
number of occurrences of each skeletal element was then calcu-
lated from all theropod specimens, and the proportion
constituted by each element relative to all known theropod
elements was used as its ‘global’ preservation potential (figure 1;
see electronic supplementary material, ‘Supplementary method-
ology’ for data limitations).

Taxonomic diagnoses within the published literature define
the most distinguishing features of fossil species in an easily acces-
sible format. From these diagnostic summaries, we gathered the
number of autapomorphies identified for each skeletal element
for all valid theropod species (see ‘Theropod Diagnoses data’
[47]) (figure 1). All plesiomorphic, synapomorphic and differential
diagnostic references to individual elements were ignored,
but ‘unique combinations’ of characters were included. The total
‘unique combination’ of characters was regarded as equivalent to
a single autapomorphy. Therefore, for each species with such
diagnoses, the individual characters were scored as a proportion
of the sum of all the characters (i.e. for a ‘unique combination’ of
four characters, each character represents 25% of an autapomor-
phy) [47]. We incorporated diagnoses from formal systematic
palaeontology sections, and only included data from post-1980
diagnoses, because, generally, before this time autapomorphies
were not explicitly defined in diagnoses. Unique characters refer-
ring to entire body partitions (e.g. skull length), integument,
fenestrae with contacts with multiple elements or the association
of multiple elements (e.g. measurement ratios between two
bones) could not be assigned to specific elements and were
therefore excluded (see electronic supplementary material,
‘Supplementary methodology’ for data limitations).

For a given species, the number of unique characters (Ch)
assigned to each skeletal element was multiplied by the ‘global’
preservation potential (PP) of each element, and the resulting
scores were summed to produce a Likelihood of Diagnosis (LoD)
score for that species (figure 1) (LoD =∑[Ch × PP] +…n). A high
LoD means that a higher number of unique characters have been
identified for a species and/or that identified autapomorphies
are distributed on skeletal elements that are commonly preserved.

To evaluate the likelihood of diagnosing all of the known
species in a more inclusive grouping of data (i.e. taxonomic sub-
group, geological formation, time bin), we calculated the mean
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Figure 2. Radial plots depicting the relative percentage of occurrences of, and unique diagnostic characters assigned to, the major skeletal regions of Theropoda. All
subgroup outer circles represent 50%. Scatterplots depict relationships between the LoD and species richness (black) and minimum number of individuals (MNI) (red) for
summarized subgroup data (a) and between LoD and MNI per species (b–r). (a) All theropod species; (b) ‘basal’ Theropoda; (c) basal Neotheropoda; (d ) Ceratosauria; (e)
basal Tetanurae; ( f ) Megalosauroidea; (g) Allosauroidea; (h) Megaraptora; (i) basal Coelurosauria; ( j ) Tyrannosauroidea; (k) Compsognathidae; (l ) Ornithomimosauria;
(m) Therizinosauria; (n) Alvarezsauroidea; (o) Oviraptorosauria; ( p) Dromaeosauridae; (q) Troodontidae; (r) non-avialan Paraves. Abbreviations: chev., chevrons; pect.,
pectoral. Silhouettes used include work by S. Hartman, T Michael Keesey, T. Tischler, J. Conway, Funkmonk and M. Martyniuk (http://phylopic.org/; CC BY-SA 3.0).
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LoD scores from constituent species. To ensure data were
approximately normally distributed (electronic supplementary
material, figures S1–S3) [47] and mean values not skewed by out-
liers, we logged the LoD scores prior to mean calculation. Species
were split into major theropod subgroups following phyloge-
netic relationships used in Cashmore and Butler [25] (figure 2;
see electronic supplementary material, ‘theropod relationships’).
For each subgroup, we further calculated the relative proportion
of unique characters and relative proportion of skeletal element
occurrences (figure 2; electronic supplementary material,
table S1).
(b) Abundance proxies
We calculated the minimum number of individuals (MNI) for
each theropod species based on the number of duplicated
elements associated with each species in our skeletal complete-
ness dataset [47], cross-referenced with published literature.
MNIs for taxonomic, geological formation and temporal group-
ings were summed from all known species (including species
lacking ‘autapomorphic’ diagnoses) and indeterminate speci-
mens, and ratios of MNI to valid species richness were also
used as an abundance proxy [47].

http://phylopic.org/
http://phylopic.org/


Table 1. Results of comparisons between LoD and select abundance proxies at different taxonomic scales using generalized least-squares regression (GLS).

comparison slope t-value R2 p-value

species LoD∼ MNI 0.0508 0.85 0.0020 0.40

species LoD∼ PBDB individuals 0.0010 0.02 0.0000 0.99

species LoD∼ PBDB occurrences −0.0220 −0.33 0.0003 0.74

species LoD∼ PBDB individuals per locality 0.0639 0.43 0.0006 0.67

subgroup LoD∼ MNI −0.0507 −0.94 0.0557 0.36

subgroup LoD∼ species richness −0.0534 −0.85 0.0461 0.41

subgroup LoD∼ MNI per species −0.0413 −0.38 0.0097 0.71

subgroup LoD∼ PBDB individuals −0.0157 −0.53 0.0181 0.61

subgroup LoD∼ PBDB species richness −0.0453 −0.73 0.0345 0.48

subgroup LoD∼ PBDB individuals per species −0.0118 −0.26 0.0046 0.80

subgroup LoD∼ PBDB occurrences −0.0152 −0.53 0.0185 0.60

subgroup LoD∼ PBDB individuals per locality −0.0601 −1.05 0.0679 0.31

subgroup LoD∼ PBDB species per locality −0.0531 −0.78 0.0393 0.45
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We further calculated a number of abundance proxies from
theropoddata in the PaleobiologyDatabase (PBDB) (https://paleo-
biodb.org) (downloaded on 07/07/20). For each valid species, we
calculated the number of occurrences, individuals, and the ratio
of individuals to unique localities (i.e. collections) [47]. The same
proxies were calculated for each taxonomic subgroup, formation
and time bin, but these also included specimens only identified
to higher taxonomic levels (e.g. Tyrannosauridae indet.) [47].
Additionally, for each grouping, we calculated the ratio of individ-
uals per species, and species and individuals per locality, as other
potentially informative abundance proxies.

(c) Statistical tests
For each species, we statistically compared the LoD scores with
their MNI, across all theropods, and within each subgroup, Meso-
zoic stage, and within each of the five most species-rich geological
formations. The species-level PBDB abundance proxieswere solely
compared across all Theropoda. Across all taxonomic subgroups,
formations and time bins, mean logged LoD scores were statisti-
cally compared to species richness, summed MNI and PBDB
subgroup abundance proxies. Stage-level time bins were chosen
as most Mesozoic stratigraphic data are not well constrained to
finer scales.Minimumandmaximum stage dateswere determined
fromWalker et al. [48]. Species that were present overmultiple geo-
logical stages, or have an uncertain stratigraphic age, were
included in each stage in which they potentially were present.

Generalized least-squares regression (GLS) was used for linear
comparisons, implemented using the function gls() in the R pack-
age nlme [49]. A first-order autoregressive model (corARMA) was
applied to temporal data to reduce the chances of overestimating
statistical significance owing to autocorrelation. Prior to analysis,
log-transformation was applied to ensure normality of residuals
and homoscedasticity (constant variance). We further calculated
a likelihood-ratio based pseudo-R2 value by using the function
r.squaredLR() of the R package MuMIn [50].

R (v. 3.1) [51] was used to perform all statistical tests
and initially create all plots. Radial plots were created with the
package plotrix [52].
3. Results
Theropod skeletal regions with the highest preservation
potential are the hind limb and vertebrae, with the caudal
vertebrae, tibia, femur and metatarsals preserved most fre-
quently. Most theropod diagnostic characters come from the
skull, hind limb and vertebrae, with the maxilla, metatarsals
and cervical and caudal vertebrae the predominant contribu-
tors (figure 2a; electronic supplementary material, table S1).

We find no significant relationship between species LoD
and MNI or any PBDB abundance proxy across all theropods
(table 1), within each subgroup (figure 2b–r), each relevant geo-
logical formation and time bin (electronic supplementary
material, tables S2–S4). Compsognathidae and Ornithomimo-
sauria have the highest mean LoD scores of all subgroups,
while non-avian Paraves and Megalosauroidea have the
lowest [47]. Temporal fluctuations in mean LoD are limited
[47], but there is a very gentle rise through time after an initial
outlying peak in the Carnian. There are no significant relation-
ships between mean LoD and species richness, MNI or any
PBDB abundance proxy across each subgroup (figure 2a and
table 1), across each formation or through geological time
(table 2).
4. Discussion
Our results suggest different theropod species and subgroups
do have different chances of being correctly identified; how-
ever, statistical analyses suggest these differences have little
impact on the relative abundance and diversity signals that
we derive from the fossil record. Therefore, our understand-
ing of the relative abundances of theropods within
ecosystems, and the relative diversity of theropod subgroups
to one another, may be better than pessimistic interpretations
suggest [1,23,25,31]. This implies that these aspects of thero-
pod diversity patterns outlined in many studies are at least
moderately reliable for understanding theropod evolution.
Nevertheless, various spatial and taphonomic factors still
impact the theropod fossil record and perceived macroevolu-
tionary signals. For example, specimens of Compsognathidae
are almost entirely derived from localities of exceptional pres-
ervation, and as many of their diagnostic characters are
attributed to the manus (figure 2; electronic supplementary
material, table S1), which has only moderate preservation

https://paleobiodb.org
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Table 2. Results of comparisons between LoD and species richness and select abundance proxies at different spatio-temporal scales using GLS.

comparison slope t-value R2 p-value

formation LoD∼ MNI 0.0143 0.27 0.0005 0.79

formation LoD∼ species richness −0.0584 −0.76 0.0036 0.45

formation LoD∼ MNI per species 0.0830 1.38 0.0116 0.17

formation LoD∼ PBDB individuals −0.0134 −0.33 0.0007 0.74

formation LoD∼ PBDB species richness −0.0482 −0.68 0.0031 0.50

formation LoD∼ PBDB individuals per species −0.0513 −0.84 0.0047 0.40

formation LoD∼ PBDB occurrences −0.0155 −0.38 0.0009 0.71

formation LoD∼ PBDB individuals per locality −0.1749 −1.45 0.0132 0.15

formation LoD∼ PBDB species per locality −0.0090 −0.12 0.0001 0.90

time LoD∼ MNI 0.0459 1.60 0.0841 0.12

time LoD∼ species richness 0.0466 1.51 0.0689 0.14

time LoD∼ MNI per species 0.0317 0.54 0.0120 0.59

time LoD∼ PBDB individuals 0.0334 1.41 0.0482 0.17

time LoD∼ PBDB species richness 0.0438 1.37 0.0541 0.18

time LoD∼ PBDB individuals per species 0.0144 0.25 0.0019 0.80

time LoD∼ PBDB occurrences 0.0372 1.69 0.0679 0.10

time LoD∼ PBDB individuals per locality 0.0179 0.10 0.0006 0.92

time LoD∼ PBDB species per locality −0.0152 −0.19 0.0015 0.85
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potential, it may therefore be relatively difficult to identify
fragmentary material from other deposits.

Allosauroidea and Tyrannosauroidea have strikingly higher
proportions of diagnostic skull characters in comparison to
other subgroups (figure 2g,j) [53,54], the vast majority pertain-
ing to the maxilla (electronic supplementary material, table
S1). The identification of more diagnostic characters on that
element may be a true biological signal reflecting strong cranial
selection pressures [55–57], but could also be owing to variable
worker interpretation and potential over-atomization of charac-
ters [34–36,53,55–56,58,59], which can have important
implications for phylogenetic interpretations [53,57,60]. Conver-
sely, the hind limbs of Megaraptora and Allosauroidea have
high preservation potential but relatively few diagnostic charac-
ters and thus hind limb elements might be underused as a
source of data for these groups [35] (figure 2). Character differ-
ences between subgroups could be related to a multitude of
factors, including fossil preservation quality [25,26,35], bone
size and robustness [23,31], geographic extent [34–36], author
affiliations and potential clade study bias [34–36,53].

Oviraptorosaurs,dromaeosaurids, allosauroidsand tyranno-
sauroidshaveboth thehighest species richnessandMNIofall the
subgroups. Notably, they also have the highest skeletal coverage
of diagnostic characters (62–82%) (electronic supplementary
material, tableS1), possiblyenablingmore specimensandspecies
to be identified from limited material that may otherwise
be considered undiagnostic, potentially enabling stronger
understanding of phylogenetic relationships [56,57].

We have defined LoD as a new metric quantifying the
researcher ability to identify individual species. Within the
LoD, the likelihood of recognizing new specimens of a species
is effectively controlled by the number of unique characters
assigned to it, which does not necessarily reflect the reality of
identifications in the field or museum collections. For example,
A. fragilis and Tyrannosaurus rex are two species known from a
high abundance of material, yet both lack an up-to-date formal
diagnosis [47], and therefore lack a quantifiable diagnosability
score. Inpractice, additional specimensof these, andotherappar-
ently common species, are in many cases identified by general
morphological similarity rather than specific autapomorphies.
Therefore, LoD does not fully capture how new specimens are
assigned to species and abundance proxies may be skewed by
these ‘generalized’ identifications, potentially causing the lack
of statistical relationship between LoD and abundance (tables 1
and 2). Furthermore, LoD is itself likely influenced by the vari-
able preservation and sampling biases that impact the fossil
record, but understanding this is beyond the scope of this
study. Despite these limitations, we believe LoD is an efficient
approach to quantify the diagnosability of fossil material and
specifically address potential taxonomic identification bias.

Although the theropod fossil record is no doubt biased by
various preservation and historical sampling factors, we
cannot identify particular formations or time bins to which
palaeontologists have applied a significantly different set of
identification criteria, which biases diversity or abundance
patterns. We therefore should have confidence in the manner
in which workers gather taxonomic data, and probably more
confidence in the ecological and evolutionary information
derived from the theropod fossil record: higher relative abun-
dance or diversity of a particular species or clade, or time bin,
are not the result of identification bias, but could be owing to
other known preservation biases, or actually represent real
patterns. While taxonomic identification is likely not a major
source of bias for theropod dinosaurs, this conclusion cannot
be widely applied to the entire vertebrate fossil record.

Data accessibility. Data and code available from the Dryad Digital Repo-
sitory: https://doi.org/10.5061/dryad.x95x69phs [47].
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