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Abstract: Daily weather conditions for an entire city are usually represented by a single weather
station, often located at a nearby airport. This resolution of atmospheric data fails to recognize
the microscale climatic variability associated with land use decisions across and within urban
neighborhoods. This study uses heat index, a measure of the combined effects of temperature
and humidity, to assess the variability of heat exposure from ten weather stations across four urban
neighborhoods and two control locations (downtown and in a nearby nature center) in Knoxville,
Tennessee, USA. Results suggest that trees may negate a portion of excess urban heat, but are
also associated with greater humidity. As a result, the heat index of locations with more trees is
significantly higher than downtown and areas with fewer trees. Trees may also reduce heat stress by
shading individuals from incoming radiation, though this is not considered in this study. Greater
amounts of impervious surfaces correspond with reduced evapotranspiration and greater runoff, in
terms of overall mass balance, leading to a higher temperature, but lower relative humidity. Heat
index and relative humidity were found to significantly vary between locations with different tree
cover and neighborhood characteristics for the full study time period as well as for the top 10% of
heat index days. This work demonstrates the need for high-resolution climate data and the use of
additional measures beyond temperature to understand urban neighborhood exposure to extreme
heat, and expresses the importance of considering vulnerability differences among residents when
analyzing neighborhood-scale impacts.

Keywords: urban heat island; heat exposure; microclimate; impervious surface; canopy

1. Introduction

Heat waves, such as those recently experienced in Karachi, Pakistan, in 2015 where more than
1000 people succumbed to heat-related deaths [1], and Europe in 2003 which resulted in thousands
of deaths [2], are becoming more frequent with changing climate [3–6]. For those who live in highly
populated areas, there is a higher risk of experiencing a more extreme heat wave than for those who
live in surrounding areas because of the Urban Heat Island (UHI) effect [7,8]. The purpose of this
project is to investigate how environmental conditions relevant to human heat stress vary across and
within four urban neighborhoods in a mid-sized city using heat index, a measure of the combined
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effect of temperature and humidity. Heat index variability is related to neighborhood and local-scale
differences in percent impervious surface cover and percent vegetated cover.

1.1. The Urban Heat Island

The UHI effect is a well-studied phenomena where densely populated areas observe higher
temperatures than more sparsely populated areas, especially at night [7–12]. This phenomena exists
primarily because of decreased albedo from a greater concentration of absorptive surfaces than found
in rural areas [13]; decreased evapotranspiration because of a lack of vegetation and high levels
of rainfall partitioning to runoff; increased heat capacity from asphalt, concrete, steel, glass, and
other manmade materials [13]; the geometry of the built environment causing radiation trapping,
wind disturbance, and increased albedo when compared to flat surfaces [13]; and an increase in
heating from anthropogenic activities, such as using air conditioners, generators, and cars [10,14–17].
Additional differences have been observed between not only urban and rural comparisons [16] but also
between urban neighborhoods, where neighborhood characteristics (e.g., density of housing, amount
of vegetation) affect UHI intensity [4,11,18]. Therefore, UHI intensity will vary between and within
cities, and results from a study in one city may not sufficiently inform another.

The UHI is related to the socioeconomic characteristics of an area, as locations with lower income
are more likely to have higher population densities, less green space, and less access to resources like
air conditioning [11,19–24]. Further, the UHI is expected to intensify with changing climate, creating
an increase in days with high heat stress in both rural and urban areas, indicating that populations in
both rural and urban settings will be more vulnerable to heat stress [17], potentially compounding the
effects of UHI on urban populations.

1.2. Assessing UHI and Thermal Comfort

To assess the intensity and locality of UHI effects and, in turn, determine the best way to
mitigate excessive heat and reduce the risk of heat exposure within an urban location, small-scale,
high-resolution data must be collected and analyzed. Meso-scale studies of UHI, covering cities, states,
and even whole countries [25], have been undertaken using simulations [26] and modeling [17], remote
sensing [2,22,27,28], census data [22,27], and preexisting city-wide weather station data [5]. These
studies often produce an understanding of UHI over a large spatial area that can provide comparison
data on urban sprawl in cities, and between cities and regions, and help to understand climatic changes
through time [2,5].

Alternatively, local-scale UHI studies involving neighborhood-level data [25] given by numerous
weather stations [29] or remotely sensed data [12,30,31] provide information about the difference in
weather conditions, such as maximum temperature, experienced by those within a single city based on
the proportion of green space, building density and configuration, and quantity of impervious surfaces
within their neighborhood. Results from such studies suggest that inner cities typically experience a
higher temperature and suburbs exhibit a lower temperature [11,32,33]. This fine-scale research reveals
correlations between increased UHI strength and neighborhoods that are more densely populated, have
lower socioeconomic status, and high have concentrations of racial and ethnic minorities [11,21,22].
Given this information, microscale research can be conducted to determine how small scale factors
(e.g., living conditions, building types, access to resources) will impact a specific individual.

These microscale studies of UHI have drawn attention to the variability of individually
experienced temperatures by using mortality records [33] or small wearable sensors designed to
measure air temperature around each person [34]. This type of microscale study has also been carried
out through surveys in which selected individuals provided information on their living situation as
well as how much time was spent in their living quarters and on their daily habits, such as washing
dishes, to provide data for a formula that could be used to assign a dampness and mold factor to each
home and assess differences between gender and age groups [35]. As individuals typically alternate
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between indoors and outdoors throughout the day, the amount of time spent in either varies between
persons, resulting in a variable level of heat exposure [36].

The representative proxy for determining the existence and intensity of UHI is often temperature
collected from one or more in-situ weather stations, such as those near airports [9,12,22,34,37–39], with
the classic UHI signal demonstrating highest temperatures in the areas with the highest populations,
building density, and anthropogenic activities. However, the impact of high temperatures on humans
is increased with increased moisture in the air [40]. High moisture content decreases a person’s ability
to evaporate sweat off the skin, and thus decreases the effectiveness of the body’s natural cooling
system [41]. Often inner cities have a lower humidity than surrounding areas as there is less vegetation
and a large amount of rainfall partitioned to runoff due to impervious surfaces, resulting in a slightly
lower heat index [7] and potentially lower heat stress on humans [11]. Vegetation cools surrounding air
through transpiration and corresponding evaporative cooling [9]. The shading provided by trees will
also affect the human energy budget, which takes into account metabolism, net radiation, latent heat
flux from respiration and sweat, and convective heat transfer, among other factors, during times of high
temperatures by blocking some direct radiation [42,43]. Heat indices are calculated for the combined
effect of temperature and humidity and used to determine the “feels like” outdoor temperature [44]
and to issue heat warnings to the public when necessary [45].

In an effort to include humidity into the understanding of the climate of intra-urban
neighborhoods and for individuals residing in an urban area, thermal comfort has been assessed
using mean monthly relative humidity and air temperature [46]. Multiple studies have used the
Humidex variable, which includes both human physiological variables (i.e., age, gender, clothing,
activities) and environmental variables (i.e., wind, insolation, temperature, relative humidity), and
other thermal indices to determine how the influence of humidity on high temperatures is experienced
at a finer scale [46,47]. These studies have concluded that relative humidity will impact (albeit variably,
based on temperature) human thermal comfort, especially during times of warm conditions, such
as mid-day, in intra-urban settings [46,48]. Additionally, UHI intensity and variability throughout
an urban area were greater when using thermal indices instead of temperature [48]. Studies on
individually experienced temperature (e.g., Harlan et al. [11]) report that humidity is one of many
variables that influence thermal comfort.

1.3. Urban Health

The UHI may affect the health of those living in an urban area. Heat-related illnesses and deaths
tend to increase in urban areas during heat waves, especially in areas that are unaccustomed to
high temperatures like the upper mid-west, USA [4,6,20,49–51]. Despite acclimation to potential
extreme weather such as heat waves, the overall increased exposure to extreme heat in the southern
United States, coupled with an aging population, results in an overall higher rate of heat-related
deaths [52]. According to Harlan et al. [11] (p. 2848), heat inequality is a serious issue with the “highest
morbidity and mortality associated with extreme heat appear[ing] to occur in cities and fall[ing]
disproportionately upon marginalized groups: the poor, minorities, and elderly”. Access to resources,
such as central air conditioning, often varies with race and other socioeconomic characteristics, placing
certain groups at greater disadvantage [53–55]. The type of dwelling that a person lives in can also
result in higher indoor temperatures; for instance, a top floor of an apartment is often warmer than a
house [56].

Indirectly, high temperatures may make health issues, such as asthma, air pollution, and
allergens, worse especially in populations more readily exposed to high heat [6,17,57]. Some inter-city
population-level studies have shown that humidity does not affect health as much as temperature;
however other factors (e.g., sample size) might mask the significance of humidity [58]. Additionally,
humidity can result in more severe consequences at the intra-city neighborhood level, especially
where there is an increased population of those with a lessened ability to thermoregulate (e.g., elderly
populations) [59]. The combined effect of UHI, a lack of resources, and less coping ability may place
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these populations at a greater risk of suffering heat-related stress, illness, and mortality. It is important
to note that studies that measure individually experienced temperatures, like those mentioned above,
are needed to understand individual health risk and how this risk is related to UHI [11,34,59]. With
the expected changing of climate towards more heat waves, these vulnerable populations and those
that are not acclimated to high heat will become more at risk to heat illness and stress [51].

1.4. Assessing the Role of Urban Neighborhood Characteristics in Knoxville, Tennessee on Heat Index

This work utilizes neighborhood-scale data to determine how the daily 1500 LDT heat index (HI)
varies within and between four diverse urban neighborhoods in Knoxville, TN, USA, as well as at
control locations in downtown Knoxville and at Ijams Nature Center. Within each neighborhood, we
compare the HI of two different locations with varying levels of tree cover and impervious surfaces,
and then make comparisons between neighborhoods. We additionally analyze the top 10% of HI
values to determine if there is greater HI variability at 1500 LDT during the warmest days of the study
period. The significance of this work is using strategically located weather stations to estimate the
variability of combined exposure of the effect of humidity on temperatures during the warm season
across surface and socioeconomic characteristics.

2. Materials and Methods

2.1. Site Descriptions and Data Collection

Data were collected from 10 identical weather stations for a period of one year in Knoxville,
Tennessee, USA. The City of Knoxville, the third largest in the state, had an estimated population of
184,281 people on 1 July 2014 [60]. The Knoxville Metropolitan Statistical Area, which encompasses the
entirety of the study location, contained an estimated 837,571 people on 1 July 2014, with an increase
of about 20,000 people within the prior four years [61]. In 2010, it was estimated that Knoxville covers
98.52 mi2 with an average population density of 1815.6 persons per mi2 [60].

Knoxville is located in eastern Tennessee, in a valley between the Cumberland Plateau to the west
and the foothills of The Great Smoky Mountains National Park to the east. Knoxville experiences a
climate categorized as humid subtropical, with warm summers exemplified by an average maximum
temperature of 31.2 ˝C in July and cool winters exemplified with an average maximum temperature of
8.5 ˝C in January [62]. As the National Weather Service classifies heat indices above 26.7 ˝C and 40%
humidity as hazardous [63] we chose the warmest five months of the year (May, June, July, August,
September) for the purposes of this study as they hold the highest potential for cautionary levels (or
above) during a normal year.

Weather stations were positioned in four urban neighborhoods, downtown Knoxville, and Ijams
Nature Center (Figure 1). Each of the four neighborhoods (Burlington, Lonsdale, Vestal, and West
Hills) contains one station in a minimally vegetated (MV) location (very little vegetation) and one
station in a highly vegetated (HV) location (more dense vegetative cover). These specific urban
neighborhoods were chosen as they are all within the Knoxville city limits, they provided a geographic
coverage of the city from all cardinal directions, and they allowed for the exploration of different
socioeconomic characteristics that vary throughout the city as described below. Site selection was
undertaken carefully to ensure similar elevations in each neighborhood location as well as to avoid
localized weather influences, such as cold air drainage. Locating weather stations in both MV and HV
areas of each urban neighborhood allows examination of how heat exposure may vary in a small area
and can help provide an understanding of how vegetation can impact relative humidity and therefore
HI in each neighborhood.
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Figure 1. Locations of minimally vegetated (MV) and highly vegetated (HV) weather stations within 
each neighborhood, and control weather stations downtown and in Ijams Nature Center, and amount 
of imperviousness in the City of Knoxville. 

The four neighborhoods were chosen to reflect a range of socioeconomic characteristics  
(Table 1). Lonsdale has the highest population density and lowest mean income, and West Hills has 
the lowest population density and the highest mean income [64]. By race and ethnicity, the 
populations in West Hills and Vestal are predominantly White. In Burlington, most residents are 
African American. In Lonsdale, residents are more racially and ethnically diverse, including White, 
African American, and Hispanic households [64]. 

Table 1. Population density, approximate mean income, and general qualitative description of four 
Knoxville, Tennessee neighborhoods examined in this study [64]. 

Neighborhood Population Density 
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Lonsdale 5941 22,950 
Medium density housing with parks 
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The weather stations located in the control locations (one each in downtown Knoxville and Ijams 
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Figure 1. Locations of minimally vegetated (MV) and highly vegetated (HV) weather stations within
each neighborhood, and control weather stations downtown and in Ijams Nature Center, and amount
of imperviousness in the City of Knoxville.

The four neighborhoods were chosen to reflect a range of socioeconomic characteristics (Table 1).
Lonsdale has the highest population density and lowest mean income, and West Hills has the lowest
population density and the highest mean income [64]. By race and ethnicity, the populations in West
Hills and Vestal are predominantly White. In Burlington, most residents are African American. In
Lonsdale, residents are more racially and ethnically diverse, including White, African American, and
Hispanic households [64].

Table 1. Population density, approximate mean income, and general qualitative description of four
Knoxville, Tennessee neighborhoods examined in this study [64].

Neighborhood Population Density
(People/sq km)

Approximate Mean
Income (USD) Qualitative Description

Lonsdale 5941 22,950 Medium density housing with parks
and open space

Burlington 4971 29,447 Medium density housing with parks
and open space

Vestal 3322 24,456 Medium density housing with parks,
open space, and shopping centers

West Hills 2052 42,147
Medium density housing with parks,

open space, and a large amount of
shopping centers and highway access
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The weather stations located in the control locations (one each in downtown Knoxville and Ijams
Nature Center) serve as a comparison to typical UHI patterns seen in urban areas, that is, higher
temperatures and lower humidity being experienced in downtown locations than in vegetated and
sparsely developed areas. These locations also serve to compare the traditional UHI temperature
patterns across the city to the patterns of HI.

The temperature and relative humidity were measured in five-minute increments at each
weather station. The stations consist of Onset Smart Sensors attached to a Cantex Junction
Box (20 ˆ 20 ˆ 10 cm). The sensors are connected to a HOBO Micro Station Data Logger (H21-002).
Temperature measurements by the Onset 12-bit T/RH Smart Sensor (S-THB-M002) have an accuracy of
˘0.21 ˝C, and a resolution of 0.02 ˝C. Relative humidity measurements have a range of 0%–100%, with
an accuracy of ˘2.5% and a resolution of 0.1%. The manufacturer establishes accuracy for the weather
stations based on testing of the components prior to shipment. Additionally, before deployment, the
weather stations were tested to ensure consistent readings across all units. The sensors are installed
approximately 2.25 m above ground inside of a white, vented enclosure. Ideally, data would be
collected at a lower height, but this height was chosen to minimize vandalism.

2.2. Data

The stations began collecting data on 2 July 2014. This study analyzed data from 2 July 2014
through 30 September 2014 and 1 May 2015 through 1 July 2015. This data set covered a full warm
season in Knoxville. Because of an act of vandalism at the Lonsdale MV location, data were not
available for this location from 15–21 August 2014. Additionally, data sensor malfunctions resulted
in data unavailability from 1–5 May at the Lonsdale MV station, 1–4 May 2015 at the West Hills HV
station, and 1–5 May 2015 at the Burlington HV station.

Daily temperature (T) and relative humidity (RH) were parsed from each station’s data at
1500 LDT daily. The 1500 LDT observation was chosen since the hottest time of day typically occurs
around this time because of a delay in insolation reaching and warming the surface [65]. Additionally,
hourly temperature distributions at the control locations for the study period indicate the highest
daily temperature is typically between 1500 LDT and 1600 LDT (Figure 2). Choosing the hottest time
of the day targets the HI during maximum heating for each day during the warm season. This was
confirmed with preliminary unadjusted hourly heat index distributions at our control locations for the
time period studied, with the maximum heat index occurring at both locations between 1400 LDT and
1500 LDT though heat index showed a larger overall variation than temperature. Keeping a consistent
observation time allows for snapshot comparisons across the city at the approximate time of maximum
heat loading. Changes in this daily pattern due to synoptic forcing were not considered in this study.
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2.3. Data Processing

2.3.1. Calculation of Imperviousness and Tree Cover

The amount of impervious surface and tree cover within 100 m of each weather station were
quantified. The 100 m radius was chosen because land cover has greatest influence on air temperature
at radii less than 500 m, with the effects diminishing at larger distances [66,67]. Stewart and Oke [68]
suggest a 100–200 m circle of influence for their “local climate zones”. Similarly, Gallo et al. [69] and
Li and Roth [70] found that 100 m radii were the ideal spatial resolution for visualizing land use effects
on diurnal temperature range and UHI intensity, respectively.

GIS data for impervious cover in Knox County were obtained from KGIS (kgis.org), a Geographic
Information System collaboration between the city of Knoxville, Knox County, and Knoxville Utilities.
The 1-m solution raster was processed with ArcMap 10.2. Every impervious cell is represented by a
value of 1 and every other cell is represented by a value of 0. The percentage of impervious cover for a
given area was calculated by dividing the total number of impervious cells by the total area.

Tree cover within the 100-m radius of each weather station was estimated using i-Tree Canopy, an
online analysis tool by the USDA Forest Service. I-Tree Canopy uses aerial images available in Google
Maps to produce an estimate of tree cover. Project boundaries (the 100-m radius of each weather
station) were loaded from ArcMap 10.2 for each area. Random sample points were generated by i-Tree
Canopy and classified by the user as either “tree” or “non-tree”. For the classification of an entire city,
i-Tree suggests using between 500 and 1000 survey points; 300 survey points were classified within
each of the 100-m radii. These analyses were completed three times and the average result was used.

2.3.2. Calculation of Heat Index

HI was calculated from daily 1500 LDT T and RH data using the NOAA Rothfusz equation [63,71],
which is based on T readings in ˝F, as follows:

HI “ ´42.379 ` 2.04901523T` 10.14333127R´ 0.22475541TR´ 6.83783
˚10´3T2 ´ 5.481717 ˚ 10´2R2 ` 1.22874 ˚ 10´3T2R` 8.5282
˚10´4TR2 ´ 1.99 ˚ 10´6T2R2

(1)

For days when T was between 80–87 ˝F and RH was greater than 85%, the below adjustment was
added to the Rothfusz regression equation [63]:

Adjustment “
„

RH ´ 85
10



˚

„

87´ T
5



(2)
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The Rothfusz regression equation is not suitable to use when the HI is below 80 ˝F [63]. For all
days in which the Rothfusz regression equation yielded a HI of less than 80 ˝F, the following equation
was used to recalculate the HI [63]:

HI “ 0.5 ˚ tT` 61.0` rpT´ 68.0q ˚ 1.2s ` pRH ˚ 0.094qu (3)

The results of the above equation were averaged with T to obtain the final HI for days with HI
below 80 ˝F [63]. All temperature and HI data were converted from Fahrenheit to Celsius prior to
statistical analysis.

2.3.3. Statistical Analysis

T, RH, and HI were used to estimate heat and humidity variability across study neighborhoods
during the warm season. First, HI, T, and RH were compared between HV and MV locations within
each of the four urban neighborhoods. Second, HI was compared across neighborhoods (averaged HV
and MV station data) and the control locations (downtown Knoxville and Ijams). Paired-sample t-tests
were used for both of these analyses, except in the case of missing data where independent t-tests
were used. We address the multiple comparison problem, where using a large number of independent
t-tests could increase the number of tests deemed significant by chance, by verifying our t-test results
through two-way analysis of variance (ANOVA) tests. Two-way ANOVA tests were used to determine
if significance existed between locations during the top 10% of HI values for each station. A two-way
ANOVA tests the separate influence of each independent variable, and also analyzes the interaction
between the two variables. ANOVA was also specifically used to determine the combined effects of
neighborhood and tree cover. Three two-way ANOVAs were performed for each dependent variable
(T, RH, HI) to assess the independent and combined influence of neighborhood and tree cover.

3. Results and Discussion

3.1. Descriptive Statistics

Station characteristics (location, elevation, etc.) are listed in Table 2, along with average T, RH,
and HI during the study period. Sample size is provided and is based on the number of days available
for testing after station malfunction and vandalism data were removed. Mean T and mean RH show
the typical UHI pattern of warm and dry conditions in the downtown control location and cool and
humid conditions in the Ijams Nature Center control location. Mean HI was highest downtown and at
Ijams; lowest mean HI was in the HV locations of the four urban neighborhoods. Testing for significant
differences between these values is discussed in Sections 3.3–7. The locations with the highest variation
in HI during the warm season include Ijams and the HV station in West Hills (in order, respectively).

Table 2. Station information, including neighborhood name and station designation, elevation (m),
location (˝ latitude and longitude), and sample size (number of days recorded). Also shown for each
station is the 1500 LDT mean temperature (˝C), mean relative humidity (%), mean heat index (˝C),
maximum heat index (˝C), minimum heat index (˝C), and the standard deviation of the heat index (˝C).

Neighborhood Lonsdale West Hills Vestal Burlington
Downtown Ijams

Station Designation MV HV MV HV MV HV MV HV

Elevation (m) 290.8 293.7 316.4 312.2 288.5 280.4 355.9 316.1 286.4 290.0
Latitude 35.980 35.984 35.936 35.937 35.922 35.929 35.988 35.993 35.964 35.956

Longitude ´83.962 ´83.957 ´84.043 ´84.030 ´83.922 ´83.916 ´83.878 ´83.875 ´83.918 ´83.866
Sample Size 145 153 153 148 153 153 153 148 153 153

T 28.73 28.38 28.16 27.74 28.94 28.56 28.69 27.56 29.66 28.77
RH 53.61 55.62 58.14 63.00 55.68 57.31 56.46 59.62 51.52 62.46
HI 29.94 29.79 29.81 29.61 30.63 30.42 30.32 28.86 31.12 31.46

Max HI 37.98 39.24 39.3 39.82 41.17 40.52 40.94 36.94 40.98 43.62
Min HI 16.32 16.60 18.48 18.01 16.78 19.60 16.62 17.66 17.17 18.14

HI Standard Deviation 4.12 4.18 4.38 4.70 4.40 4.46 4.47 3.92 4.14 4.86
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3.2. Imperviousness and Tree Cover

Percent of imperviousness and tree canopy at each weather station (Table 3, also visualized in
Figure 1) were estimated to demonstrate the appropriateness of station location. Within each individual
neighborhood, the MV location showed a higher level of imperviousness than the corresponding HV
location. The greatest amount of neighborhood imperviousness is 48.8% at the Lonsdale MV station.
Likewise, the HV station has a higher level of tree cover than the corresponding MV station for each
neighborhood, as desired per the experimental plan. The greatest amount of tree cover is 51.3% at
Vestal. The downtown station showed the highest level of impervious surfaces (84%) and the lowest
amount of tree cover (4.6%). The station located within Ijams Nature Center showed the highest
amount of tree cover (78.8%) and lowest amount of impervious land cover (3.6%). Standard error for
these calculations never exceeded 3% using 300 survey points.

The amount of impervious surfaces and tree cover can affect both the T and RH of an area,
which in turn can affect the HI. Greater imperviousness corresponds with reduced evapotranspiration
and greater rainfall lost to runoff (i.e., moisture within the watershed), leading to a higher T and
lower RH [13]. Increased tree cover reduces T by shading the area from incoming solar radiation and
increasing evapotranspiration, leading to a higher RH [10,13,72,73]. Their combined impact on local
HI is subject to analysis in Section 3.6.

Table 3. Percent impervious land cover and tree cover within a 100-m radius of each station.

Neighborhood Station Designation Imperviousness Tree Cover

Lonsdale
MV 48.8 7.2
HV 32.3 28.2

West Hills
MV 23.1 33.0
HV 20.1 60.1

Vestal
MV 41.7 7.2
HV 16.9 51.3

Burlington MV 25.6 27.0
HV 18.0 47.2

Downtown ´ 84.0 4.6

Ijams ´ 3.6 78.8

These physical relationships are represented in the data collected here, with the warmest locations
occurring at the stations with the greatest amount of impervious surfaces (the MV locations of Lonsdale,
West Hills, Vestal, and Burlington) (Table 2). The locations with the highest RH were those with the
greatest amount of tree cover (the HV stations of Lonsdale, West Hills, Vestal, and Burlington). The
control locations additionally follow the maxim of high T and low RH occurring in areas with high
amounts of impervious surfaces and low tree cover (downtown Knoxville) and low T with high RH
occurring in areas with low amounts of impervious surfaces and high tree cover (Ijams Nature Center).

3.3. Inter-Neighborhood Variability

T-tests were used to determine if there are significant differences between the mean HI of the
neighborhoods (combined HV and MV station data) and control locations. Vestal and West Hills
showed a significantly higher mean HI than the other neighborhoods but were not significantly
different from each other (Table 4). Downtown reported a higher HI than all four urban neighborhoods,
but this difference is not significant when compared to West Hills (0.48 ˝C lower) and Vestal (0.59 ˝C
lower). Ijams Nature Center exhibited a significantly higher HI than all other locations, including the
neighborhoods and downtown location.
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Table 4. Comparison of 1500 LDT heat index (˝C) between combined data (HV and MV) for each
neighborhood and control locations (Downtown and Ijams). Mean differences are shown. Bolded
numbers indicate significant results (p < 0.05). Negative numbers indicate the column neighborhood is
lower than the row neighborhood mean.

Neighborhood Downtown Ijams Lonsdale West Hills Vestal Burlington

Downtown ´ 0.34 ´1.25 ´0.48 ´0.59 ´1.52

Ijams ´0.34 ´ ´1.60 ´0.83 ´0.82 ´1.86

Lonsdale 1.25 1.60 ´ 0.82 0.77 ´0.27

West Hills 0.48 0.83 ´0.82 ´ ´0.11 ´1.03

Vestal 0.59 0.82 ´0.77 0.11 ´ ´0.92

Burlington 1.52 1.86 0.27 1.03 0.92 ´

While the T and RH data follow the traditional UHI pattern [13], the HI data highlight the
importance of examining combined effects of T and RH. The comparison between the two control
locations (downtown and Ijams) gave somewhat unexpected results with the HI being significantly
higher at Ijams Nature Center. Typically, downtown locations have higher temperatures because of the
UHI effect [13,74], which would seemingly correspond to greater heat exposure. However, because
of the consistently higher RH at the Ijams Nature Center, this more than compensates for the lower
daytime T, causing a greater HI. The higher RH at Ijams is likely because the greater vegetative cover
here leads to increased evapotranspiration, and the vegetation slows air movement and decreases air
mixing [13,72,75]. Air mixing is likely different at Ijams than downtown. In the latter, air tunneling
and redirection may result in increased mixing of wet and dry air layers, whereas less wind at Ijams
might result in less mixing of surface humidity [13]. Although testing this explanation is beyond the
study scope, it is a possible area for future research.

Ijams Nature Center also had a significantly higher HI than all of the neighborhoods, likely due
to the reasons discussed above. Meanwhile, the downtown location had a higher HI than three of the
neighborhoods (statistically significant in Lonsdale and Burlington, p < 0.05) likely because of decreased
albedo, decreased evapotranspiration, and increased anthropogenic heat sources contributing to the
UHI [10–12]. Therefore, extremely developed or under-developed land can exhibit higher HIs for
different reasons depending on the conditions.

The amount of trees and lack of impervious surfaces in West Hills likely corresponded to the high
HI experienced here, but to a lesser degree than Ijams. The cause of the high HI in Vestal is less clear.
Vestal has the greatest differences in the impervious surface and tree cover amounts between stations
of all neighborhoods, but a significant difference in HI between stations. Perhaps the Vestal locations
are each experiencing high HI values for different reasons, the MV station due to increased absorption
and daytime heating, and the HV station due to greater humidity. Within-neighborhood differences
are discussed in detail in the next section.

Within a city, the UHI strengthens with increased population and building structures and often
decreases with income [11]. Given the physical and socioeconomic characteristics of each neighborhood,
Lonsdale (West Hills) would be expected to show the highest (lowest) HI because of an increased
(decreased) population density and a lower (higher) mean income. West Hills (both MV and HV
stations) also has greater tree cover and less imperviousness than most locations, independent of being
the HV or MV station. Yet, these results suggest that, in terms of heat index, West Hills’ residents
may experience more heat exposure during the warm season. While neighborhood-scale climatic
data may imply West Hills residents are more exposed to heat, social data would likely suggest
that Lonsdale residents have less resources available for coping with extreme conditions. Indeed, a
recent qualitative study in the same four neighborhoods found that Lonsdale, Burlington, and Vestal
participants expressed greater concerns about extreme heat, its impacts, and household coping ability
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than participants from West Hills [76]. Future pairing of physical data, socioeconomic characteristics,
and personal experiences of neighborhood residents could expand on these initial insights.

3.4. Intra-Neighborhood Variability

T-tests were used to determine how HI, T, and RH vary between MV and HV locations within
each urban neighborhood to highlight smaller-scale differences (Table 5). All four urban neighborhoods
showed similar T and RH tendencies, with HV locations showing a significantly lower T by as little
as 0.061 ˝C at West Hills and as much as 1.136 ˝C at Burlington, and a significantly higher RH than
MV locations by as much as 4.317% at West Hills. Burlington, Lonsdale, and West Hills all reported a
lower HI at the HV location; however, Burlington is the only neighborhood that showed significant
difference (mean HI was 1.467 ˝C lower at the HV location). West Hills exhibited a significant HI of
1.657 ˝C higher at the HV station than at the MV location.

Table 5. Comparison of daily maximum heat index (˝C), temperature (˝C), and relative humidity
(%) between MV and HV locations within each neighborhood. Mean differences are shown. Bolded
numbers indicate significant results (p < 0.05). Negative numbers indicate the HV location has a lower
mean than the MV location in each neighborhood.

Neighborhood Heat Index Temperature Relative Humidity

Lonsdale ´0.021 ´0.235 2.409

West Hills 1.657 ´0.061 4.317

Vestal ´0.208 ´0.386 1.631

Burlington ´1.467 ´1.136 3.171

Three of the four neighborhoods (Lonsdale, Vestal, and Burlington) showed a reduced HI at the
sites with less imperviousness and more tree cover; however, a significantly higher HI was experienced
at the West Hills HV station. While the T is significantly lower at the HV location than at the MV
location, the amount of variation (0.061 ˝C) is small whereas the much higher RH at the HV location
might help us understand what is happening. The West Hills stations have a relatively similar
impervious surface level but a vastly different tree cover level. The increased vegetation at the HV
location is likely causing a higher RH because of increased evapotranspiration from the plants, which
in turn leads to a higher HI at the HV location.

While the MV (HV) station within the four urban neighborhoods represents what is expected to
be the highest (lowest) temperatures, least (most) humid locations, there is a likely a wide range of
variability between these two extremes for each neighborhood. Shading from the tree cover and the
amount of impervious surfaces will vary throughout each neighborhood. Additionally, although all
MV stations have greater impervious surfaces and less tree cover, that does not mean that they are
devoid of vegetative effects.

Vegetation types and age [77], neighborhood parks and greenways, building height and density,
roadway density, and traffic [78] can all have a large effect on the strength of the UHI for various places
within each neighborhood. Parks and greenways represent a prominent method for UHI mitigation
and increasing thermal comfort in urban neighborhoods. Increased vegetation results in less energy
used for cooling, decreased air pollution, and may potentially reduce greenhouse gasses [79]. However,
this specific method of mitigation has associated costs. Aside from the initial costs of purchasing
and planting vegetation, upkeep in the form of irrigation from a public water supply, removing dead
vegetation, and replanting can keep costs high [79]. Tree planting programs, while effective, are
expensive and often distributed to higher-income areas of cities [79]. In locations like urban Phoenix,
for example, where water can be scarce, temperatures can be higher by several degrees in areas with
lower income because of less tree cover [20].
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Additional attempts to alleviate the heat produced and trapped in urban areas have included
technologies such as cool-roofs [4,26] and changes to architecture and city planning [4,16,25,80].
However, all of the factors that affect UHI intensity and the human perception of heat will vary by
location [4–6]. As emphasized by our study of intra-neighborhood variability in impervious surfaces
and vegetation cover, a one-size-fits-all prescription to mediate the effects of the UHI may be ineffective
and unrealistic, but may assist in urban neighborhood heat reduction and even greenhouse warming if
used appropriately [81].

3.5. Data Distribution

The control locations at Ijams and Downtown show a difference in medians with Downtown
having a lower median HI than Ijams (Figure 3). The intra-neighborhood differences in the median HI
values for Burlington and West Hills show the greatest differences and supports our mean HI t-tests
described above. The intra-neighborhood differences in median HI values for Lonsdale and Vestal are
quite similar, which again is supports our mean HI t-test as described above.
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Aside from the control locations, percent imperviousness was found to be greatest at the Lonsdale
MV and the Vestal MV stations (48.8% and 41.1%, respectively). Despite this, West Hills MV has a
similar median HI to the Lonsdale MV station, through the data ranges vary widely, and the Burlington
MV station has a similar median HI value to the Vestal MV station. Percent tree cover within the
neighborhoods was found to be greatest West Hills HV (60.1%) and Vestal HV (51.3%). Given that we
would expect tree cover to result in a higher HI because there will be higher relative humidity, this
was only the case for the West Hills HV station.

These results point to the potential that the large scale attributes of imperviousness and tree canopy
around the city can affect each location to a greater extent than previously thought. Alternatively,
or perhaps in addition to the large scale effect, the impact of imperviousness in some locations
(e.g., West Hills) might be more localized than the 100 m radii studied here. The spatial effect of
impervious and canopy cover on localized weather conditions is a question that cannot be answered
through this study and is subject to further research [82,83]. Convective mixing in each location might
additionally reduce the localized cooling effect of radiation blocking and increased humidity from
evapotranspiration provided by vegetation, resulting in a more uniform temperature throughout the
urban neighborhoods [13,83].
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3.6. Interacting Effects of Neighborhood and Tree Cover

Three two-way ANOVAs were used to determine how neighborhood and tree cover impacted T,
RH, and HI. Results for the T ANOVA are shown in Table 6. Tree cover was the only significant variable,
and neighborhood was not a significant contributor to T. It is somewhat surprising that neighborhood
was not significant; however, as shown in Table 4, there is significant variability between HV and MV
stations in each neighborhood, pointing to tree cover as the main contribution. The lack of a significant
interaction between neighborhood and tree cover, as well as no clear neighborhood signal, suggests that
more immediate tree cover has a larger influence on T than larger-scale neighborhood characteristics.

Table 6. Two-way ANOVA for mean temperature at 1500 LDT for the entire warm season based
on neighborhood classification and tree density, including mean-square error (MS), F value, and
significance. Bold variables are significant (p < 0.05).

Variables MS F-Value Significance

Neighborhood 21.94 2.210 0.066

Tree Cover 88.49 8.913 0.002

Neighborhood * Tree 14.69 1.480 0.228

The RH ANOVA results (Table 7) show that tree cover was once again significant, as was
neighborhood. The interaction between the two was insignificant. Therefore, tree cover and
neighborhood were significant contributors to RH, but the role of tree cover did not change based
on the neighborhood. Combining these findings with the results of the T ANOVA suggest that
neighborhood-scale decisions, such as tree planting and building density, may play a more consistent
role in determining RH than T. The HI ANOVA results (Table 8) are similar to the RH ANOVA, with
both neighborhood and tree cover being significant, but not the interaction between the two.

Table 7. Two-way ANOVA for mean relative humidity at 1500 LDT for the warm season based
on neighborhood classification and tree density, including mean-square error (MS), F value, and
significance. Bold variables are significant (p < 0.05).

Variables MS F-Value Significance

Neighborhood 1659.1 9.876 <0.001

Tree Cover 1165.2 6.937 0.009

Neighborhood * Tree 48.6 0.289 0.749

Table 8. Two-way ANOVA for mean heat index at 1500 LDT for the entire warm season based
on neighborhood classification and tree density, including mean-square error (MS), F value, and
significance. Bold variables are significant (p < 0.05).

Variables MS F-Value Significance

Neighborhood 109.75 5.777 <0.001

Tree Cover 84.41 4.443 0.035

Neighborhood * Tree 41.39 2.179 0.114

3.7. Extreme Heat Variability

A two-way ANOVA was used to determine how neighborhood and tree cover impacted HI
during the top 10% of the highest HI values from each neighborhood. Results for the top 10% HI
ANOVA are shown in Table 9. Both neighborhood and tree cover were significant contributing factors
for cross site differences in heat index on the days ranked in the top 10% of HI values in the study



Int. J. Environ. Res. Public Health 2016, 13, 117 14 of 19

region. There was no significant interaction between neighborhood and tree cover found during the
highest HI values. The top 10% of HI values have a similar significance pattern to all of our data
combined (Table 8), with neighborhood and tree cover contributing to both observed HI across the
study period as well as for the top 10% of HI values, but with no interacting effects of neighborhood
and tree cover. While neighborhood and tree cover were both significant contributors to HI, it is likely
that this contribution is consistent across all neighborhoods.

Table 9. Two-way ANOVA for top 10% of heat index values at 1500 LDT based on neighborhood
classification and tree density, including mean-square error (MS), F value, and significance. Bold
variables are significant (p < 0.05).

Variables MS F-Value Significance

Neighborhood 109.75 5.777 <0.001

Tree Cover 84.41 4.443 0.035

Neighborhood * Tree 41.39 2.179 0.114

4. Conclusions

While temperature is often the focus of UHI studies, this work addresses the need to include
humidity to better understand local heat exposure. By comparing locations with different levels of
imperviousness and tree cover, it is clear that there are competing factors that influence the HI of an
area. A location with greater impervious surfaces and little vegetation will likely experience a greater
maximum temperature. Meanwhile, a location with expansive tree cover and vegetated surfaces will
likely have higher humidity.

This work additionally emphasizes the importance of using smaller-scale data, such as at the
neighborhood-level, to determine which neighborhoods and corresponding socioeconomic groups
experience the most influence of relative humidity on high temperatures within a medium-sized
city. Studies conducted in larger cities, such as Phoenix, have shown that predominately white
neighborhoods with a higher mean income experience less heat stress [11]. However, of the
four Knoxville neighborhoods studied here, the neighborhood with the greatest HI exposure is
the wealthiest and is predominantly White. This may seem somewhat encouraging for the other
neighborhoods; however, it is likely that the lack of resources to cope with HI will counteract any
difference in exposure. Complete understanding of risk and vulnerability to heat exposure will require
these results to be paired with further quantitative and qualitative data collected directly from urban
residents in diverse neighborhoods.

Understanding how UHI impacts residents through HI variability in a medium-sized city on a
neighborhood-level is a timely and critical issue and can help inform heat mitigation efforts (e.g., heat
advisory warning systems, neighborhood heat exposure education for both awareness of heat exposure
consequences and personal mitigation) for other similar-sized cities. It is important to understand that
other factors exist that were not addressed in this study. We used HI with the assumption that this
index would give a better understanding of the level of the influence of humidity on temperature in
different urban settings. Given this, we did not consider individually experienced temperatures or the
human energy budget as our data did not allow for this scale of analysis. Radiative effects that are
influenced by shading from vegetation, such as blocking of solar radiation, will influence the human
energy budget by reducing the radiative heat exchange between the environment and the person by
as much as 30% [84]. Increased wind speed can also account for cooling of the individual and can
somewhat offset the effects of short- and long- wave radiation fluxes and temperature on the human
energy budget [85–87].

Additionally, while neighborhood-level data show a much more complex relationship between
urban neighborhoods and the urban heat island than previously considered, access to resources
such as air conditioners, residential building height and structure, the amount of time spent indoors
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versus outdoors, and the resiliency and vulnerability of people living in each neighborhood were
not considered, but could affect how residents experience heat during the warm season in Knoxville.
Further research, including resident interviews and individual or household surveys, could help to
shed light on these factors and further inform heat mitigation and land cover management.
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