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Immunoglobulin A vasculitis (IgAV) is the most common systemic small vessel vasculitis in
childhood. Its clinical manifestations are non-thrombocytopenic purpura, accompanied by
gastrointestinal tract, joint, kidney and other organ system involvement. The pathogenesis
of IgAV has not been fully elucidated. It may be related to many factors including genetics,
infection, environmental factors, and drugs. The most commonly accepted view is that
galactose-deficient IgA1 and the deposition of IgA and complement C3 in small blood
vessel walls are key contributors to the IgAV pathogenesis. Extensive neutrophil
extracellular traps (NETs) in the peripheral circulation and skin, kidney, and
gastrointestinal tissue of patients with IgAV has been identified in the past two years
and is associated with disease activity. This mini-review provides a possible mechanism
for NETs involvement in the pathogenesis of IgAV.

Keywords: IgA vasculitis, neutrophil extracellular traps, pathogenesis, biomarker, neutrophils, IgA
vasculitis nephritis
INTRODUCTION

Immunoglobulin A vasculitis (IgAV), also known as Henoch‐Schönlein purpura, is an
inflammatory small vascular disease involving the capillaries, venules, or arterioles (1). The
clinical manifestations of IgAV are non-thrombocytopenic purpura, mainly involving the skin,
gastrointestinal tract, joint and kidneys, and deposition of IgA or IgA-immune complexes (IgA-ICs)
in the vascular wall. The incidence of IgAV in children is 10-27/100,000 per year (2). The majority of
cases occur between 2 and 10 years of age, with a peak onset between 4 and 7 years of age (3, 4). In
most children, IgAV is self-limited and has a good prognosis, but a few cases have renal involvement
and a recurrent or even prolonged course. IgAV nephritis (IgAVN), which is a major cause of
mortality, is the cause of 1%–2% of pediatric end-stage renal disease cases (3). The pathogenesis of
IgAV has not been fully elucidated. At present, it is believed to be caused by genetics, infection,
environmental factors, drugs, and other factors (5). There is a wide range of immunological
abnormalities in IgAV.
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THE PHYSIOLOGICAL FUNCTION OF
NETS AND THEIR ROLE IN AUTOIMMUNE
DISEASES

Neutrophils are the most abundant white blood cells in the human
peripheral circulation. They play a key role in the innate immune
system and constitute the body’s first line of defense against
pathogens. Previous studies have shown that neutrophils
phagocytose and kill bacteria directly through secretion of
proteolytic enzymes, antibacterial proteins and reactive oxygen
species (ROS), which are directly to kill bacteria (6, 7).A novel
mechanism of neutrophil defense against infection through release
of neutrophil extracellular traps (NETs) was reported in recent
years (8). This process fundamentally differs from both cell death
and necrotizing apoptosis and is called NETosis (9). At present,
there are two mechanisms by which NETs are formed: suicide lytic
NETosis and vital NETosis. In lytic NETosis, neutrophils release
NETs through cell membrane lysis death, which depends on the
Raf/MEK/ERK signaling pathway and the activation of NADPH
oxidase. In lyticNETosis, the cell membrane breaks down and
neutrophils are unable to secrete particles. In vital NETosis, DNA
from the nucleus erupts in vesicles, passes through the cytoplasm
and binds to the plasma membrane, transporting DNA outside the
cell to formation of NETs without damaging the membrane and
maintaining the integrity of neutrophil (10). The structure of
NETs directly wraps around invadingmicroorganisms and uses its
highly concentrated antimicrobial peptides to degrade virulence
factors and kill pathogenic microorganisms, preventing the spread
and dissemination of infection, which plays an important role in
infection defense (8). However, excessive formation of NETs and
clearance of obstacles also has a toxic effect on the host. NETs
related components, such as nucleic acids and proteins, were
exposed as autoantigens in the inflammatory environment,
which can stimulate the autoimmune response of susceptible
individuals and promote various autoimmune diseases (11).
NETS INVOLVED IN THE PATHOGENESIS
OF IGAV

In 2020 Bergqvist, C et al. (12) reported that NETs were
significantly increase in skin tissues in the early stages of IC-
mediated small vasculitis, such as allergic vasculitis and IgAV. Our
previous study evaluated the level of NETs in the peripheral blood
and gastrointestinal and renal tissues of children with IgAV at
different periods. The study evaluated components of NETs, which
included cell-free DNA (cf-DNA), myeloperoxidase-DNA (MPO-
DNA), citrullinated-histone H3 (cit-H3), neutrophil elastase (NE),
and cathelicidin antimicrobial peptides (CAMP, LL37). The level
of NETs significantly increased in children with IgAV onset and
active stage, while the level of NETs gradually returned to normal
in children in the remission stage and drug withdrawal (13). In
autoimmune diseases, excessive NETs are known to act as an
exposed autoantigen in vivo, inducing the production of
autoantibodies, thereby increasing the intensity of the
inflammatory response. A continuous increase in NETs
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indicates a high inflammatory state, and reflects the imbalance
between the formation and clearance of NETs in IgAV, leading to
the accumulation of excessive NETs, which ultimately leads to
autoimmune disorders, chronic inflammation and tissue damage.
These processes have been associated with the development of
autoimmune and inflammatory diseases (14). Several studies have
shown that NETs are involved in the development and
progression of autoimmune diseases such as ANCA-associated
vasculitis, rheumatoid arthritis (RA), inflammatory bowel disease
and systemic lupus erythematosus (SLE) (15–18). A recent study
reported that MPO-DNA is significantly elevated in the
circulation of patients with IgAV and positively correlates with
IgA levels, which suggests that NETs are involved in the
pathogenesis of IgAV (19). NETs may influence the activity or
severity of IgAV (13, 19).
MECHANISM OF NETS IN IGAV

Disordered Equilibrium Between NETs
and DNase I
Our previous study (13) revealed that serum degradation of
NETs significantly declines in children with IgAV onset and
active IgAV. Children in drug withdrawal had a normal level of
NETs degradation. The level of DNase I also decreases in
children with IgAV onset and active IgAV. The reduced ability
to degrade NETs is negatively correlated with the presence of
DNase I, which is required to degrade NETs (20). The decreased
activity of DNase I may be one of the reasons for the significant
increase in NETs and thus may cause immune imbalance (21). In
patients with SLE and eosinophilic granuloma, the ability of the
extracellular and intracellular environment to degrade DNA is
significantly reduced. This phenomenon seems to be a common
characteristic of autoimmune diseases (22, 23). In addition, over-
activation of complement system and over deposition of
complement protein C1q also inhibit the production of DNase
I, resulting in ineffective NETs degradation (24). Therefore,
excessive NETs formation is related to deficient DNase I
activity, which leads to disorders that promote immunological
homeostasis dysregulation and tissue damage (25). Impaired
self-degradation of NETs is associated with RA and lupus
nephritis (26–29).The decreased activity of DNase I eventually
leads to a reduced ability to degrade NETs, which is one of the
reasons for the increase in NETs in IgAV.

Aberrant Glycosylation of IgA1 and IgA-ICs
Induces NETs Formation in IgAV
Deposition of IgA on the vascular wall is characteristic of IgAV.
IgA activate neutrophils and release NETs into tissues and the
peripheral blood. Studies have shown that NETs are involved in
various IC-mediated small vasculitis conditions, and that
circulating NETs are related to the severity of vascular
inflammation (12). In renal biopsies from patients with
ANCA-associated vasculitis, the formation of NETs was found
in the involved glomeruli and stroma lesions (30). IgA can
induce neutrophils to release NETs via Fca receptor I
June 2022 | Volume 13 | Article 912929
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(FcaRI) (31). FcaRI is elevated in children with active IgAV (32).
In idiopathic IgA nephropathy, proteinuria and leukocyte
infiltration are more pronounced, and FcaRI activation leads to
a more severe inflammatory response. It is believed that FcaRI
promotes and aggravates tissue and kidney damage by activating
the cascade reaction of cytokines and chemokines (33). NETs
have been shown to induce an autoimmune response in other
autoimmune diseases such as SLE and ANCA-associated
vasculitis (34–36). In addition, in patients with RA, the level of
circulating NETs is positively correlated with the severity of
periodontitis (37).

NETs formation has been detected in tissue biopsies of
patients in the early stages of IC-mediated vasculitis (14).
These immobilized ICs induce human neutrophils to release
NETs in vitro (38). The formation of NETs increases in the renal,
gastric, and duodenal tissues of children during IgAV onset and
active IgAV, which may be related to IgA-ICs deposition
activating neutrophils to release NETs. In lupus nephritis,
deposition of circulating ICs in the glomerular basement
membrane is accompanied by the accumulation of NETs in the
tissue, resulting in tissue damage (39). The deposition of IgA and
C3 and the formation of NETs are common in the renal, gastric
and duodenal tissues of children with IgAV. It is speculated that
IgA-ICs and C3 deposition may be involved in the occurrence
and development of IgAV through various mechanisms, such as
complement activation, chemotaxis infiltration and aggregation
of neutrophils to promote the release of NETs (Figure 1).

NETs Activate Downstream Target
Immune Cells to Release Cytokines
Neutrophils release related components of NETs such as MPO
and protease, which further aggravates tissue damage. Similarly,
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IgA binds to the FcaRI junctions of neutrophils, releasing tumor
necrosis factor a (TNF-a), leukotriene B4 (LTB4), etc. (40, 41).
TNF-a can further stimulate endothelial cells to produce
interleukin (IL)-8 (42). IgA may activate neutrophils to release
IL-8 (1, 43). Studies show that LTB4 is significantly increased in
children with IgAV (44). LTB4 can induce further neutrophil
migration through a positive feedback pathway (40). Although
LTB4 has no direct effect on microvascular injury of
inflammatory tissues, it can make white blood cells adhere to
vascular endothelial cells, resulting in increased vascular
permeability and aggravating tissue injury (45). LTB4 plays an
important role in inflammation, the immune system, and
allergies. TNF-a is a pro-inflammatory factor involved in the
occurrence and development of IgAV and is closely related to
kidney damage. TNF-a can even reflect the degree of renal
damage in IgAVN (46, 47). In addition, NETs-related
components can activate immune-related cells such as B
lymphocytes, T lymphocytes and antigen-presenting cells to
release IL-6, IL-8, interferon g (INF-g), and TNF-a (14). In the
interleukin family, IL-6, IL-8, IL-10, and IL-33 are all related to
IgAV (46, 48–50). IL-2 is negatively correlated with the severity
of the disease (51). IL-6 promotes the activation of B cells and the
production of relevant antibodies, which are mainly deposited in
the mesangial region of the kidney. Through the action of T cells,
IL-6 stimulates the proliferation and fibrosis of mesangial tissues,
aggravates kidney damage and leads to the occurrence and
development of IgAVN (52). IL-10 plays a protective role by
inhibiting the antigen presentation function of macrophages and
indirectly inhibiting the function of natural killer cell (53). Under
the stimulation of IL-8, an increase in the cytoplasmic Ca2+ of
neutrophils mediates the release of hydrogen peroxide in a
respiratory burst reaction, and lysosomal enzymes can be
FIGURE 1 | TNFa, tumor necrosis factor alpha. INF-g, interferon gamma. NETs, neutrophil extracellular traps. LL37, cathelicidin antimicrobial peptides. C3,
complement factor 3. IL, interleukin, MPO, myeloperoxidase. NE, neutrophil elastase. cit-H3, citrullinated-histone H3. cf-DNA, cell free DNA. TCR, T cell receptor.
TLR9, toll-like receptor 9-dependent manner. Aberrant glycosylation of IgA1 and IgA immune complexes (IgA-ICs) induce NETs formation by binding to the Fc
receptor of neutrophils. The level of DNase I decreases, leading to reduce of NETs degradation. NETs activate downstream target immune cells to release cytokines.
NETs can activate immune-related cells, such as T lymphocytes (through TCR), B lymphocytes (through TLR9-dependent manner) and macrophages to release
cytokines, such as IL6, IL 8, TNF-a, and INF-g. NETs are involved in different complement bypass pathways.
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released through chemotaxis of neutrophils, leading to capillary
destruction (46). IgA can activate the complement system
through bypass and lectin pathways. The levels of C3a and C5a
increase in the circulation of IgAV, and C3 and C5-C9 are
deposited in the skin tissue and mesangial region of glomeruli
(54, 55). These compounds can form membrane-attacking
complexes that directly destroy the membranes of target cells,
and deposition of C4d and C5B-9 in the kidney is associated with
poor prognosis (56). NETs activate C3 and eventually convert it
to C5a, which can induce chemotaxis and neutrophil
aggregation, and stimulate endothelial cells to secrete IL8.
NETS MAY BE A POTENTIAL BIOMARKER
TO ASSESS DISEASE ACTIVITY IN IGAV

NETs have been reported as a marker of disease activity in other
diseases. The One predictor of inflammatory response and sepsis
is cf-DNA (57, 58). Cit-H3 is a useful biomarker for early
detection of liver dysfunction (59). NETs can be used as
markers and therapeutic targets for ophthalmic diseases
including dry eye, glaucoma, age-related macular degeneration,
and diabetic retinopathy (60, 61). NETs and anti-NETs
associated antibodies are indicators of SLE activity (11, 16).
NETs significantly increase during IgAV onset and the active
stage of IgAV but decrease in the remission and withdrawal stage
of IgAV (13). Most patients in the active and relapse have
IgAVN. It is speculated that changes in NETs levels may reflect
disease activity of IgAV in children, especially those with IgAVN
need corticosteroids or immune suppressive therapy.

There are no widely used biomarkers to predict disease
activity or the prognosis of IgAVN. The combined indexes of
blood examination, immunoglobulin, C-reactive protein,
procalcitonin and trace elements have been used to predict the
index (62–64). The detection of related metabolites in urine has
also been considered. The soluble transferrin receptor
concentration in urine increases significantly during the active
stage of IgAVN, but the correlation coefficient is low (65). The
ratio of urine (Fca receptor × glutamine transferase)/urine
protein and perforin 3 has also been used to predict disease
activity, but clinical detection methods for these markers are
limited (32, 66). The severity of IgAVN is correlated with alpha-
smooth muscle actin (a-SMA) and C-Met, while IgAV with
gastrointestinal involvement is correlated with fecal calprotectin,
D-dimer and fibrin degradation products (67–69). Therefore,
NETs may be a potential convenient biomarker and indicator of
IgAVN disease activity, particularly in those patients who would
have an ominous outcome.
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NETs related components include cf-DNA, MPO-DNA, and
NE. Peripheral blood cf-DNA is simple and convenient to
measure, but Moss et al. (70) showed that cf-DNA can be
released from a variety of cells other than neutrophils during
inflammation. Whether cf-DNA alone can predict the level of
NETs needs more research. Therefore, the use of NETs or their
related components as biomarkers for disease still needs further
study for confirmation.
CONCLUSION AND PERSPECTIVES

In conclusion, IgA or IgA-ICs can activate neutrophils to release
NETs. NETs-related components can directly damage tissues or
secrete large amounts of cytokines by activating downstream
target immune cells. Cytokines can aggravate tissue damage and
cause neutrophil aggregation, forming a vicious cycle (Figure 1).
NETs may be a potential biological indicator to assess disease
activity in children with IgAV.

However, many unanswered questions about the mechanism
of NETs in IgAV remain. The mechanism by which neutrophils
mediate IgAV tissue damage is not completely clear. At present,
the specific mechanism for NETs signaling pathway regulation
and NETs related components in IgAV-induced tissue injury has
not been elucidated. Which signaling pathway IgA/FcaR
regulates the formation of NETs in neutrophil remains unclear.
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