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ABSTRACT

Motivation: Correlated events of gains and losses enable inference
of co-evolution relations. The reconstruction of the co-evolutionary
interactions network in prokaryotic species may elucidate functional
associations among genes.
Results: We developed a novel probabilistic methodology for the
detection of co-evolutionary interactions between pairs of genes.
Using this method we inferred the co-evolutionary network among
4593 Clusters of Orthologous Genes (COGs). The number of co-
evolutionary interactions substantially differed among COGs. Over
40% were found to co-evolve with at least one partner. We
partitioned the network of co-evolutionary relations into clusters and
uncovered multiple modular assemblies of genes with clearly defined
functions. Finally, we measured the extent to which co-evolutionary
relations coincide with other cellular relations such as genomic
proximity, gene fusion propensity, co-expression, protein–protein
interactions and metabolic connections. Our results show that co-
evolutionary relations only partially overlap with these other types
of networks. Our results suggest that the inferred co-evolutionary
network in prokaryotes is highly informative towards revealing
functional relations among genes, often showing signals that cannot
be extracted from other network types.
Availability and implementation: Available under GPL license as
open source.
Contact: talp@post.tau.ac.il.
Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION
Prokaryotic genomes are highly variable in their size (Koonin and
Wolf, 2008; Mira et al., 2002). Comparative genomic analyses
revealed that variability in gene content among genomes is a
major factor contributing to this size variability (Konstantinidis
and Tiedje, 2004; Pal et al., 2005). This substantial variability is
mainly the result of gene acquisition via Horizontal Gene Transfer
(HGT) (Gogarten and Townsend, 2005) and gene loss, e.g. as a
result of reductive evolution (Moran, 2003). Gene content across
genomes is compactly represented by phyletic patterns (also known
as phylogenetic profiles), in which the presence or absence of each
COG (Clusters of Orthologous Genes) in each genome is represented
as a 0/1 binary character (see Cohen et al., 2008 for details).

Genes can have correlated evolutionary histories. This may reflect
mutual dependency constraints, e.g. when these genes correspond to
proteins that are part of a complex. Detecting such co-evolutionary
interactions is important for understanding genome evolution as a
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coordinated process rather than as a collection of single evolutionary
descriptions of each gene.

For protein and RNA evolutionary studies, a great deal of effort
was invested in developing tools that can detect co-evolving sites
(e.g. Ashkenazy and Kliger, 2010; Valencia and Pazos, 2002), the
most accurate of these explicitly account for the phylogenetic tree
that generated these sequences (Dutheil et al., 2005; Pollock et al.,
1999; Poon et al., 2007). These approaches, in essence, search for
correlated evolutionary events among sites, i.e. at two co-evolving
positions, the substitutions occur in a pattern that is different from
that expected by chance for two independently evolving sites. A
similar approach can be used for the detection of co-evolving genes,
in which gains and losses tend to co-occur in the same lineages.
Accordingly, perfectly correlated genes are co-gained and co-lost
during their entire history.

Methods to search for co-evolving genes were previously
developed (Dutkowski and Tiuryn, 2009; Ettema et al., 2001;
Glazko and Mushegian, 2004; Huynen and Snel, 2000; Marcotte
et al., 2000; Pellegrini et al., 1999; Wu et al., 2003; Zheng et al.,
2002; Zhou et al., 2006). Phylogeny-based examples include
methods that employ the maximum parsimony framework (e.g.
Campillos et al., 2006; Cordero et al., 2008) and methods that rely
on explicit evolutionary models of co-evolution (e.g. Barker et al.,
2007). However, using the maximum parsimony criterion may be
misleading, in particular when there is substantial variability in
branch lengths (Felsenstein, 1978; Pol and Siddall, 2001; Swofford
et al., 2001; Yang, 1996). Furthermore, we have previously shown
that maximum parsimony is less accurate for the inference of gain
and lost events compared with model-based approaches (Cohen and
Pupko, 2011). Ideally, methods that rely on models that explicitly
take into account co-evolution among genes, rather than methods
that only use models to test for deviation from the independence
assumption should preferably be used. However, explicit modeling
of co-evolutionary interactions is currently too computationally
extensive to allow the analysis of large datasets, such as those
studied in this work.

Here we present a novel probabilistic methodology to detect
co-evolutionary interactions from phyletic patterns. We apply our
methodology to analyze hundreds of genomes and thousands of
COGs and provide novel insights into the co-evolutionary dynamics
of genes across the bacterial domain.

2 METHODS

2.1 Evolutionary model and mapping branch-specific
events

The input for our methodology includes the phyletic pattern
(presence/absence profile) of COGs and the species tree. The phyletic pattern
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was extracted from eggNOG (Muller et al., 2010), an extended version of
the COG database (Tatusov et al., 1997). Notably, across the manuscript,
we often use term gene as a synonym for the term COG, to improve the
readability of the text. The analysis is performed on an extensive dataset
of 282 prokaryotes. A comprehensive pre-computed microbial species tree
was used as input (Dehal et al., 2010; Price et al., 2010). Phyletic pattern
data and the input tree are provided as Supplementary Files S1 and S2.

The gain and loss dynamics are modeled as a stationary continuous-
time Markov process that allows variability among protein families for both
gain and loss rates (Cohen and Pupko, 2010). The model’s free parameters
are unknown and are estimated numerically based on the data using the
maximum likelihood criterion. Since branch lengths of the input tree are
given in units of substitutions per site, we also estimate a branch-lengths-
scaling parameter, which acts to transform all branch lengths to unit of gain
and loss events.

Given the evolutionary model, for each COG and for each tree branch, the
expected numbers of gain and loss events were inferred using the stochastic
mapping methodology (Cohen and Pupko, 2010; Minin and Suchard, 2008;
Nielsen, 2002).

2.2 Simulations-based computation of co-evolution
Let n denote the number of species. Thus, there are 2n−2 branches in
our rooted phylogenetic tree. For a specific COG, the above mapping of
events to each branch of the tree can be represented by a vector of size
4n−4, where half of the entries are used to represent gain events, and
the remaining ones represent loss events. We next compute the correlation
between the evolutionary histories of a pair of COGs by computing the
Pearson’s correlation between the two 4n−4 dimensional vectors.

The correlation coefficient depends on the number of gain and loss events
along the tree. Two COGs that are present in all analyzed species are perfectly
correlated; however, this does not necessarily reflect co-evolution. To this
end, we only search for co-evolving COGs that experienced a minimal
number of gain and loss events across the phylogeny (see also Dutheil
et al., 2005). Specifically, we compute for each COG a value, which we term
exchangeability, that is the average of the posterior expectation of gain events
and loss events across the tree. The distribution of the Pearson’s correlation
coefficients was found to highly depend on the minimal exchangeability for
independently simulated genes. Pairs with low exchangeability may show
extremely high correlations by chance (Supplementary Fig. S1A). We thus
tested for co-evolution only in pairs of COGs with exchangeability above a
certain threshold, for both COGs. Too high a threshold may lead to filtering
true co-evolving pairs. Too low a threshold would lead to exceedingly high
number of pairs tested, which in turn may reduce the ability to detect true co-
evolving pairs due to multiple testing. We set the exchangeability threshold
to five events, to balance between these two considerations.

Positive correlations between two COGs do not necessarily indicate
genuine co-evolution, e.g. because high number of events are expected in
longer branches for both COGs and vice versa for shorter branches. To test
whether an observed correlation value for a given pair is statistically higher
than that expected for two independently evolving COGs, we associate each
observed correlation coefficient between a pair of COGs with a P-value for
which the null distribution of the correlation coefficients was computed using
parametric bootstrap as follows: for each pair of COGs, we computed the
minimum value of exchangeability between them. The observed correlation
coefficient for this pair was then compared with a null distribution of
independently evolving pairs with comparable minimal exchangeability
values, to generate a P-value. As stated above, the distribution of correlation
coefficients depends on the minimal exchangeability, and thus, the entire
range of exchangeability was partitioned into bins, each representing a
different null distribution. The bins used are provided in Supplementary
Figure S1.

For the size of data analyzed in this study, millions of possible pairs are
statistically tested for co-evolution, which necessitates controlling the False
Discovery Rate (FDR; Benjamini and Hochberg, 1995). An FDR value of

Fig. 1. Methodology outline. Given an input of phyletic pattern and a
phylogenetic tree, we detect correlated evolutionary histories and use
simulations to infer significant co-evolving genes

0.01 was chosen, which let us to consider pairs with P-value lower than
1.38E-05.

2.3 Analysis of the co-evolutionary network
The network of co-evolving COGs was analyzed and visualized using
Cytoscape (Smoot et al., 2011) and Pajek (Batagelj and Mrvar, 2002). The
clustering of the network was conducted Transitivity Clustering algorithm
(Wittkop et al., 2011) with the default parameters.

2.4 Comparing co-evolution network with other
biological networks

The protein–protein interactions (PPI), genomic proximity, co-expression
and gene fusion networks were extracted from STRING 9.0 (Szklarczyk
et al., 2011). For each type of biological association, the network was
reconstructed by considering reliable connections between COGs with score
of at least 700 (‘high confidence’). The metabolic network was extracted
from KEGG by considering metabolic connections between COGs that take
part in the same metabolic pathway (Kanehisa et al., 2012).

3 RESULTS

3.1 Reconstruction of the co-evolutionary network
Using a phyletic pattern of 4,593 COGs, which are present in at
least one of the 282 prokaryotic genomes analyzed, we computed
the network of co-evolving genes, in which two vertices (COGs) are
connected only if they are significantly co-evolving (Fig. 1; also see
Section 2 for details).

For 4,593 COGs there are 10,545,528 possible interactions.
We only tested for co-evolution among 3,548 COGs with
exchangeability above a predefined threshold (see Section 2), which
resulted in 6,292,378 pairs.

3.2 Network properties
The network of co-evolving genes was found to be relatively highly
connected with an average degree of 3.793. The degree varies
substantially among genes in agreement with previous research
(Cordero et al., 2008). Out of all COGs, 42.24% (1,940) were found
to co-evolve with others (degree >0). The average degree (3.793)
is substantially higher than the median degree (0) suggesting that
the network of co-evolution relations does not fit a random network
model. Moreover, a goodness-of-fit evaluation for a Poisson degree
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Fig. 2. Degree distribution of the co-evolutionary network on a log–log
scale. All 4,593 COGs are ranked according to their degree. In total, 1,940
COGs have at least one connection.

distribution was rejected with P-value <10E-100. In contrast, a
linear regression between log the degree and log the number of nodes
with the degree resulted with R2 =0.919 (Fig. 2). Taken together,
these results may suggest that a scale-free model is more suitable
to describe the co-evolutionary network as compared with random
models (Barabasi and Oltvai, 2004; Davids and Zhang, 2008). As
illustrated in Supplementary Figure S2, the co-evolutionary network
consists of 35 COGs with high number of co-evolutionary partners
(degree �50) and 536 COGs with multiple co-evolutionary partners
(degree �10). The Watts–Strogatz clustering coefficient (Watts and
Strogatz, 1998) was found to be 0.526. This indicates relatively high
transitivity in the co-evolutionary interactions.

3.3 Uncovering modular assemblies of genes
We have used the transitivity clustering algorithm (Wittkop et al.,
2011) to cluster the network of co-evolution interactions into groups.
We found 3,568 clusters, out of which 2,653 singleton clusters
(COGs with no significant co-evolutionary partners), 326 clusters of
two members, 101 clusters with three members, 42 clusters with four
members, 13 clusters with five members and additional 41 clusters
with at least six members up to the biggest cluster that consists of
30 COGs. Selected examples with at least six COGs included in the
cluster and clear association with specific functions are depicted in
Table 1 (See Supplementary File S3 for details).

This co-evolutionary clustering reveals multiple assemblies
of genes that have clear modular functional association (see
Supplementary File S3 for the complete list of clusters). These
members are both highly interconnected and relatively separated
from all other clusters (i.e. few connections with genes outside the
cluster), suggesting a shared functionality that has relatively low
dependency on all other genes.

The largest cluster includes 30 COGs. All COGs belonging
to the cluster are clearly related to flagellum functionality and
motility (Fig. 3; see Supplementary File S3 for list of COGs and
details). For all but one (COG1191), the COG description explicitly
states its involvement in flagellum biology. A further inspection
of COG1191: ‘DNA-directed RNA polymerase specialized sigma
subunit’ revealed that it is also functionally associated with the
flagellum. Several genes included in this COG encode for proteins
that are related for the transcription regulation of the flagellar operon.

Table 1. Clusters of co-evolving COGs associated with specific functions.
The size corresponds to the number of COGs in the cluster. The suggested
function is based on the annotation describing most of the cluster members
as defined in the COG database

Cluster Size Suggested function

1 30 Flagellum and motility
5 13 NADH: ubiquinone oxidoreductase

11 9 Cobalamin (vitamin B12) synthesis pathway
13 8 Molybdopterin biosynthesis
14 7 UDP-N-acetyl processing
16 7 Hydrolysis of urea
17 7 F0F1-type ATP synthase
18 7 Type IV secretory pathway
22 7 Na-transporting NADH: ubiquinone oxidoreductase
31 6 Archaeal/vacuolar-type H -ATPase
33 6 Multisubunit Na+/H+ antiporter
35 6 Type III secretory pathway
36 6 Cobalamin (vitamin B12) synthesis pathway
38 6 Mu-like prophage
40 6 Flp pilus assembly

For example, in Escherichia coli, it encodes the FliA protein: ‘RNA
polymerase sigma factor for flagellar operon’.

We observed that in some cases, functional modules were
separated into two clusters [e.g. the Cobalamin (vitamin B12)
synthesis pathway in clusters number 11 and 36]. Moreover, some
clusters do not present a clear functional modularity (Supplementary
File S3). These results may reflect shortcoming of our methodology
or gaps in the current functional annotations.

In some cases a cluster with clear function includes genes families
that are described as ‘Uncharacterized’ or ‘Poorly characterize’
according to the COG annotation. We analyzed in detail two such
cases: cluster number 38, related to ‘Mu-like prophage’ function and
cluster number 18, related to the ‘Type IV secretory pathway’. Using
these examples, we demonstrate the utility of the co-evolutionary
network to predict functional annotations.

The ‘Mu-like prophage’ cluster is composed of the following
seven COGs: COG3778, COG4228, COG4379, COG4381,
COG4384 and COG4386 (Fig. 4A). For all except one of its
members, the COG description explicitly states its association with
‘Mu-like prophage’ proteins. The COG description for COG3778
is ‘Uncharacterized protein conserved in bacteria’. Inspecting the
annotation of genes within this COG reveals several examples
which suggest that this member is also genuinely related to Mu-like
propage proteins. For example, in Haemophilus influenza and Vibrio
cholerae, these genes encode ‘Mu-like prophage FluMu protein
gp48’.

Out of the seven COGs included in the Type IV secretory pathway
cluster we found five COGs with COG descriptions that clearly
depict them as components of the Type IV secretory pathway
(COG5268, COG4959, COG3838, COG3846, COG3701) and an
additional one described as “Conjugal transfer/entry exclusion
protein” (COG5314), which fits the function of the entire cluster
as all genes encode proteins that are part of the Type IV conjugation
system. However, COG5489 is described as “Uncharacterized
conserved protein”. As visualized in Figure 4B, this COG has
co-evolutionary interactions with all other six members of the
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Fig. 3. The flagellum-related cluster. This cluster contains 30 highly
connected COGs (the nodes in the figure), all flagellar-related and is the
biggest cluster of co-evolutionary genes

cluster, however further inspection of genes that are members of
this COG did not yield clear association with Type IV conjugation
function. Analyzing other cellular association between this COG
to the other members of the clusters using STRING (Szklarczyk
et al., 2011) revealed association with one of the cluster members
COG4959, ‘Type IV secretory pathway, protease TraF’. The signals
include medium and high confidence for fusion and genomic
proximity, respectively. Inspection of several chromosomal cassettes
that include this uncharacterized COG5489 further suggests possible
involvement with the Type IV conjugation system. For example,
in Caulobacter sp. K31 and as compared with other genomes
by Integrated Microbial Genomes (IMG) chromosomal cassettes
(Markowitz et al., 2012) multiple conjugation related proteins
are found in the genome in tandem with COG5489. These
neighboring proteins include COG2948, Conjugation TrbI family,
COG4504, P-type conjugation transfer protein TrbG, COG3701,
conjugation transfer protein, COG3846, P-type conjugation transfer
protein TrbL, COG5314, P-type conjugation transfer protein TrbJ,
COG3451, component of IV transporter system, COG5268, putative
conjugal transfer TrbD transmembrane protein, COG3838, conjugal
transfer TrbC and COG3962, P-type conjugative transfer ATPase
TrbB (Supplementary Fig. S3). Finally, we used the amino acids
alignment of COG5489 to search the PDB for predicted structural
similarity using HHPred (Soding et al., 2005). We have found
a significant predicted similarity (E-value < 3.7E-16) with PDB
structure 1B12, A Signal peptidase. This may provide a clue
towards elucidating the relevance of this gene to the Type IV
conjugation system as previous studies had found plasmid-encoded
signal peptidase genes that are related to conjugation (Chaston et
al., 2011). Taken together, these analyses demonstrate the potential
of using co-evolutionary interactions for functional annotation.

3.4 The overlap of the co-evolutionary network with
other cellular networks

We next tested the extent to which the co-evolutionary network
overlaps other system-biology related networks that had been
reported to be informative of functional association between proteins
(see Section 2 for details regarding networks reconstruction). These
include PPI (e.g. Juan et al., 2008), genomic proximity and gene-
order (e.g. Dandekar et al., 1998; Overbeek et al., 1999), co-
expression (e.g. Chen and Dokholyan, 2006), gene fusion (Enright

Fig. 4. Functional modules of co-evolving genes that include an
uncharacterized member. (A) ‘Mu-like prophage’ cluster (B) ‘Type IV
secretory pathway’ cluster. Yellow nodes correspond to COGs that are
uncharacterized

et al., 1999; Marcotte et al., 1999; Yanai et al., 2001) and metabolic
networks (e.g. Spirin et al., 2006). For the 4,593 COGs in this
study, there are 10,545,528 possible connections. For a specific
network type we measured the number of reliably reconstructed
connections divided by the total number of possible connections
(column ‘Frequency’ in Table 2). For a network X and the co-
evolutionary network, we additionally computed the number of
connections that are both in X and in the co-evolutionary network
out of the total number of connection in the co-evolution network
(column ‘Conditional frequency’in Table 2). The highest conditional
frequency, 0.173, was computed for the genomic proximity network,
indicating that 17.3% of the co-evolutionary connections are also
significant genomic proximity connections. In other words, ∼83% of
the co-evolutionary edges are not predicted to be genome proximity
edges with high confidence. When the genomic proximity network is
reconstructed with lower requirement for proximity (low confidence
of 150 instead of high confidence of 700 as defined by the STRING
database, see Supplementary Table S2 for details), we still find
that only ∼36% of the co-evolutionary connections are between
neighboring genes. It is clear that genomic proximity substantially
increases the probability of co-acquisition and co-deletion of genes
and hence it is expected that many co-evolutionary dependencies
rise from proximity. However, these results suggest that a major
part of all co-evolutionary dependencies may rise between genes
that are not in a tight physical proximity.

For each network type, we further compute an enrichment ratio,
which is the ratio of the conditional frequency and the frequency.
Explicitly, for network type X , the enrichment value approximates
the ratio: Pr(edge ? X | edge ? C) / Pr(edge ? X ), where C is the
set of all co-evolving edges. For example, for PPI, this value is an
estimate for the increase in probability for an edge to be involved
in PPI when it is known to co-evolve, over the baseline probability
of an edge to be involved in PPI. As shown in Table 2, there is
a very high and significant enrichment (461-fold) of the genomic
proximity network. The lowest enrichment was observed with the
PPI network, indicating that within the co-evolving edges, there is
only 24.7 fold enrichment for PPI edges.

We define functionally informative edges to be edges that
connect COGs that share the same functional annotation according
to the eggNOG database annotation (Muller et al., 2010). We
repeated the analysis above, this time considering only edges that
are both between co-evolving COGs and that are functionally
informative. The results presented in Table 2 (part B) indicate
that the enrichment ratio increases for all network types when
considering only functionally informative edges. This suggests that
considering only informative edges increases the agreement between
the co-evolutionary signal and other system-biology measures. We
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Table 2. The frequency of interactions within various cellular networks and the conditional frequency of interaction with respect to co-evolutionary interactions.

A B

Network type Frequency Conditional frequency Enrichment ratio P-value Frequency Conditional frequency Enrichment ratio P-value

Genomic proximity 0.000374 0.173 461 ≈0 0.000374 0.453 1210 0
Gene fusion 0.0000894 0.0186 208 ≈0 0.0000894 0.062 693 0
Co-expression 0.00161 0.0606 37.7 ≈0 0.00161 0.211 131 0
PPI 0.001 0.0248 24.7 3.2E-211 0.001 0.0972 96.9 9.02E-286
Metabolic 0.00585 0.159 27.11 ≈0 0.00585 0.495 84.69 ≈0

‘Frequency’ is the number of connections of that type divided by all possible pairs (10,545,524), ‘Conditional frequency’ in Table 2, part A is the number of connections within each
network type that also co-evolve divided by the total number of co-evolving edges (8,710). In Table 2, part B, ‘Conditional frequency’ is this number of connections within each
network type that are both co-evolving and functional information divided by all co-evolutionary connections that are also functionally informative (1,904). The reported P-value
is computed against a null hypothesis that there is no enrichment (i.e. the enrichment ratio equals 1) as determined by Fisher’s exact test.

observe that the highest conditional frequency is found for the
genomic proximity network: 45.3% of functionally informative co-
evolutionary connections are also inferred to be significant genomic
proximity connections. Importantly, this result suggests that over
half of the functionally informative co-evolutionary connections
could not be directly inferred by mere physical proximity. For the
PPI network the conditional frequency with functionally informative
co-evolutionary connections is only 9.72%. This suggests that >90%
of the functionally informative co-evolutionary connections are
between genes that may not be in direct physical interaction (as
determined by their relatively low PPI score). Similar results were
obtained when the PPI interactions with lower confidence were
considered (Supplementary Table S2 provides all the results given in
Table 2 (part A) for low and medium confidence for the five network
types).

4 DISCUSSION
We have reconstructed the co-evolutionary network among
genes using a novel probabilistic methodology. We suggest that
this approach balances well between two objectives. First, the
requirement to analyze large datasets of hundreds of genomes, which
is currently infeasible with explicit co-evolutionary models (e.g.
Barker et al., 2007). Second, the requirement for accuracy and
probabilistic inference of significant co-evolutionary interactions,
which is lacking when using the maximum parsimony approach
(e.g. Cordero et al., 2008).

Our results suggest that ∼40% of all COGs co-evolve with at
least one other member. Furthermore, the inferred co-evolutionary
network is significantly enriched in the fraction of connections
shared with other cellular network types. Indeed, in previous
studies, high agreement between co-evolutionary signal and cellular
interaction data was assumed, and hence the cellular interaction data
were used as proxy for co-evolution signal (Cordero et al., 2008;
Tuller et al., 2010). Here, we took a different approach, in which
the agreement between cellular interaction data and co-evolutionary
signal was not assumed but rather, measured. Our data show that
whereas agreement exists, it is far from perfect and the agreement
also varies depending on the type of cellular interaction chosen.
Although previous studies reported that interacting proteins tend to
co-evolve (Juan et al., 2008), we show that it may be misleading
to take PPI as proxy for co-evolution, since a small fraction of

the co-evolutionary connections are between genes involved in
PPI. We note that more research is needed to determine to what
extent the lack of overlap between the different networks points to
inaccuracies in methodologies and data or to inherent properties of
the evolutionary and cellular networks. For example, it is clear the
current PPI network is only partially known, especially in bacteria
that are evolutionary divergent from model bacterial species such as
Escherichia coli.

Whereas in prokaryotes, protein families typically contain one
copy per species (Ranea et al., 2007), in eukaryotes, gene families
often comprise hundreds of members. Thus, co-evolutionary signal
may reside in gene families that are expanding and shrinking in a
correlated manner. Our method only considers presence and absence
of COGs, and would hence fail to detect such co-evolutionary
pattern. This suggests that birth and death models for gene family
sizes should be integrated in co-evolutionary detection method, as
was done within the maximum parsimony framework (Cordero et
al., 2008).

To summarize, we have developed a methodology to infer
pairs of co-evolving genes. Using this methodology allows the
reconstruction of a co-evolutionary network of COGs. Clustering
of the co-evolutionary network reveals many examples of modular
assemblies of genes that take part in a specific biological process.
Our results suggest that co-evolutionary modules can be a valuable
tool in genome annotation efforts.
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