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Abstract

We analyzed the effect of respiratory swings on interpreting intravascular

pulmonary vascular pressures (PVPs) in chronic obstructive pulmonary

disease (COPD) and interstitial lung disease (ILD) candidates for lung

transplantation (LTx) and the role of the alterations in pulmonary function

tests on the dynamic respiratory variations. Twenty‐eight consecutive patients

were included. All patients underwent a complete hemodynamic study (right

atrial, mean pulmonary arterial, and pulmonary arterial occlusion pressures

[RAP, mPAP, and PAOP]‐) and pulmonary function testing (force vital

capacity [FVC], forced expiratory volume in the first second [FEV1], and

residual volume [RV]). A subgroup of 10 patients underwent simultaneous

esophageal pressure (PES). All hemodynamic parameters and PES were

collected during apnea after an unforced expiration (ee) and during

spontaneous breathing averaging five respiratory cycles (mrc). The respiratory

swing (osc) was estimated as the difference between maximum–minimum

values of pressures during the respiratory cycle. Intravascular RAPee,

mPAPee, and PAOPee were higher than mrc values (p< 0.05), leading to

11% of pulmonary hypertension (PH) misdiagnosis and 37% of postcapillary

PH misclassification. PAOPosc of COPD was higher than ILD patients and

RAPosc (p< 0.05). Only PAOPosc correlated with FVC, FEV1, and RV

(p< 0.05). ILD PESmrc was lower than COPD (p< 0.05), and it was associated

with a significantly higher transmural than intravascular RAPmrc, mPAPmrc,
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and PAOPmrc. PESmrc was significantly correlated with FVC. Transmural

mPAPmrc and PAOPmrc readings determined around 20% of reclassification

of the patients compared to ee measurements. Candidates for LTx showed

large respiratory swings in PVP, which were correlated with pulmonary

function alterations. mrc PVP would be more closely approximated to the true

transmural PVP leading to PH reclassification. Adjusting PVP for PES should

be considered in COPD and ILD candidates of LTx with severe alterations in

pulmonary functional tests and suspicion of a PESmrc far from 0. PES

respiratory swings could be different in ILD to COPD patients.
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INTRODUCTION

Pulmonary vascular pressures (PVPs) are measured
relative to the atmospheric pressure. However, the heart
and pulmonary circulation are within the chest and are
influenced by the transmission of the intrathoracic
pressure generated by opposing elastic recoil of the lungs
and chest wall. Intravascular PVP measured at end‐
expiration assumes that intrathoracic pressure is approx-
imately equal to atmospheric pressure at functional
residual capacity and, thus, measured pressures reflect
the transmural PVPs.1 Large respiratory variations of
PVP are critical when interpreting pulmonary intra-
vascular pressures in different clinical scenarios. End‐
expiratory intrathoracic pressure can be significantly
greater than atmospheric pressure, and intravascular
PVPs can overestimate true transmural ones. Mean
intravascular PVPs across the respiratory cycle were
proposed to overcome the impact of large respiratory
swings on PVPs instead of using end‐expiratory mea-
surements.1–3 However, this is correct if the time‐
averaged intrathoracic pressure is around 0.

Clinical conditions associated with increased intra-
thoracic pressure (obesity, airway obstruction and/or
dynamic hyperinflation, chest wall deformities) may
exaggerate the uncertainty of the PVP values with a
pronounced respiratory swing of them.1–4 Chronic
obstructive pulmonary disease (COPD) and interstitial
lung disease (ILD) patients are characterized by a
combination of derangements in respiratory system
mechanics (airway obstruction, dynamic hyperinflation,
and low lung compliance) that could be associated with
large but different dynamic respirophasic variations of
intravascular PVPs.

The study analyzed the effect of the respiratory swing
on the interpretation of pulmonary intravascular

pressures in COPD and ILD candidates for lung
transplantation (LTx) undergoing right heart catheteri-
zation (RHC) and the role of the alterations in pulmo-
nary function tests on the dynamic respiratory variations.
We hypothesized that pulmonary intravascular pressures
could not represent accurate transmural PVPs in COPD
and ILD candidates for LTx, leading to pulmonary
hypertension (PH) misdiagnosis and misclassification.

METHODS

COPD and ILD adult consecutive candidates for LTx who
undergo RHC for suspected PH were included between
November 2016 and October 2017. The study was
conducted with the approval of the Hospital Universitari
Vall d'Hebron Institutional Review Board. Informed
consent was obtained from all patients.

Data analysis

RHC was done at rest, in the supine position, after 12 h of
fasting and breathing room air. A 7.5‐Fr pulmonary
artery catheter (Edwards Lifesciences) was advanced to
the pulmonary artery from a brachial or femoral vein,
and a 5 F end‐hole catheter was inserted into a radial
artery. Catheters were connected to fluid‐filled transduc-
ers and zeroed at the atmospheric pressure. The zero‐
reference level for recording was at the mid‐thoracic
level.2 We obtained intravascular right atrial pressure
(RAP), systolic, diastolic, and mean pulmonary arterial
pressure (mPAP), and pulmonary arterial occlusion
pressure (PAOP). The following conditions were taken
to ensure the accuracy of the PAOP measurement: the
correct PAOP position (confirmed via appearance on
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fluoroscopy), the characteristic “a” and “v” waveforms,
and the saturation of 94% or greater. Cardiac output (CO)
was measured by the thermodilution method (average
three determinations that fell within <10% difference)
and indexed to body surface area to calculate the cardiac
index. Pulmonary vascular resistance (PVR) was calcu-
lated as (mPAP− PAOP)/CO). PH diagnosis and classifi-
cation were based on the 2022 European Society of
Cardiology/European Respiratory Society guidelines.3

A subgroup of patients underwent simultaneous RHC
and esophageal pressure (PES) to assess the transmural
PVPs. We obtained PES as a surrogate of intrathoracic
pressure.5 A manometric catheter (Latitude® Esophageal
Motility Catheter; Unisensor AG; model GIM600E)
(2.7 mm outside diameter) with four microballoons at
5 cm intervals was introduced through the nose and
placed with two recording sites above (esophageal)
and two below (intragastric) the gastroesophageal
junction. The microballoons were filled with air and
were connected to calibrated transducers (manometric
calibration system, GIM6100/GIM6130), avoiding the
need for the occlusion test.6 PES was continuously
monitored.

All hemodynamic parameters and PES were collected
in two conditions: during apnea after an unforced
expiration (ee); and spontaneous normal breathing
averaging five respiratory cycles (mrc) (Figure 1). Trans-
mural PVPs were assessed in both conditions. The
respiratory swing was estimated as the difference
between maximum–minimum RAP, PAOP, mPAP, and
PES values during the respiratory cycle (osc).

Pulmonary function testing consisted of spirometry
(functional vital capacity [FVC], forced expiratory
volume in the first second [FEV1], and residual volume
[RV]) and single‐breath CO diffusion capacity (DLCO).
Pulmonary function variables were expressed as the
percent predicted, indicated by % following the variable.

Statistical analysis

Continuous data were expressed as the mean ± stan-
dard error of the mean. We determined the normal
distribution of the data by the Shapiro–Wilk test.
Comparison of ILD and COPD subjects, end‐expiratory
and mean respiratory cycle, and intravascular and
transmural were performed with independent sample
t tests and paired t tests as appropriate. The strength
and direction of the association between continuous
variables were measured with Spearman's rank corre-
lation coefficient (rS). A Spearman coefficient value of
>0.7 was considered strong, a value of 0.4–0.69 was
considered moderate, and a value of <0.4 was

considered poor.7 A p value (two‐tailed) of <0.05
was considered significant. Statistical analyses were
performed with SPSS (Version 21.0 for Windows;
SPSS Inc.).

RESULTS

Twenty‐eight consecutive patients were included, 14
COPD and 14 ILD. Table 1 shows patient demographics,
pulmonary functional tests, and intravascular hemo-
dynamic data. COPD showed higher airflow limitation
and hyperinflation of the lungs than in ILD sub-
jects (p< 0.05).

End‐expiratory, mean respiratory cycle,
and respiratory swing of intravascular
pressures

Intravascular RAPee, mPAPee, and PAOPee were higher
than mrc values (p< 0.05) (Table 1 and Figure 2). Nineteen
subjects (68%) showed mPAPee of >20mmHg (17 with
PVR> 2Wu, and 2 with PVR ≤2Wu—unclassifiable),
and seven corresponded to postcapillary PH (37%).
Seventeen patients (61%) showed mPAPmrc of >20mmHg
(all with RVP> 2Wu), and none were postcapillary PH
(0%). PAOPee and mPAPee correlated with PAOPmrc
(rS =0.81; p=0.0001) and mPAPmrc (rS = 0.87;
p=0.0001), respectively. The mean PAOP and mPAP
difference between end‐expiratory and mean respiratory
cycle values was 3.4 ± 0.6 and 1.8 ± 0.6mmHg, respec-
tively, which were similar to the corresponding y‐intercept
of the correlations between ee and mrc values of PAOP
and RAP (3.45 and 1.5mmHg, respectively).

We obtained large respiratory swings of both, PAOP
and RAP. While RAPosc was similar in both groups,
PAOP swings of COPD subjects were higher than those
of ILD patients (p< 0.05). COPD subjects showed less
pronounced RAP respiratory swing compared with
PAOPosc (p< 0.05) (Table 1).

Esophageal and transmural pressures

PES was simultaneously monitored in 10 (36%) patients
(5/14 COPD and 5/14 ILD). Table 2 shows patients'
demographics, pulmonary functional tests, intravascular
hemodynamics, and PES data.

PESee values were positive, similar in COPD and
ILD, and significantly higher than PESmrc. However,
ILD PESmrc was lower (p< 0.05) than COPD at the
expense of a higher negative inspiratory swing in PES
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(Table 2). PESosc was similar to PAOP respiratory swing
and higher than RAPosc (p< 0.05). However, it was not
correlated with either of the two.

ILD subjects showed significantly higher trans-
mural than intravascular mPAPmrc (26.0± 5.2 vs. 24.2

± 5.4mmHg), RAPmrc (4.6± 1.6 vs. 2.8 ± 1.2mmHg), and
PAOPmrc (7.8± 1.6 vs. 6.0± 1.8mmHg). By contrast,
transmural than intravascular mPAPmrc and PAOPmrc in
COPD subjects did not show significant differences
(Figure 3). One patient (10%) had to be reclassified to PH.

FIGURE 1 (a) Representative recordings of right atrial (RAP) and pulmonary arterial occlusion (PAOP) pressures during an ILD
patient's unforced expiration and spontaneous breathing. (b) Graphical representation of mean values of esophageal pressure (PES) in
COPD and ILD patients (I: mean inspiratory PES; E: mean expiratory PES). COPD, chronic obstructive pulmonary disease; ee, end‐
expiratory pressure; ILD, interstitial lung disease; mrc, mean respiratory cycle; osc, respiratory swing pressure.
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Transmural PAOP and mPAP at end‐expiration
(PAOPtm‐ee and mPAPtm‐ee) and over the respiratory
cycle (PAOPtm‐mrc and mPAPtm‐mrc) did not show
significant differences and were correlated (rS = 0.71;
p= 0.02 and rS = 0.84; p= 0.002, respectively). However,
20% was misdiagnosed (3 mPAPtm‐ee to 5 mPAPtm‐mrc
>20mmHg patients) and misclassified (2 PAOPtm‐ee to
0 PAOPtm‐mrc > 15mmHg patients).

Impact of lung functional alterations on
PVP swings and esophageal pressures

PAOP respiratory swings were significantly correlated
with all pulmonary function variables (Figure 4). On the

contrary, only PESmrc (intrathoracic pressure “offset”)
was significantly correlated with FVC (Figure 5).

Table 3 shows the values of the PESosc and PESmrc
according to the median of the lung function variables.
PESmrc was significantly different depending on the
value of FVC and RV above and below the median.

DISCUSSION

We confirmed the presence of large PAOP and RAP
respiratory swings at rest in a cohort of COPD and ILD
candidates for LTx. We noted that the end‐expiration
reading of intravascular mPAP, PAOP, and RAP over-
estimated the averaging over respiratory cycle values,

TABLE 1 Patient demographics, pulmonary function tests, and intravascular hemodynamic data of the whole cohort.

All (n= 28)
ILD
(n= 14)

COPD
(n= 14)

Age, years 60 ± 1 62 ± 2 59 ± 2

Sex, Female/Male 10/18 5/9 5/9

BMI, kg/m2 24.9 ± 0.7 24.7 ± 0.9 25.1 ± 1.2

BSA, m2 1.76 ± 0.05 1.71 ± 0.05 1.8 ± 0.07

Pulmonary function tests

FVC, % predicted 48 ± 2 48 ± 3 48 ± 3

FEV1, % predicted 41 ± 3 54 ± 4 29 ± 3*

DLCO, % predicted 29 ± 3 31 ± 4 28 ± 4

RV, % predicted 133 ± 16 52 ± 2 215 ± 12*

Hemodynamics

CI, L/min/m2 2.6 ± 0.1 2.9 ± 0.2 2.4 ± 0.1

SVI, mL/m2 35 ± 2 38 ± 3 32 ± 2

PVR, Wu 3.6 ± 0.5 4.2 ± 0.9 3.0 ± 0.4

mPAPmrc, mmHg 24 ± 2 26 ± 2 22 ± 2

PAOPmrc, mmHg 8.1 ± 0.7 7.2 ± 1.2 9.1 ± 0.6

RAPmrc, mmHg 5.9 ± 0.8 5.2 ± 1.1 6.6 ± 1.2

mPAPee, mmHg 26 ± 2# 27 ± 2 24 ± 2#

PAOPee, mmHg 11.6 ± 0.9# 11.0 ± 1.5# 12.0 ± 1.1#

RAPee, mmHg 7.9 ± 0.8# 6.9 ± 1.0# 8.9 ± 1.2#

PAOPosc, mmHg 12.8 ± 1.0ο 10.1 ± 1.0 15.4 ± 1.6*ο

RAPosc, mmHg 9.9 ± 0.9 9.6 ± 1.3 10.1 ± 1.4

Note: Mean ± SEM.

Abbreviations: BMI, body mass index; BSA, body surface area; CI, cardiac index; COPD, chronic obstructive pulmonary disease; DLCO, CO diffusing capacity;
ee, end‐expiratory; FEV1, forced expiratory volume in the first second; FVC, forced vital capacity; ILD, interstitial lung disease; mPAP, mean pulmonary
arterial pressure; mrc, mean respiratory cycle; osc, respiratory swing; PAOP, pulmonary arterial occlusion pressure; PES, esophageal pressure; PVR, pulmonary
vascular resistance; RAP, right atrial pressure; RV, residual volume. SVI, stroke volume index.

*p< 0.05 ILD versus COPD.
#p< 0.05 ee versus mrc.
οp< 0.05 PAOPosc versus RAPosc in each group.
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leading to about 11% of patients no longer having PH
(misdiagnosis) and a 37% decrease in patients with
postcapillary PH (misclassification). Accordingly, Jawad
et al. reported that the diagnosis of postcapillary PH
decreased from 74% to 37% in overweight patients.8 More
recently, Khirfan et al. reclassified about 20% of obese
patients, reducing the percentage of postcapillary PH
from 60% to 47%.4

Intrathoracic pressure, as estimated by pleural
pressure measured by PES, is approximately −1 to
2mmHg at end‐expiration and further decreases by
2mmHg during normal inspiration, leading to a small
respiratory swing in healthy resting subjects.2 Both
patient groups presented larger PES respiratory swings
( ~ 10mmHg) but lower PES respiratory swings than
obese patients ( ~ 15 and 20mmHg in the sitting and
supine positions, respectively).4 Previously published
data reported similar absolute values of COPD PES
respiratory swings.9,10 The lowest values of RAP

respiratory swings suggest that changes in intrathoracic
pressure during the respiratory cycle are not fully
transmitted to the right heart. Besides, the absence of
correlations of the respiratory swings between PAOP,
RAP, and PES illustrates the complexity of transmitting
intrathoracic pressure to the PVPs in these severe
pathological pulmonary conditions. Although PAOP
respiratory swings were similar to PESosc and signifi-
cantly higher than RAP respiratory swings, they were the
only ones correlated with FVC, FEV1, and RV.

It is essential to differentiate the respirophasic changes
of intrathoracic pressure (PESosc) from the time‐averaged
value over the respiratory cycle (PESmrc). Whenever
negative inspiratory and positive expiratory intrathoracic
pressures cancel each other out (time‐averaged PES‐
PESmrc‐ ∼0mmHg), averaging intravascular PVP tracings
throughout the respiratory cycle would be relatively
accurate in assessing true transmural vascular pressure
beyond the value of the respiratory changes. Our COPD

FIGURE 2 Intravascular end‐expiratory and mean respiratory cycle (mean RC) of mean pulmonary arterial pressure (mPAP) and
pulmonary arterial occlusion pressure (PAOP) in COPD and ILD patients. COPD, chronic obstructive pulmonary disease; ILD, interstitial
lung disease.
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subjects presented a time‐averaged PES that was slightly
positive. Therefore, as Rice et al. have already proposed,
pleural pressure correction for PVP would not be needed.11

Accordingly, intravascular did not differ from tm pulmo-
nary pressures over the respiratory cycle (Figure 3). More
recently, Boerrigter et al. showed that both mPAP and

PAOP averaged over the respiratory cycle are representa-
tive measures of intravascular pressure in a cohort of less
ill COPD patients at rest and exercise.10 By contrast, ILD
patients' large respiratory swing occurs at the expense of
the inspiratory phase, driving a negative time‐averaged
PES. Hence, intravascular PVP underestimated tm

TABLE 2 Patient demographics, pulmonary function tests, intravascular hemodynamic, and esophageal pressure data.

All (n= 10) ILD (n= 5)
COPD
(n= 5)

Age, years 63 ± 2 64 ± 3 59 ± 2

Sex, Female/Maleº 2/8 1/4 1/4

BMI, kg/m2 25 ± 1 26 ± 2 24 ± 2

BSA, m2 1.78 ± 0.07 1.77 ± 0.08 1.79 ± 0.11

Pulmonary function tests

FVC, % predicted 52 ± 3 46 ± 2 59 ± 5*

FEV1, % predicted 39 ± 4 48 ± 3 30 ± 5*

DLCO, % predicted 24 ± 4 20 ± 6 30 ± 4

RV, % predicted 145 ± 33 52 ± 3 238 ± 23*

Hemodynamics

CI, L/min/m2 2.6 ± 0.2 2.8 ± 0.4 2.3 ± 0.1

SVI, mL/m2 36 ± 2 37 ± 3 34 ± 3

PVR, Wu 3.3 ± 0.9 4.2 ± 1.8 2.5 ± 0.5

mPAPmrc, mmHg 22 ± 3 24 ± 5 20 ± 2

PAOPmrc, mmHg 7.9 ± 1.2 6.0 ± 1.8 9.8 ± 1.1*

RAPmrc, mmHg 5.5 ± 1.2 2.8 ± 1.2 8.2 ± 1.2*

mPAPee, mmHg 24 ± 3# 26 ± 5 22 ± 2

PAOPee, mmHg 11.9 ± 1.9# 11.2 ± 3.6 12.6 ± 1.8#

RAPee, mmHg 8.3 ± 1.3# 5.6 ± 1.8# 11.0 ± 0.9#

PAOPosc, mmHg 10.3 ± 1.2ο 9.0 ± 1.6ο 11.6 ± 1.8ο

RAPosc, mmHg 6.2 ± 1.5 5.6 ± 2.1 6.8 ± 2.4

Esophageal pressures

PESmrc, mmHg −0.49 ± 0.7 −1.76 ± 0.8 0.78 ± 0.7*

PESee, mmHg 3.3 ± 0.6# 3.6 ± 0.9# 3.0 ± 1.0#

PESosc, mmHg 9.6 ± 0.9° 10.9 ± 1.7° 8.3 ± 0.6

PESI, mmHg −5.8 ± 1.1 −7.4 ± 1.8 −4.3 ± 0.9

PESE, mmHg 3.8 ± 0.3 3.6 ± 0.1 4.0 ± 0.6

Note: Mean ± SEM.

Abbreviations: BMI, body mass index; BSA, body surface area; CI, cardiac index; COPD, chronic obstructive pulmonary disease; DLCO, CO diffusing capacity;
E, maximum expiratory pressure; ee, end‐expiratory; FEV1, forced expiratory volume in the first second; FVC, forced vital capacity; I, maximum inspiratory
pressure; ILD, interstitial lung disease; mPAP, mean pulmonary arterial pressure; mrc, mean respiratory cycle; osc, respiratory swing; PAOP, pulmonary
arterial occlusion pressure; PES, esophageal pressure; PVR, pulmonary vascular resistance; RAP, right atrial pressure; RV, residual volume. SVI, stroke volume
index.

*p< 0.05 ILD versus COPD.
#p< 0.05 ee versus mrc.
οp< 0.05 swing pressure versus RAPosc in each group.
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pressure values. Therefore, tm PVPs were significantly
higher than intravascular pressure over the respiratory
cycle (Figure 3). This fact could partially explain the higher
PA stiffness in ILD subjects and could associated with
worse survival.12–14

In the subgroup of patients with PES estimation, tm
mPAP, and PAOP averaged across the respiratory cycle
determined around 20% of reclassification of the patients,
both in diagnosis (30%–50% PH) and in the phenotype
(20% to 0% postcapillary PH). Accordingly, in obese
patients, the correction of PVPs respiratory changes by
concomitant measurement of PES decreased the percent-
age of patients with PH (from 100% to 77%) and with
postcapillary PH (from 47% to only 8%).4

It is well known that in COPD patients, respiratory
pressure swings increase proportionally to increased
airflow obstruction, further amplified by dynamic hyper-
inflation and by active expiratory muscle contraction
during exercise.1,3,4,6,7 This would explain the significant
correlations between PAOP respiratory swings and FVC,
FEV1, and RV. On the contrary, it is striking that the

PESosc did not correlate with the different pulmonary
function variables. A more rigid lung could determine an
increased inspiratory effort in ILD patients, resulting in a
larger inspiratory negative PES swing, which could be
proportional to the predicted FVC. Therefore, the lower the
% predicted FVC the lower PESmrc (p< 0.05). Besides,
PESmrc showed a significantly different behavior accord-
ing to the median of the lung function variables. All
patients with FVC values ≤50% of predicted value and RV
values ≤105% of predicted value showed subatmospheric
and significantly lower PESmrc than patients with FVC>
50 and RV> 105% of predicted value.

Finally, in agreement with Boerrigter et al., we
confirmed that pulse PAP decreases during expiration
in spontaneously breathing COPD patients. Pulse PAP
decreased at about 17% (p< 0.05) during expiration
associated with a RAPtm of 6.0 ± 0.9 mmHg.15

Study limitations. Our cohort is small, but it
highlights the importance of correctly interpreting
the measurement of PVPs in the presence of large
respiratory pressure swings in a new group of patients.

FIGURE 3 Intravascular and transmural mean respiratory cycle (mrc) of right atrial pressure (RAP), pulmonary arterial occlusion
pressure (PAOP), and mean pulmonary arterial pressure (mPAP) in COPD and ILD patients. COPD, chronic obstructive pulmonary disease;
ILD, interstitial lung disease; NS, not significant.
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The effect of emphysema on the respiratory‐phasic
variations of PVP was not estimated.16 We used PES as
a surrogate for the measurement of intrathoracic
pressure. The degree to which PES reflects the regional
intrathoracic pressure is uncertain. Although respira-
tory swings of PVP almost exclusively reflect PES
changes, we cannot discard the associated changes in
venous return and left ventricular afterload affecting
mPAP.17 Although PES values in a supine obese
subject are higher than in a sitting position, the
difference in lean patients has less relevance.4 The 10
patients chosen to measure PES were not randomized
and corresponded to the last ones recruited, which
could lead to selection bias. They were used as a
“proof‐of‐concept” for analyzing true tm PVPs. The
predicted FVC was more preserved in the COPD

patients with PES than without PES (57 ± 5% vs.
43 ± 3%, p < 0.05), and RAPosc of the ILD patients
with PES was higher than without PES (11.7 ± 1.3% vs.
5.8 ± 2.2 mmHg, p < 0.05). Although digital esophageal
pressure corrections are ideal for both the respiratory
cycle variations and its ‘offset’, obtaining the end‐
expiratory and mean respiratory cycle values of PES
would help adjust the PVPs. Our findings suggest that
using tm PVPs over the respiratory cycle instead of
end‐expiratory values may reflect true distending
vascular pressure more accurately.8 Finally, we cannot
discard the presence of “occult” postcapillary PH by
using some dynamic maneuver protocols during RHC.

In summary, we add another clinical group where the
measurement and interpretation of PVPs can lead to
errors because of large respiratory cycle variations. COPD

FIGURE 4 Correlation between respiratory changes of PAOP (PAOPosc) and RAP (RAPosc) and percentage of predicted forced vital
capacity (FVC), forced expiratory volume in the first second (FEV1), and residual volume.
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and ILD candidates for LTx showed large respiratory
swings in PVP (especially PAOP) correlated with
pulmonary function alterations. End‐expiratory reading
of PVPs spuriously increases mPAP, PAOP, and RAP
estimations, leading to PH reclassification. Averaging
PVPs throughout respiratory cycles would be more

closely approximated to the true tm PVPs. Adjusting
PVPs for PES should be considered in COPD and ILD
candidates of LTx with severe alterations in pulmonary
functional tests and suspicion of a PESmrc far from 0 to
avoid PH misdiagnosis and misclassification. PES respi-
ratory swings could be different in ILD to COPD patients.

FIGURE 5 Correlation between the mean respiratory cycle PES (PESmrc) and the respiratory PES swing (PESosc) and the percentage of
predicted forced vital capacity (FVC), forced expiratory volume in the first second (FEV1), and residual volume.

TABLE 3 Esophageal pressure according to the median values of the pulmonary function variables.

FVC (% predicted) FEV1 (% predicted) RV (% predicted)

≤50 >50 ≤41 >41 ≤105 >105

PESmrc, mmHg −1.85 ± 0.7 0.87 ± 0.7* 0.11 ± 0.6 −1.1 ± 1.1 −1.76 ± 0.8 0.78 ± 0.7*

PESosc, mmHg 10.4 ± 1.5 8.4 ± 0.6 9.1 ± 0.3 9.8 ± 1.7 10.5 ± 1.4 8.3 ± 0.6

Note: Mean ± SEM.

Abbreviations: FEV1, forced expiratory volume in the first second; FVC, forced vital capacity; mrc, mean respiratory cycle; osc, respiratory swing; PES,
esophageal pressure; RV, residual volume.

*p< 0.05 ≤ median value versus > median value of each pulmonary function variable.
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