
Two novel FBN1 mutations associated with ectopia lentis and
marfanoid habitus in two Chinese families

Liming Zhao,1 Ting Liang,1 Jianzhen Xu,2 Hui Lin,1 Dandan Li,1 Yanhua Qi1

(The first two authors contributed equally to this work.)

1Department of Ophthalmology, Harbin Medical University the 2nd Affiliated Hospital, Harbin, China; 2Center of Integrative
Biology, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China

Purpose: To identify the molecular defects in the fibrillin-1 gene (FBN1) in two Chinese families with ectopia lentis (EL)
and marfanoid habitus.
Methods: Five patients and eight non-carriers in the two families underwent complete physical, ophthalmic, and
cardiovascular examinations. Genomic DNA was extracted from leukocytes of venous blood of these individuals in the
families as well as 100 healthy normal controls. Polymerase chain reaction (PCR) amplification and direct sequencing of
all 65 coding exons of FBN1 were analyzed. The functional consequences of the mutations were analyzed with various
genomic resources.
Results: Two novel mutations of FBN1 were identified in our study. One is a splice defect in intron 17 (IVS 17–1G>T)
adjacent to exon 18. The other is c.6182G>T in exon 50, which results in the substitution of cysteine by phenylalanine at
codon 2,061 (p. C2061F). We provided strong evidences that the splice mutation would potentially lead to the skipping
of exons after intron 17 and that the missense mutation at codon 2,061 (p. C2061F) would destroy a disulfide bond.
Conclusions: We detected two novel mutations in FBN1. Our results expand the mutation spectrum of FBN1 and help in
the study of the molecular pathogenesis of Marfan syndrome and Marfan-related disorders.

Ectopia lentis (EL; OMIM 129600) is an inherited
connective disorder characterized by lens dislocation, often
connected with stretched or discontinuous zonular filaments
[1]. In most cases, EL occurs as one symptom of Marfan
syndrome (MFS; OMIM 154700), a genetic autosomal
dominant disorder that is characterized by manifestations
mainly involving the cardiovascular, skeletal, and ocular
systems [2]. According to the Ghent nosology, a clinical
diagnosis of MFS requires the involvement of all three
systems with two major diagnostic manifestations [3]. Other
disorders such as isolated EL or predominant EL with some
skeletal features belong to Marfan-related disorders.

Both Marfan syndrome and Marfan-related disorders
mainly result from mutations in the fibrillin-1 gene (FBN1)
[4]. FBN1 encodes a 320 kDa glycoprotein consisting of 2,871
amino acids and is located on chromosome 15q21. FBN1 is
mainly composed of three types of repeated modules. The first
one is the epidermal growth factor (EGF)-like module, which
includes six cysteine residues. There are 47 such modules, and
most of them are calcium binding (cb) EGF-like modules. The
second type is called transforming growth factor β1-binding
(or TB) protein-like module (TGF β1-BP-like module, or 8-
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Cys/TB), which is found seven times in FBN1. This module
contains eight cysteine residues that form four disulfide
bonds. The last one is a hybrid module, which occurs twice
[5].

In this study, we analyzed two Chinese families with EL
and marfanoid habitus and detected two novel heterozygous
mutations in FBN1 . In each family, the mutation found
cosegregated in the patients and was not observed in any of
the healthy family members.

METHODS
Patients and clinical data: In our study, the patients from two
Chinese families with ectopia lentis and marfanoid habitus
were from the Heilongjiang province in northeastern China.
Two patients and six non-carrier relatives in Family 1, three
patients and two non-carrier relatives in Family 2, and 100
healthy normal controls were recruited for this study. The
study was approved by the Institutional Review Board of
Harbin Medical University (Harbin, China). After obtaining
informed consent from all the participants, thorough physical,
ophthalmic, and cardiovascular examinations were
performed.

Genomic DNA preparation: Blood specimens (5 ml) were
collected in EDTA, and genomic DNA was extracted by the
TIANamp Blood DNA Kit (Tiangen Biltech Co. Ltd, Beijing,
China).
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Mutation screening: All coding exons of FBN1 were
amplified by polymerase chain reaction (PCR) using a set of
59 pairs of primers. The primers for exons 4, 5, 7, 11, 15, 22,
23, 31, 41, 44, 45, 51, and 52 were from those described by
Li and coworkers [6]. The others are listed in Table 1. The
PCR products were subsequently purified with a TIANgel
Midi Purification Kit (Tiangen Biltech Co. Ltd) and
sequenced with an ABI BigDye Terminator Cycle Sequencing
kit v3.1 (ABI Applied Biosystems, Foster City, CA).

Information theory mutational analysis: The potential results
of the G→T transversion were estimated using information
theory as described in the literature [7]. Briefly, potential
splice sites were identified by the splice mutation analysis
system based on information theory. Thus, the score of the site
containing a mutant nucleotide would be significantly
changed compared with that of the wild-type splice site. The
analysis had been previously used for the interpretation of
other mutations [8,9]. We used walker [10] visualization maps
to present the predicted changes in binding sites.
Structure analysis: The protein structure file, 1apj,
downloaded from the Protein data bank (PDB) database,
demonstrates the solution structure of the transforming
growth factor beta binding (TB) protein-like domain 6 of
fibrillin (residues 2054–2125) [11]. This structure was
displayed with the KiNG viewer to show the missense
mutation at codon 2061.

RESULTS

contents (Ri) value decreased from 9.2 bits to 0.5 bits by the
mutation (Figure 3B). The cysteine residue at position 2,061
was also conserved among mammalian species (Figure 4A).
Structure analysis of the transforming growth factor β (TGF-

Figure 1. A novel FBN1 splice mutation in intron 17. A: The pedigree
of Family 1 is shown. Squares and circles indicate males and females,
respectively, and the darkened symbols represent the affected
members. The patient above the arrow is the proband. An asterisk
indicates the subject underwent clinical and molecular analyses. B:
The partial nucleotide sequence of FBN1 in an affected member is
shown. A heterozygous change G>T (indicated by the arrow) was
identified at the boundary of intron 17 and exon 18. C: The
corresponding normal sequence in an unaffected family member is
displayed by an arrow.

Molecular Vision 2009; 15:826-832 <http://www.molvis.org/molvis/v15/a85> © 2009 Molecular Vision
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Clinical findings: In the two families, all the patients (Figure
1A, Figure 2A) in our study showed similar clinical symptoms
(Table 2). Bilateral lens dislocation was discovered in the five
patients, and none of them displayed any abnormalities in the
cardiovascular system by echocardiogram. However, in
Family 2, individual I:2 died of congenital heart disease at the
age of 30 years old with big hands according to the description
of her daughter (II:2), and her granddaughter (III:1) also died
of congenital heart disease only four days after birth. It was
not clear whether they had any other abnormalities such as EL
because they were deceased several years ago and no related
medical records were available. As for the skeletal system,
arachnodactyly was present in the five patients.
Mutation analysis: After direct sequencing of FBN1 in the five
patients, a splice defect in intron 17 (IVS 17-1G>T) adjacent
to exon 18 (Figure 1B) and a missense mutation involving the
substitution of cysteine by phenylalanine in exon 50
(p.C2061F; Figure 2B) were discovered in Family 1 and
Family 2, respectively. Neither of the two mutations was
detected in the healthy family members (Figure 1C, Figure
2C) or any of the 100 unrelated control subjects.
Potential functional consequences of the two mutations: The
IVS 17–1G>T mutation located at a highly conserved splice
site of intron 17, which has canonical GT/AG ends (Figure
3A). Information theory analysis revealed that the information
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β)-binding protein-like domain revealed that C2061 and
C2083 formed one of the four disulfide bonds. (Figure 4B)
[11].

Figure 2. A novel FBN1 missense mutation in exon 50. A: The
pedigree of Family 2 is shown. Slashed symbols denote that the
subject is deceased. Symbols with a question mark in the center
indicate that the member is not diagnosed clearly. B: A heterozygous
G>T transversion (indicated by the arrow) resulted in the substitution
of cysteine-2061 by phenylalanine (C2061F) in an affected subject.
C: The corresponding normal sequence in an unaffected family
member is shown by an arrow.

DISCUSSION
In this study, we described two novel heterozygous mutations
in FBN1 (IVS 17–1G>T and p.C2061F). Furthermore, we
used various genomic resources to analyze the potential
functional consequences of these two mutations.

In Family 1, it was a splice mutation in position 1 of the
intron 17-exon 18 boundary in the domain of cb EGF-like
number 07. EGF-like domains play a major role in the
pathogenesis of fibrillinopathies containing 75% of all the
FBN1 mutations registered in the FBN1 Universal Mutation
Database (UMD) database. Previously, Rogan et al. [12]
showed that the minimum Ri value for a functional splice site
was 2.4 in a study of over 100 splice sites. As for the splice
mutation in our study, the Ri value decreased from 9.2 bits to
0.5 bits. The mutation of this base would be expected to
disrupt the acceptor site and potentially lead to abnormal
mRNA splicing and skipping of exons after intron 17. This
also supports the observation that splice mutations often lead

Figure 3. Analysis of the splice mutaion in intron 17. A: The
alignment of the FBN1 sequence with the corresponding segments
in diverse species is displayed. The nucleotide G is conserved in
FBN1 proteins from several species. The sequence was selected by
UCSC Genome Browser. Note that FBN1 is located at the minus
strand, and the nucleotide sequence of this genomic region is
represented by the plus strand. The 'Mammal Cons’ is a conservation
measurement. B: The walker diagram of 3′ (acceptor) splice site in
intron 17 and its adjacent sequence is shown. The wild-type sequence
is at the top. Bases in splice sites are shown in the corresponding
walker diagram. The arrow points to the mutant sequence with the
G to T base change and shows the change from a positive contribution
by the G to a near zero contribution of the T.
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to a shortened protein, accounting for about 11%–12% of the
gene lesions in FBN1 [5,13]. Interestingly, the c. 2168–1G>T
splice site mutation (in IVS 17) involved the same nucleotide
of the c. 2168–1G>A substitution previously described in
FBN1 [14].

Family 2 carried a missense mutation affecting cysteine
residues in exon 50 in the domain of 8-Cys/TB number 06.
This supports the previous studies that mutations involving
cysteine substitution are usually associated with EL [13,15,
16]. Each 8-Cys/TB module contains eight highly conserved
cysteine residues holding TGF-β in an inactive complex in
various tissues including the extracellular matrix [17].
Structure analysis showed C2061 and C2083 form one of the
four disulfide bonds. Therefore, the substitution of cysteine
by phenylalanine in this position was likely to destroy the
disulfide bond and cause domain misfolding and structure
instability. Recent studies demonstrated that increased TGF-β
signaling contributed to selected symptoms of MFS [18] and
could cause dysregulation of cytokine function in mouse
models of MFS [19]. All above show that 8-Cys/TB domains
also play an important role in the pathogenesis of
fibrillinopathies.

Since FBN1 cDNA was cloned and the first mutations of
FBN1 were identified in MFS patients in 1991 [20-22],
currently more than 1,200 FBN1 mutations have been

Figure 4. Analysis of the missense mutation in exon 50. A: The
alignment of the FBN1 sequence with the corresponding segments
in diverse species is shown. The cysteine is conserved in FBN1
proteins from several species. The sequence was selected from the
UniProt Knowledge base. B: Structure analysis of the transforming
growth factor-binding protein-like domains (8-Cys/TB) in human
FBN1. α-helices and β-strands are shown with red and brown colors.
The two residues (C2061 and C2083) are colored green. The
disulfide bond is represented with a dotted line.

described [23]. Most of them are missense mutations, and
others are nonsense mutations, splice defect, deletions, and so
on. In this study, we described two novel heterozygous
mutations in FBN1 in the Chinese patients with ectopic lentis
and marfanoid habitus and analyzed the potential functional
consequences of the two mutations. Our data further expand
the mutation spectrum of FBN1 and help in the study of
molecular pathogenesis of Marfan syndrome and Marfan-
related disorders.
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