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Abstract

We use least absolute shrinkage and selection operator (LASSO) regression to select genetic markers and
phenotypic features that are most informative with respect to a trait of interest. We compare several strategies for
applying LASSO methods in risk prediction models, using the Genetic Analysis Workshop 17 exome simulation data
consisting of 697 individuals with information on genotypic and phenotypic features (smoking, age, sex) in 5-fold
cross-validated fashion. The cross-validated averages of the area under the receiver operating curve range from
0.45 to 0.63 for different strategies using only genotypic markers. The same values are improved to 0.69–0.87 when
both genotypic and phenotypic information are used. The ability of the LASSO method to find true causal markers
is limited, but the method was able to discover several common variants (e.g., FLT1) under certain conditions.

Background
Recent advances have enabled researchers to study
genetic associations with familial diseases in remarkable
detail. Genome-wide association studies (GWAS) of
common variants have revealed numerous genetic loci
that significantly modulate phenotypes for a wide assort-
ment of important clinical phenotypes, ranging from the
expected risk of certain malignancies [1,2] to commonly
measured clinical traits, such as lipid levels [3]. Never-
theless, it is increasingly evident that the common var-
iants found in GWAS provide an incomplete picture of
the underlying genetic risk for many of the familial dis-
eases that have been studied [4-6]. Thanks to the
increased availability of sequencing technologies and to
large-scale efforts such as the 1000 Genomes Project,
exome scans are becoming increasingly popular in com-
plex disease genetics. These studies represent several
new challenges in genetic analysis.
Although a variety of machine learning methods have

been used in GWAS [7], penalized regression methods
are among the most flexible and are thus well suited for

analysis of data sets such as exome scans, which may
contain both common and rare effects. Numerous pena-
lized regression methods have been shown to be effec-
tive for both common and rare variants [4,8-10]. Zhou
et al. [4] proposed a combination of group and least
absolute shrinkage and selection operator (LASSO)
penalties to find both rare and common variants using
sets of markers grouped by pathway and gene. However,
their method was evaluated using family breast cancer
registry data, and its performance is unclear for larger
scale data from GWAS.
To improve accuracy, some studies have imposed an

arbitrary p-value cutoff to limit the number of genetic
variants in the LASSO model [9], whereas others have
applied the model across all variants using the LASSO
penalty and a group penalty for the gene or pathway [4].
In this study, we propose an approach using a LASSO
model that first selects sets of genetic variants for each
pathway and gene and then generates an optimized
LASSO model based on the selected marker sets. Taking
advantage of information provided in the Genetic Analy-
sis Workshop 17 (GAW17) exome data set, we can
build two LASSO models for each pathway or gene
based on regression on either disease status or a quanti-
tative trait. This approach is more time-consuming than
optimization of a LASSO model for the full set of
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variants. However, our strategy permits us to build indi-
vidual optimal models on each variant set related to the
pathway and gene, allowing a more flexible and accurate
model determination. In the remainder of this paper, we
examine the performance of this new approach using
the GAW17 exome data set.

Methods
LASSO regression
We compare several LASSO models that incorporate
gene, pathway, and phenotypic information in this
study. For a response vector Y = (y1,…,yn) containing
case-control labels coded as 0 or 1 for a set of n sub-
jects, a genotype matrix G = (X1,…,Xn), with each vector
Xi consisting of m single-nucleotide polymorphisms
(SNPs) coded as 0, 1, or 2, and a coefficient vector b,
the standard logistic regression model:
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can be fitted using Y and G. However, this model is
not well suited for large genetic studies with far more
variables than samples, and it often results in inaccura-
cies as a result of model instabilities, colinearities, and
overfitting. Several penalized regression methods have
become popular in the analysis of large-scale genetic
data sets [7,9] for their improved variable selection. In
this study, we use the L1 LASSO penalty method, which
selects b based on the maximization of:

l Y X j

j

m

b l b, ,( ) −
=

∑
1

(2)

where l(b | Y, X) is the logistic log-likelihood and l is
the shrinkage parameter. The LASSO-penalized regres-
sion model can also be defined for a linear regression
for a continuous response vector [11]. In this study, we
evaluate several different strategies for applying a
LASSO regression that incorporates gene, pathway, and
phenotypic information into the model.

Data description
The GAW17 data set contains 697 unrelated individuals
from the 1000 Genomes Project genotyped at 24,487 auto-
somal SNPs from 3,205 genes [12]. Two hundred six path-
ways from the Kyoto Encyclopedia of Genes and Genomes
(KEGG) [13] are represented, spanning 7,929 different
SNPs and 1,100 different genes. We restrict our analysis to
the 13,572 nonsynonymous variants in the study. Each of
the 200 simulated data sets includes the following infor-
mation for each individual: case-control status, three con-
tinuous quantitative traits (Q1, Q2, Q4), and three

phenotypic features (Age, Smoking status, and Sex). We
use a multidimensional scaling analysis based on genome-
wide pairwise identity-by-state distances computed in
PLINK [14] to determine three main continental popula-
tion strata: African (Luhya, Luhya-additional, Yoruba-1,
Yoruba-2, Yoruba-additional), Asian (Denver Chinese,
Denver Chinese-additional, Han Chinese-1, Han Chinese-
2, Han Chinese-additional, Japanese-1, Japanese-2, Japa-
nese-additional), and European (CEPH-1, CEPH-2, Tus-
can, and Tuscan-additional) [15,16]. We then generate
three binary features to include in our model, assigning
patients to their corresponding Asian, European, and Afri-
can populations. Two main population outliers were
removed from our analysis.

Analysis
We use the R software package glmnet in our analysis
for LASSO regression [11] and evaluate our models
using a 5-fold cross-validation procedure for each simu-
lation data set. More specifically, we split the data sets
into five independent folds of approximately equal size
such that the case-control ratios in each population are
maintained in each fold. Models are trained using four
folds of the data and then tested using the remaining
fold. This procedure is repeated for each of the five
training and testing fold combinations. To determine an
optimal value l* for each training set, we apply an inner
loop of 10-fold cross-validation. Then l* is used on the
entire training set to build the final model for the eva-
luation of the testing fold. Finally, the averaged evalua-
tion measures over the five testing folds are reported as
the testing accuracy. In our analysis the evaluation mea-
sures are the area under the receiver operating curve
(AROC) for logistic models and the mean-square error
for continuous linear regression models.
We consider three basic models: (1) LASSO logistic

regression with all genetic variants included; (2) LASSO
logistic regression for each of the (a) 3,205 genes or (b)
206 pathways, followed by a LASSO regression using
the combined set of selected variants from all genes or
pathways; and (3) three separate LASSO linear regres-
sion models for each of the continuous quantitative
traits Q1, Q2, and Q4 for each pathway, followed by a
LASSO logistic regression over the entire set of selected
variants across all pathways.
For each of these strategies, we consider a genotypes-

only model, a combined model that includes phenotype
information (Age, Smoking, and Sex), and a restricted
model that is limited to a fixed number of variables. In
this study, the restricted models are limited to have a
maximum of 50 variables.
Model 1 is similar to most other applications of the

LASSO regression model, in which a single regularization
parameter is used. This model is convenient and
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computationally efficient, but its ability to detect local
effects within biologically meaningful subsets of genes that
are of interest in an exome study may be limited. Models
2 and 3 first determine optimized models for each gene or
pathway and then run a LASSO regression over the com-
bined set of variants selected for each gene or pathway.

Results
Performance of the models
Results for all the models are shown in Table 1. Each of
the 200 simulated data sets was analyzed separately.
Because model 2 had a substantially longer running
time, it was evaluated for only 50 (model 2a) and 150
(model 2b) randomly selected data sets. To determine
the baseline performance for our models, we sampled
several simulation data sets using 180 random variants
(corresponding to the average size of the basic geno-
types-only model 1 result). The expected average AROC

for a randomly selected set of variants was 0.49. Simi-
larly, we used glmnet to compute optimal models from
the set of 160 causal simulation markers and determined
that the average AROC of this optimal set of genotypes
was 0.59. This value represents the average predictive
accuracy of an optimized subset of the genetic variants
responsible for assigning disease status in the simulation
and is considered the target value of our models that
use only genotype data. As observed in Table 1, the
purely genetic models have AROC values closer to 0.55
for all models considered. The combined models with
phenotypic features had an AROC of 0.82, a universally

higher average testing AROC value independent of any
genotypic combination. Because of the high marginal
effect sizes of the phenotypic variables (Age, Sex, and
Smoking status), these effects frequently overpowered
the effect sizes of genetic markers included in the
LASSO models. The unrestricted LASSO models often
resulted in solutions with a large number of variables,
limiting the practical utility of these models. The testing
AROC values of the restricted models were often the
same as or better than those of the unrestricted models,
indicating better generalization ability for the restricted
models. However, the predictive performance of the
genetic component did not reach the best possible level,
and the models included larger numbers of noncausal
variants. The use of gene and pathway information did
not result in meaningful improvements in the regression
models with respect to predictive capability.

Variables selected by the models
Table 2 shows results from each experiment for the
most frequent variables that were selected in at least
four out of five trained models within a simulation data
set for models 1 and 3. These results reveal that the
true variants detected were predominantly common var-
iants, but our model may also have some capacity to
identify true rare variants. The gene- and pathway-based
regression approaches did not seem to produce substan-
tially different AROC values or find different casual var-
iants than those found using the simpler LASSO
approach. However, as shown in Table 2, the proportion

Table 1 Prediction results for various model types

Model Model type Training AROC Testing AROC Number of truea Sizeb N

1 Genotypes only 0.57 0.55 3.57 179.43 200

Genotypes restricted 0.56 0.55 0.84 22.07 200

Combined model 0.82 0.82 1.27 28.38 200

Combined model restricted 0.82 0.82 1.06 18.70 200

2a Genotypes only 0.61 0.54 9.98 545.33 50

Genotypes restricted 0.56 0.55 0.86 21.66 50

Combined model 0.83 0.81 2.78 94.32 50

Combined model restricted 0.83 0.82 1.14 20.57 50

2b Genotypes only 0.73 0.54 11.65 348.86 150

Genotypes restricted 0.58 0.56 2.01 29.57 150

Combined model 0.85 0.78 9.35 228.43 150

Combined model restricted 0.83 0.82 2.48 29.26 150

3 Genotypes only 0.62 0.54 11.32 294.68 200

Genotypes restricted 0.58 0.56 1.75 22.84 200

Combined model 0.83 0.82 3.94 64.17 200

Combined model restricted 0.83 0.82 2.04 20.40 200
a Average number of causal simulation markers included.
b Average number of variables in each model.

Averaged results from a 5-fold evaluation procedure on N simulation data sets. Training AROC values were obtained from the internal 10-fold cross-validation on
the training sets, as implemented in the R package glmnet. Testing AROC values were determined by applying each of the trained models to the five
independent testing sets.
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of those casual variant occurring was higher in model 3,
indicating a more robust model.

Discussion
In this paper, we assessed the utility of several different
strategies for analyzing exome simulation data with a
range of causal allele frequencies in the presence of
quantitative and phenotypic information. A compari-
son of the three proposed approaches indicates that
the simple LASSO regression model may be an effi-
cient means to determine truly associated variants, but
it must be modified to reduce the number of variables
to avoid unreasonably large models and overfitting. As
discussed in other studies of these data at GAW17, the
primary genetic effects that were expected to be
observed in this study were those from common var-
iants, such as C13S523 and C13S522 in FLT1. As

shown in Table 2, individual genetic variants were
identified consistently in four out of five training mod-
els in only a minority of simulation analyses. For
example, FLT1 C13S523 occurred in at most 81 out of
200 simulations in the combined analysis for model 3.
Some loss of power was expected in our analysis,
because we developed our models using 80% of a
simulation data set to obtain an independent evalua-
tion of our methods’ predictive ability. However, if we
consider the same model calculated on all 200 repli-
cates using the entire set of patients (no training set),
then FLT1 C13S523 is included in 132 of 200 data
sets. In larger studies or in studies that have a preex-
isting independent sample to validate the predictive
model, this diminished power will not affect our
method as strongly and our model may be better able
to discern genetic predictors.

Table 2 Feature selection

Model type Model 1 Model 3

Gene SNP Counta MAFb Causalc Gene SNP Counta MAFb Causalc

Gene only FLT1 C13S523 35 0.0667 Y FLT1 C13S523 71 0.0667 Y

ADAMTS7 C15S3360 22 0.0029 N SRPR C11S6885 63 0.0014 N

TG C8S4379 17 0.0050 N TG C8S4379 61 0.0050 N

MDN1 C6S4146 15 0.0050 N RPA3 C7S297 58 0.0007 N

GOLGA1 C9S4013 13 0.0308 N LAMB3 C1S10178 54 0.0007 N

FLT1 C13S522 12 0.0280 Y RPL27 C17S2981 52 0.0007 N

Gene restricted FLT1 C13S523 19 0.0667 Y FLT1 C13S523 44 0.0667 Y

TEX14 C17S3819 9 0.0043 N FLT1 C13S522 24 0.0280 Y

FLT1 C13S522 8 0.0280 Y CYP3A43 C7S2324 21 0.0976 N

UBA3 C3S2197 7 0.0108 N TG C8S4379 18 0.0050 N

GOLGA1 C9S4013 7 0.0308 N PRKCA C17S4578 16 0.1664 Y

CYP3A43 C7S2324 7 0.0976 N PIK3C2B C1S9189 15 0.0065 Y

Combined Age Age 200 NA Y Age Age 200 NA Y

Smoke Smoke 163 NA Y Smoke Smoke 185 NA Y

FLT1 C13S523 49 0.0667 Y FLT1 C13S523 81 0.0667 Y

FLT1 C13S522 16 0.0280 Y FLT1 C13S522 34 0.0280 Y

PIK3C3 C18S2492 7 0.0172 Y PIK3C3 C18S2492 18 0.0172 Y

HFE C6S853 3 0.0036 N PRKCA C17S4578 8 0.1664 Y

ARNT C1S6533 3 0.0115 Y ARNT C1S6533 8 0.0115 Y

ACP1 C2S1 2 0.0093 N UBA3 C3S2197 7 0.0108 N

Combined restricted Age Age 200 NA Y Age Age 200 NA Y

Smoke Smoke 163 NA Y Smoke Smoke 180 NA Y

FLT1 C13S523 49 0.0667 Y FLT1 C13S523 75 0.0667 Y

FLT1 C13S522 17 0.0280 Y FLT1 C13S522 32 0.0280 Y

PIK3C3 C18S2492 7 0.0172 Y PIK3C3 C18S2492 17 0.0172 Y

ARNT C1S6533 3 0.0115 Y UBA3 C3S2197 6 0.0108 N

LARGE C22S1540 3 0.0201 N ARNT C1S6533 6 0.0115 Y

MMS19 C10S4869 3 0.0050 N KDR C4S1861 5 0.0022 Y
a Number of times a given variable was observed in four out of five trained models.
b Minor allele frequency.
c Variables used to determine disease risk by the GAW17 simulators.

The top most frequent variables occurred in at least four out of five trained models for models 1 and 3. All models were run for the 200 simulation data sets.
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Some variants, for example, PIK3C3, appeared much
more frequently in the models that combined genotypic
and phenotypic effects than in models that considered
only genotypes. To further investigate this finding, we
built logistic regression models for Y and PIK3C3,
adjusting for either only population variables or both
population and phenotypic variables. PIK3C3 was signif-
icant (a = 0.01) in 22 out of 200 data sets for the model
adjusted for population only and in 105 out of 200 data
sets for the model adjusted for both population and
phenotypic variables, providing an explanation for this
observation. Our analysis also indicates a significant
relationship in the linear regression model for Q1 and
PIK3C3 adjusted for population only (184 out of 200
data sets) and adjusted for both population and pheno-
typic variables (197 out of 200 data sets) at a = 0.01.
This may also explain the more frequent occurrence of
PIK3C3 in model 3 than in model 1 for the combined
models.
Our method was able to reliably ascertain some true

variants using subsets of the data for training. In addi-
tion, the signs of the regression coefficients for the fre-
quently selected variants were highly consistent (about
99%) over different simulation data sets. However, the
ability of our model to find true variants was also
accompanied by a large number of noncausal variants.
Because several long-range correlations exist within the
GAW17 data set, a portion of the variants classified as
noncausal in our study may actually be truly associated
with the disease state or phenotypic traits. The predic-
tive ability of the LASSO model using only genetic
information is limited because none of the examined
genomic subsets have a predictive ability that is compar-
able to that of the phenotypic variables. Nevertheless,
incorporating these phenotypic variables into our model
increases the proportion of causal genetic variants found
using our method.

Conclusion
Although our method is able to detect some causal rare
variants, the results do not indicate that this is a pro-
mising approach for the general analysis of exome
sequencing data that include causal rare variants. Identi-
fying optimal sets of genetic variants for every gene and
pathway in a data set may take considerably higher
computation time than the standard LASSO model and
is expected to generate robust predictive models only
when there are several adequately powered common
causal variants to distinguish case subjects from control
subjects.
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