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Abstract: Iridoids are a class of active compounds that widely exist in the plant kingdom. In
recent years, with advances in phytochemical research, many compounds with novel structure
and outstanding activity have been identified. Iridoid compounds have been confirmed to mainly
exist as the prototype and aglycone and I and II metabolites, by biological transformation. These
metabolites have been shown to have neuroprotective, hepatoprotective, anti-inflammatory, antitumor,
hypoglycemic, and hypolipidemic activities. This review summarizes the new structures and activities
of iridoids identified locally and globally, and explains their pharmacokinetics from the aspects of
absorption, distribution, metabolism, and excretion according to the differences in their structures,
thus providing a theoretical basis for further rational development and utilization of iridoids and
their metabolites.

Keywords: iridoids; phytochemistry; biological activities; pharmacokinetics

1. Introduction

Iridoids, a large and still expanding class of cyclopentane pyran monoterpenes, are composed of
two basic carbon frameworks, substituted iridoids, and secoiridoids. They are more prevalent in the
kingdom Plantae, especially in the dicotyledonous plants from Scrophulariaceae, Pyrolaceae, Oleaceae,
Labiatae, Rubiaceae, and Gentianaceae [1,2]. Based on the structure, these compounds can be divided
into four groups: iridoid glycosides, secoiridoid glycosides, non-glycosidic iridoids, and bis-iridoids.
Iridoids have hemiacetal hydroxyl groups and are active in nature. Besides, they are mostly in the
form of glycosides and are combined with glucose at the C-1 hydroxyl group [3,4]. Most glycosides
share similar properties such as strong modifiability and rapid absorption; hence, they are popular
sources of lead compounds. Their prominent effects in various diseases have shown their importance
in pharmaceutical chemistry research. As one of the active components used in natural medicine and
traditional Chinese medicine, iridoid compounds have many biological effects such as liver protection,
anti-inflammatory and anti-tumor effects [5–7]. However, in recent years, there has been no systematic
arrangement and summary of iridoids. This review paper aims to characterize iridoids based on their
phytochemistry, biological activities, and pharmacokinetics, through the analysis and comparative
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study of the structure and function of known iridoids. The characterization will provide a framework
for new medicine development and research, enabling the exploration of the remarkable medicinal
potential of these compounds.

The systematic summary in this paper was produced by searching for relevant information
about iridoids on websites such as Google Scholar, PubMed, CNKI, Baidu Scholar, SciFinder Scholar,
TPL (www.theplantlist.org), and Web of Science. The following words and/or phrases were used
in various combinations, “iridoids”, “iridoids phytochemistry”, “iridoids classification”, “iridoid
glycosides”, “secoiridoid glycosides”, “bis-iridoids”, “non-glycosidic iridoids”, “iridoids activities”,
“iridoids pharmacological”, “iridoids pharmacokinetic”. More than 100 scientific works of literature
were consulted from 2009 to 2019.

2. Phytochemistry

Iridoids belong to monoterpenoids, which are acetal derivatives of iridodial [8]. Because
of the unstable nature of its C1-OH group, iridoids often react with sugar to form glycosides.
According to the integrity of the cyclopentane unit, it can be divided into two types: iridoid
glycosides (including geniposide, loganin, acetylbarlerin, deacetylasperulosidic acid, and brasoside)
and secoiridoid glycosides (including swertiamarine, gentiopicroside, qinjiaoside A, qinjiaoside
B, sweroside, and oleuropein). In addition, the dimer of iridoids called as bis-iridoids (including
cantleyoside, laciniatoside I-II, and sylvestroside I) and unglycosylated iridoids called as non-glycosidic
iridoids (including acevaltrate and valtrate) [9,10] are also found in nature. Compounds with such
structures possess a variety of physiological activities and are used as sedating and antipyretic
agents [8,11]. Tundis et al. have detailed summaries of active compounds prior to 2008 [12], Table 1
lists the active iridoids from 2009 to 2019 in the last 11 years. Three basic skeletons of iridoids are
elucidated in Figure 1.
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Table 1. Active iridoids compounds from 2009 to 2019.

No. Classes Compounds Sources Ref.

1 Iridoid glycosides Euphroside Scrophulariaceae [13]
2 Plantarenaloside Plantaginaceae, Bignoniaceae [14,15]
3 Geniposidic acid Scrophulariaceae, Labiatae [13]
4 Loganic acid Acanthaceae [16]
5 Loganic acid-6′-O-β-d-glucoside Gentianaceae [17]
6 2′-O-(4-methoxycinnamoyl) mussaenosidic acid Acanthaceae [18]
7 2′-O-trans-coumaroylshanzhiside Rubiaceae [19]
8 6′-O-trans-coumaroyl-shanzhiside Rubiaceae [19]
9 Mussaenoside Scrophulariaceae [13]
10 Lupulinoside Acanthaceae [20]
11 8-epideoxyloganic acid Bignoniaceae [14]
12 Shanzhiside methyl ester Acanthaceae [20]
13 Barlerin Acanthaceae [20]
14 Acetylbarlerin Acanthaceae [20]

15 6-O-trans-p-coumaroyl-8-O-acetylshanzhi side
methyl ester Acanthaceae [20]

16 6′-O-acetylgeniposide Rubiaceae [21]
17 6′-O-trans-p-coumaroylgeniposide Rubiaceae [21]

www.theplantlist.org
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Table 1. Cont.

No. Classes Compounds Sources Ref.

18 6′-O-trans-p-coumaroyl-geniposidic acid Rubiaceae [21]
19 6′-O-trans-sinapoylgeniposide Rubiaceae [21]
20 Pinnatoside Verbenaceae [22]
21 6β-ethoxygeniposide Rubiaceae [19]
22 10-O-acetylgeniposide Rubiaceae [21]
23 Eurostoside Scrophulariaceae [23]
24 10-O-succinoylgeniposide Rubiaceae [21]
25 Ninpogenin Scrophulariaceae [24]
26 8-O-(coumaroyl)harpagide Scrophulariaceae [24]
27 6-O-α-d-galactopyranmosylharpagoside Scrophulariaceae [24]
28 8-O-feruloylharpagide Scrophulariaceae [24]
29 Dihydropenstemide Plantaginaceae [15]
30 Patrinalloside A Valerianaceae [25]
31 10-isovaleroyl-dihydropenstemide Loganiaceae [15]
32 Buddlejoside A9 Loganiaceae [26]

33 6-O-α-L-(”-acetyl-4”-O-trans-isoferuloyl)
rhamnopyranosyl catalpol Loganiaceae [26]

34
6-O-α-L-(4”-O-trans-cinnamoyl)

rhamnopyranosyl
catalpol

Loganiaceae [26]

35 6-O-α-L-(4”-O-trans-p-coumaroyl)
rham-nopyranosyl catalpol Loganiaceae [26]

36 Brasoside Verbenaceae [27]
37 Deacetyl asperuloside Rubiaceae [28]
38 Asperuloside Rubiaceae, Plantaginaceae [28–30]
39 8α-butylgardenoside B Rubiaceae [19]
40 Amphicoside Scrophulariaceae [31,32]
41 Specioside Bignoniaceae [33]
42 Secoiridoids 6′-O-β-d-glucopyranosyl gentiopicroside Gentianaceae [34]
43 3′-O-β-d-glucopyranosyl gentiopicroside Gentianaceae [34]
44 4′-O-β-d-glucopyranosyl gentiopicroside Gentianaceae [34]
45 Oleoside dimethyl ester Oleaceae [35]
46 (8E)-nuezhenide Oleaceae [35]
47 (8Z)-nuezhenide Oleaceae [35]
48 (8Z)-nuezhenide A Oleaceae [35]

49 Gentiopicroside Gentianaceae [17,34,
36–38]

50 Oleuropein Oleaceae [35,39]
51 Qinjiaosides B Gentianaceae [34]
52 Qinjiaoside A Gentianaceae [34]
53 7-hydroxy eucommiol Bignoniaceae [33]
54 7-methoxydiderroside Acanthaceae [20]
55 Isojaslanceoside B Oleaceae [40]
56 6′-O-trans-cinnamoyl-secologanoside Oleaceae [40]
57 Nuezhenelenoliciside Oleaceae [40]
58 Bis-iridoids Sylvestroside III Dipsacaceae [41]
59 Cantleyosid Dipsacaceae [41]
60 Sylvestroside I Dipsacaceae [41]

61 Sylvestroside IV
Dimethyl acetal Dipsacaceae [41]

62 Laciniatoside II Dipsacaceae [41]
63 Sylvestroside IV Dipsacaceae [41]

64 sylvestroside III dimethyl
acetal Dipsacaceae [41]

65 Laciniatoside I Dipsacaceae [41]
66 Polystachyn A Valerianaceae [42]
67 Sclerochitonoside C Acanthaceae [43]
68 Oleoside dimethyl ester Oleaceae [35]

69 Non-glycosidic
iridoids Valtrate Valerianaceae [44]

70 1-β-acevaltrate Valerianaceae [44]
71 Acevaltrate Valerianaceae [44]
72 6α-hydroxygenipi Rubiaceae [19]
73 6α-methoxygenipin Rubiaceae [19]
74 IIHD-acevaltrate Valerianaceae [42]
75 garjasmine Rubiaceae [19]
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2.1. Iridoid Glycosides

The iridoid glycosides C-1 are polyhydroxyl linked and polyglycoside formed, and most of
them are β-d-glucoside. Among the isolated iridoid glycosides, some rare new structures have been
found, such as asperuloside, which has a ketone functional group at C-6. This cyclopentane ring with
ketoyl function, especially at C-6, is a rare compound in the plant kingdom [45]. Besides, Iridoid
glycosides with apiofuranosyl moieties have been reported for the first time in Sambucus williamsii
Hance. Based on the extensive spectroscopic analysis (NMR and HRESIMS) the structures were
elucidated as williamsoside A and B [46].

Furthermore, 6-O-α-l-(2”-acetyl-4”-O-trans-isoferuloyl) rhamnopyranosyl catalpol is acylated
and esterified at the C-2 and C-4 positions such compounds have never been separated from natural
resources so far [26]. Vestena et al. isolated and purified brasoside from both Verbena litoralis and
Verbena montevidensis [27]. In addition, asperuloside with a rare iridoid structure was isolated from the
root and stem of Ronabea emetica [30]. Their structures are presented in Figure 2.
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2.2. Secoiridoids Glycosides

Secoiridoids have many structural differences compared with the iridoid glycosides [47].
Compound 42–57 are active compounds from the secoiridoid class, which are widely distributed in
Gentianaceae, Nymphaeaceae, Caprifoliaceae, and Oleaceae, and other plants, and are more common
in Gentianaceae and Swertia.
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The C7–C8 in secoiridoids in the parent nucleus of these compounds is usually broken to form a
cleavage ring. The C-7 and C-11 compounds sometimes form a 6-membered lactone structure after
ring splitting. Secoiridoid rearrangements are relatively rare, and nuezhenelenoliciside is one such
compound, which undergoes a break in the chemical bond between C-1 and O-2 and generates a
new secoiridoid ring between C-8 and O-2. The effect of nuezhenelenoliciside on the proliferation of
pre-osteoblast cells has been reported [40]. Pagide is considered the second member of the secoiridoids
family of rare, naturally occurring organisms that are produced through an iridoid biosynthesis
pathway based on their unique C-4 acyl substitution and C-8 glycosylation [48]. Their structures are
presented in Figure 3.
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2.3. Bis-Iridoids

In addition to the compounds, there exists a class of bis-iridoids in nature that are dimeric
iridoids formed from the structures of two iridoids [9]. Cantleyoside, laciniatoside I-II, sylvestroside I,
sylvestroside III-IV, sylvestroside III dimethyl acetal, and sylvestroside IV dimethyl acetal are mainly
bis-iridoids isolated from Pterocephalus hookeri (C.B. Clarke) Höeck, which have been shown to have
anti-inflammatory and analgesic activities [41]. Sclerochitonoside C has a similar structure, except
that the C-7 position of the iridoid is directly connected to the C-4 position of the secoiridoid, which
comprises subunits based on the 4′-hydroxyphenylethyl esters of 8-epiloganic acid and its secoiridoid
analogue [43].

Furthermore, structures similar to those of laxoside have not been previously described
in international catalogues. Such a structure is formed by acid hydrolysis to produce
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d-glucose and d-galactose; alkali hydrolysis then produces trans-p-methoxycinnamic acid
and a slightly polar glycoside. Spectral analysis data shows that the structure
of 6′′′-O-[6-O-(4”-trans-p-methoxycinnamoyl)-5-hydroxyaucubigenin-(1→1′)-O-β-d-galactopyranosyl]-
6””-O-trans-p-methoxycinnamoylaucubin uses glucose as a bridge to link the rare iridoid dimers [49].
Their structures are presented in Figure 4.Molecules 2020, 25, x FOR PEER REVIEW 7 of 23 
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3. Biological Activities

Now, more and more iridoids have been discovered, and their pharmacological effects are further
studied, such as neuroprotective, hepatoprotective, anti-inflammatory, hypoglycemic, hypolipidemic,
and antitumor activities. Their main pharmacological activities and the underlying mechanisms are
shown in Figure 6.Molecules 2020, 25, x FOR PEER REVIEW 8 of 23 
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3.1. Neuroprotective Effects

Regeneration and repairing of the central nervous system (CNS) is a complex process with
multiple links and factors [11]. Nerve growth factors (NGF) are involved in many functions of the
nervous system, such as growth, survival, and regeneration, in addition to repairing the neurons from
various wounds. However, they cannot penetrate the blood-brain barrier and are easily hydrolyzed
by hydrolases [50,51]. Therefore, researchers are trying to find natural lipophile compounds with the
properties of endogenous neurotrophic factors to induce neuronal differentiation and regeneration. To
date, all the available data suggest that the iridoids are a class of natural lipophile compounds with the
properties of endogenous neurotrophic factors, which could be considered as potential leads for the
treatment of neurodegenerative diseases [52]. The protective effects of loganin against PD mimetic
toxin 1-methyl-4-phenylpyridinium (MPP+) and the important roles of insulin-like growth factor 1
receptor (IGF-1R) and glucagon-like peptide 1 receptor (GLP-1R) in the neuroprotective mechanisms of
loganin have been demonstrated. It has been shown that in primary mesencephalic neuronal cultures
treated with or without MPP+, loganin protects against MPP+ -induced apoptosis by up-regulating
the expression of anti-apoptotic proteins and pro-apoptotic proteins, and also enhances the expression
of neurotrophic signals by up-regulating the expressions of IGF-1R, GLP-1R, p-Akt, BDNF, and
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tyrosine hydroxylase. In addition, it can reduce the production of MPP+-induced reactive oxygen
species (ROS), up-regulate GAP43, and down-regulate membrane-rhoA/ROCK2/p-LIMK/p-cofilin to
reduce MPP+ -induced neuron damage. Furthermore, the presence of IGF-1R antagonists (AG1024)
or GLP-1R antagonists (exendin 9-39) weakened the protective effect of loganin on MPP+ -induced
cytotoxicity and apoptosis, and decreased neuron length and ROS production. A series of experiments
showed that loganin could enhance neurotrophic signals, activate IGF-1R/GLP- 1R, inhibit RhoA/ROCK
pathway, and alleviate MPP+ induced apoptosis and death, neuron damage, oxidative stress, and
other mechanisms to achieve neuroprotective effect [53].

Studies have found that abnormal tau protein hyperphosphorylation could be one of the main
causes of Alzheimer’s disease (AD). The concentration of Protein phosphatase 2A (PP2A) affects
the tau protein hyperphosphorylation, which in turn is concentration-dependent. To investigate
the effect of cornus iridoid glycoside (CIG) on enhancing the activity of PP2A in Cornus officinalis,
Sk-N-SH cells were exposed to 20 nmol/L okadaic acid (OA, PP2A inhibitor) for 6 h to induce tau
hyperphosphorylation to determine the effect of CIG on PP2A activity and on the post-translational
modification of the PP2A catalytic subunit C (PP2Ac). The results showed that OA increased PP2Ac
phosphorylation and tau hyperphosphorylation, while CIG preincubation significantly reduced
OA-induced tau hyperphosphorylation at Ser 199/202 and Ser 396, inhibited PP2Ac phosphorylation at
Tyr 307, increased Src phosphorylation, and restored PP2A activity. In conclusion, CIG can inhibit
tau hyperphosphorylation by activating PP2A, reducing the p-SRC level and PP2Ac phosphorylation
at Tyr307 [54]. Another compound, corn furfural B isolated for the first time from the ethanol
extract of dogwood fruit, has been shown to possess neuroprotective activity by reducing the
corticosterone-induced neuronal damage in PC12 cells [55]. However, the neural network is a complex
system, and iridoids are a large family, with different compounds having different effects on the
nervous system. Especially, the compounds with large differences in their chemical structure need to
be studied in more detail. Hence, there are limitations in the study of pharmacological effects and
their mechanisms.

3.2. Hepatoprotective Effects

Many studies have shown that the current effective treatments for liver disease are often associated
with side effects [56]. It is highly prevalent in the current scenarios to explore the therapeutic value
of natural medicinal preparations or to explore their novel effects. The hepatoprotective effects of
swerodesanthin and swerodesanthin from Swertia mussotii Franch were evaluated by using the model
of α-naphthol isocyanate (ANIT)-induced liver injury. After oral administration of swertiamarin (20
mg/kg) or swertianolin (20 mg/kg) for seven days, alanine transaminase, aspartate transaminase, and
total direct bilirubin levels in mice were significantly reduced at α-naphthyl isothiocyanate-induced
levels, while, bile flow was significantly increased (p < 0.01). The study also showed that in the
cholestatic hepatitis model, the inducer ANIT could promote bile secretion; reduce AST, ALT, ALP
enzyme activity; and reduce TBIL and DBIL levels which indicates the role of cycliterpene in the
treatment of cholestatic hepatitis [57].

Another study tested the vegetable oil- and carbon tetrachloride-induced liver fibrosis rat models
to evaluate and characterize the hepatoprotective effects of iridoid glycosides from Boschniakia rossica.
The rats were continuously treated with iridoid glycosides (200 mg/kg) for 10 days and then their
blood and liver tissues were harvested. When compared to the normal control group, serum ALT, AST,
and TBIL levels were significantly increased in the model group (p < 0.05). HE staining and Masson
staining showed that the hepatocytes in the model group exhibited degeneration, necrosis, and hepatic
fibrosis. Western blot analysis showed that the expression of α-SMA was significantly increased in the
liver tissue from the model control group (p < 0.05). The rats from Boschniakia rossica iridoid glucoside
group showed significantly low levels of serum ALT, AST, and TBIL (p < 0.05), with markedly reduced
liver fibrosis compared with that in the model control group. The expression of α-SMA in Boschniakia
rossica iridoid glucoside group was significantly lower than that in the model control group (p < 0.05).
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In essence, Boschniakia rossica iridoid glycoside could inhibit liver fibrosis by inhibiting the activation
of hepatic stellate cells, which are shown to exhibit some protective effects against liver damage [58].

To determine the protective effect of CIG on hepatocyte damage induced by d-galactosamine
(GalN) combined with TNF-α, L-02 human liver cells were cultured in vitro to establish a
D-GalN/TNF-α-induced damage model in L-02 cells. The total antioxidant capacity (T-AOC) of
superoxide dismutase (SOD), malondialdehyde (MDA) and intracellular calcium concentration were
taken as the index, and 44 mg/L D-GalN combined with 100 µg/L TNF-α could be used as the dose
in the cell damage model. The pre-protection group with high, medium, and low CIG doses (10, 20,
100 mg/L) significantly increased the activity of damaged cells and SOD activated T-AOC capacity of
damaged cells, which was significantly different from that in the model group (p < 0.05). The activity
of MDA might also have been reduced, but the decrease of MDA activity in the low concentration
group was not obvious. Furthermore, western blotting showed that CIG at different concentrations
significantly reduced the expression of endoplasmic reticulum stress-related protein PERK, EIF-2α,
and apoptosis-associated protein caspase-3. This suggests that the mechanism may be related to the
enhancement of the antioxidant capacity of cells, the reduction of damage caused by endoplasmic
reticulum stress, and the reduction of the expression of apoptosis-related proteins [59]. At present, the
related research on the hepatoprotective activity of iridoid compounds focuses on anti-inflammatory
factors and lipid peroxide [60,61]. Some studies have shown that iridoid glycosides can also show
anti-inflammatory and anti-fibrosis activity by decreasing the expression of TGF-β1 protein [62,63]. In
addition, some studies have shown that promoting the opening of MPTP, resulting in the release of
apoptosis factors, inhibiting the oxidation of mitochondria and respiratory chain function, making
the electron transport disorder in mitochondria, interfering with ATP synthesis is also an important
mechanism of liver protection [64,65]. However, the hepatoprotective activity of iridoid is less studied
in the aspect of mitochondrial damage, which should be paid attention to in the future.

3.3. Anti-Inflammatory Activities

In the search for anti-inflammatory compounds, special interest has been directed towards
iridoids [66–71]. The anti-inflammatory and analgesic activities of some diterpene components of
pterygium pterygii were evaluated. The analgesic effect of Polygonum cuspidatum was studied by the
hot plate method and acetic acid twisting method. Compared with the control group, BCPH (50, 100
mg/kg) reduced twisting times (17.25 ± 6.24 and 21.25 ± 3.65) and had a significant analgesic effect on
the acetic acid-induced pain (p < 0.01). In the hot plate latent trial, the efficacy of a high dose of BCPH
(100 mg/kg) was due to the control medicine Rotundine (20 mg/kg). The anti-inflammatory effects on
carrageen-induced posterior foot swelling in rats and dimethylbenzene induced ear swelling in mice
were observed. It was found that BCPH at 100 mg/kg had a significant inhibitory effect on ear edema
induced by dimethylbenzene in mice. Moreover, BCPH inhibited TNF-α-induced NF-κB-dependent
promoter activity in a dose-dependent manner. These results indicated that Polygonum diocyclic
ether can significantly reduce the pain caused by acetic acid and reduce ear swelling in mice. At the
cellular level, bis-iridoid aglycones reduced TNF-α- and LPS-induced NF-κB activation and reduced
inflammatory factors (inhibiting the production of free radicals) [41].

Loganin, an iridoid glycoside present in several herbs, including Flos lonicerae, Cornus mas L, and
Strychnos nuxvomica, is a valuable medication with anti-inflammatory effects [72]. To characterize the
roles of loganin in osteoarthritis and its specific signaling pathway, chondrocytes were administrated
with IL-1ss and supplemented with or without LY294002 (a classic PI3K/Akt inhibitor). The apoptotic
level, catabolic factors (MMP-3 and MMP-13 and ADAMTS-4 and ADAMTS-5), extracellular matrix
(ECM) degradation, and activation of the PI3K/Akt pathway were evaluated using western blotting,
PCR, and an immunofluorescent assay. The degenerative condition of the cartilage was evaluated
in vivo using the Safranin O assay. The expression of cleaved-caspase-3 (C-caspase-3) was measured
using immunochemistry. The results suggested that loganin suppressed the apoptosis, reduced the
release of catabolic enzymes, and decreased the ECM degradation of IL-1ss-induced chondrocytes.
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However, suppressing PI3K/Akt signaling using LY294002, alleviated the therapeutic effects of loganin
in chondrocytes. Loganin partially attenuated cartilage degradation while inhibiting the apoptotic level.
This work revealed that loganin treatment attenuated IL-1ss-treated apoptosis and ECM catabolism in
rat chondrocytes via regulation of the PI3K/Akt signaling, revealing that loganin is a potentially useful
treatment for osteoarthritis [73]. In addition, isolated camptoside from Camptosorus sibiricus Rupr.
(Aspleniaceae) which exhibited inhibitions of nitric oxide production in lipopolysaccharide-induced
RAW 264.7 macrophages with IC50 values of 11.2 Mm [74]. Apart from the above research, the future
is it necessary to inflammation related to signal transduction pathways, AA metabolic pathways of
ring oxidase (COX), isomerase and its downstream of prostaglandin (PGs), synthetase system and
corresponding receptors and phosphodiesterase isoenzyme more anti-inflammatory pathway and
links such as anti-inflammatory effect of iridoid molecular mechanism for more in-depth research.

3.4. Hypoglycemic and Hypolipidemic Activities

Type 2 diabetes is a common, lifestyle-related chronic disease, and is often accompanied by various
complications. The pathogenesis of type 2 diabetes is insulin resistance and dysfunction of islet β
cell. Hyperinsulinemia and hyperlipidemia are important parts of insulin resistance syndrome and
important risk factors of cardiovascular disease [75]. In one pharmacological investigation, it has been
found that the compound of iridoids can effectively control the hyperglycemia and hyperlipidemia.
The effects of CIG were studied in a mouse model of diabetes induced by a high-fat diet (HFD)
and streptozotocin (STZ). The results showed that CIG (IG: 75, 150, 300 mg/kg) could significantly
improve the glucose tolerance of diabetic mice, and CIG could enhance the expression of PI3K-Akt/PKB
pathway-related proteins in insulin metabolism, through which the hyperglycemia and hyperlipidemia
of diabetic mice induced by HFD and STZ could be improved [76].

By studying the glucose-sensing effect of Glucocorticoid (POMC) neurons genetically expressed
in mutant immunoglobulin receptor 6.2 (Kir6.2) subunit (encoded by KCNJ11 gene), researchers found
that this mutation can prevent ATP mediated ATP sensitive potassium pathway (KATP) closure and
increase the whole-body glucose load of obese mice fed with a high-fat diet. This indicates that
the loss of glucose sensing like effect of POMC neurons influences the formation of type 2 diabetes.
As a membrane-permeable molecule, genipin (20 µM) can block the proton leakage mediated by
uncoupling protein (UCP2), and UCP2 can negatively regulate the glucose-sensing effect of POMC
neurons, resulting in the loss of glucose sensing effect. When increasing the culture of islet β cells,
genipin can increase the potential of mitochondrial membrane, thus increasing the ATP level and
closing the KATP pathway, stimulating glucose excitatory neurons and stimulating insulin secretion.
This result showed that genipin has a potential therapeutic effect on diabetes [77].

A model of diabetes mellitus in rabbits was established by intravenous injection of alloxan at a
dose of 150 mg/kg. After diabetes induction, the plasma, erythrocyte malondialdehyde (MDA) and
blood glucose of all diabetic animals increased significantly. For the next 16 weeks, the treatment
group took 20 mg/kg OLE orally every day. At the beginning of the treatment, compared with that
in diabetic control, the blood glucose levels in rabbits increased continuously throughout the study
period. The blood glucose level of the treated rabbits, however, decreased significantly in the eighth
week. The results showed that the activity of superoxide dismutase (SOD), the level of MDA, and blood
glucose were significantly increased, indicating that oleuropein can be used as a hypoglycemic and
antioxidant agent to prevent complications and oxidative stress caused by diabetes [78]. At present,
the mechanism of hypoglycemia mainly includes insulin stimulation and repair of damaged pancreas;
effects on glucose metabolism; increases insulin sensitivity, improves insulin resistance, and regulates
intestinal flora [79–83]. Iridoids to regulate intestinal flora’s research are also insufficiently thorough,
the active ingredient from iridoid monomers adjusts the perspective of intestinal flora, by adjusting
the proportion of gram-negative bacteria, adjusting the lipopolysaccharide (LPS), short chain fatty
acid (SCFAs), pancreatic glucagon like peptide 1 (glp-1) and so on protein content, absorb medications
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affect blood glucose metabolism, polysaccharide absorption metabolism, to iridoids for the further
study of mechanism of diabetes, and pay attention to the connection between various mechanisms.

3.5. Antitumor Activities

The antitumor activities of gentiopicroside in the non-small ovarian cancer cell line (SKOV3)
have been reported. The antitumor effects were investigated by exposing the SKOV3 cells to
gentiopicroside (0, 7.5, 15, 30 µM) for 24 h. Thereafter, anticancer effects were determined by MTT
assay, the apoptosis was investigated by DAPI and annexin V/propidium iodide (PI) double staining,
mitochondrial membrane potential (MMP) determination and cell cycle analysis were carried out by
flow cytometry, and protein expression was examined by western blotting. The results showed that
gentiopicroside exhibited anticancer effects on SKOV3 cancer cells in a dose-dependent manner. The
IC50 of gentiopicroside was found to be 20 µM against the SKOV3 cancer cells. The anticancer effects
were mainly found to be a result of the loss of MMP and the induction of apoptosis. The Bax/Bcl-2
expression ratio was also altered upon gentiopicroside treatment. Furthermore, gentiopicroside could
arrest the SKOV3 cells in G2/M phase of the cell cycle and prevent their migration and invasion. These
results indicated that gentiopicroside could prove as a potential lead molecule in the treatment and
management of ovarian cancer [84].

Valjatrate E extracted from Valeriana jatamansi Jones is a kind of iridoid with reported anti-tumor
activity. The effect of HepG2 on tumor invasion, on metastasis of human hepatocellular carcinoma
and its potential mechanisms have been reported. The effects of valjatrate E on the migration and
invasion of HepG2 cells were determined by the wound healing experiment and the transwell room
experiment, respectively. The adhesion properties of HepG2 cells were evaluated by homogeneous
and heterogeneous adhesion experiments. Finally, the molecular mechanism of valjatrate E inhibiting
invasion and migration of HepG2 cells was studied by gelatine enzyme spectrometry and western blot.
The valjatrate E was found to exhibit antitumor properties by inhibiting metalloprotease 2 (MMP-2)
and metalloprotease 9 (MMP-9) expression; by inhibiting heterogeneous adhesion; by blocking
mitogen-activated protein kinase (MAPK) signal; and by inhibiting the phosphorylation of extracellular
signal-regulating kinase (p-ERK). These findings provided new evidence for the important role of the
MAPK/ERK signaling pathway in promoting invasion and metastasis of HepG2 cells through p-ERK.
The MAPK/ERK signaling pathway may, therefore, be a therapeutic target for tumors [85].

A novel secoiridoid compound, swertiamarin B, isolated from the ethanol extract of the aerial parts
of Swertia mussotii has been shown to possess antitumor activity, which has been reported against four
human tumor cell lines (HCT-116, HepG2, MGC-803 and A549). The results showed that swertiamarin
B had strong cytotoxic activity against MGC-803 cell line (IC50 = 3.61) and could effectively inhibit cell
proliferation, suggesting that it may be a new therapeutic agent for gastric cancer [86]. The research of
the anti-tumor of natural medicine has been the hotspot of scientists. Although it has been proved that
iridoid compounds have antitumor activity, most of them are based on in vitro cell experiments, but
few in vivo and clinical research, and the effects of the compound in vivo and in vitro may be different.
It is necessary to pay attention to the combination of in vivo and in vitro experiments in the future.

3.6. Others

Apart from the actions mentioned above, iridoids also exhibit other effects, including
antioxidant [44], cardiocerebrovascular activity, cholagogic effects, and α-glucosidase inhibitory
activity. Table 2 summarizes the other activities of iridoids.
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Table 2. Other activities of iridoids.

Function Compounds Dose Model Efficacy Evaluation Ref.

Cardiocerebrovascular activity Geniposide 33.2 µg/mL
Brain microvascular endothelial cell

(BMEC) with oxygen–glucose
deprivation (OGD)

Declining the productions of IL-8, IL-1β and monocyte chemotactic
protein 1 (MCP-1) [87]

Digestive activity Gentiopicroside 20 mg/kg Male rats (Sprague Dawley; six weeks
old)

In all experimental groups an increase of gastric juice volume, total and
free HCl concentration as well as pepsin concentration was observed. [32]

Cholagogic effects Genipin 1 µmol/100 g·min Male sprague dawley rats and
hyperbilirubinemic rats Enhanced the ability of hepatocytes to secrete independent bile salts [88]

Antioxidant Geniposide 12.5, 25, 50 µg/mL Human umbilical vein endothelial cell Increased the activities of SOD, GSH-Px, NOS and NO production [89]

Antithrombotic activity Geniposide and genipin 20, 40 mg/kg Male ICR mice Significantly prolonging the time required for thrombotic occlusion [90]

Anti-senescence Catalpol 0.01, 0.1, 1 mg/mL Human fibroblast Hs68 cell line
irradiated by ultraviolet B (UVB) Inhibited the formation of matrix metalloproteinase-1 (MMP-1) [91]

Against intestinal
ischemia/reperfusion (I/R)

injury
Catalpol 25, 50 mg/kg In vivo intestinal I/R-injured rats

Significantly attenuated rat intestinal I/R injury by decreasing
pro-inflammatory cytokines, reducing oxidative stress, and restoring

intestinal barrier function
[92]

Anti-depressive Genipin 100 mg/kg CUMS rat model Decreases in serum trimetlylamine oxide (TMAO) and
β-hydroxybutyric acid (β-HB) [93]

Wound healing properties Methylcatalpol 50 mg/kg Male rabbits model Protective activity against increased skin vascular permeability [94]

Antiallergic 3,4-Dihydroxy catalpol 30 mg/kg Asthmatic mouse model Exhibited an antiasthmatic effect by the suppression of elevated IgE,
IL-4 and IL-13 levels and eosinophilia in the plasma [95]

Analgesic activity Bis-iridoid 50, 100 mg/kg Male mice

Bis-iridoid inhibited TNF-α-induced NF-κB-dependent promoter
activity in a dose-dependent manner, The release of several

proinflammatory cytokines and mediators (including TNF-a andPGE2)
contributes to nociceptor sensitization and a reduction

[7]

Anti-HIV-1 activity 2′-O-(4-Methoxycinnamoyl)
mussaenosidic acid 0.1 µg/mL Real-time polymerase chain reaction

(PCR) assay and HIV-1 p24 antigen kit

The expression level of C-C chemokine receptor type 5 (CCR5) and
chemokine receptor type 4 (CXCR4) on CD4+ Tcellswere decreased in
cells treated with this iridoid glycoside, demonstrated that this iridoid
glycoside restricts HIV-1 replication on the early stage of HIV infection

[35]

Antiproliferative activities Deacetyl asperuloside 806.4 µg/mL K562 chronic myelogenous leukemic
cells Significantly increased caspase 3 activity (p < 0.05) [16]

AChE inhibitory Lupulinoside 134.0 µM GST, AChE Lupulinoside exhibited different levels of GST, AChE inhibitory [41]

Anti-obesity Genipin 20 mg/kg High-fat diet–fed obese mice Regulating miR-142a-5p/SREBP-1c axis, led to the inhibition of
lipogenesis [96]

Anti-osteoporosis activity Aucubin 1, 2.5, 5 µM MG63 cells Improved osteoblast differentiation and enhanced the levels of BMP2
(bone morphogenetic proteins-2) in MG63 cells [97]

Nuezhenelenoliciside - MC3T3-E1 cells Increased the proliferation of pre-osteoblast MC3T3-E1 cells, possessed
anti-osteoporosis activity [11]
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Table 2. Cont.

Function Compounds Dose Model Efficacy Evaluation Ref.

Inhibition of gastric lesions Genipin 50, 100 mg/kg (p.o.) HCl/ethanol-induced gastric lesions rat
Increasing ROS and ROS-induced NAPDH-oxidase (NOX) production

and enabling gastric cancer cells to start the tumor cell apoptosis
process via Egr1/p21 signaling pathway

[98]

Anti- Alzheimer’s disease Gardenoside -
Fruit-fly Alzheimer’s disease model

induced by human Abeta protein
over-expression

Suppressed the expression of immune-related genes in the brain [99]

Anti-angiogenic Geniposide 25–100 µM NIH3T3 cell line Dose-dependently inhibiting the growth of the transformed N1H3T3
cell line [100]

Inhibition of rheumatoid
arthritis Geniposide 50 µM MH7A fibroblast-like synoviocytes in

patients with rheumatoid arthritis
Inhibition of TNF-α-stimulated cell proliferation and activation of the

Ras-Erk1/2 pathway via upregulating miRNA-124a expression [101]

α-Glucosidase inhibitory
activities Aldosecologanin 0.5 mM

Lipopolysaccharide (LPS)-induced
nitric oxide (NO) production and

α-glucosidase reagent

Inhibiting α-glucosidase with IC50 values of 1.08 ± 0.70 and 0.62 ± 0.14
mM [102]

Anti-anxiety properties Geniposide 20, 40 mg/kg Male ddY mice 4 weeks of age Increased the social interaction time and demonstrated to exert an
anxiolytic effect in a dose- dependent manner [103]

Antiviral 6-O-trans-p-coumaroyl-8-O-
acetylshanzhiside methyl ester 42.2 µg/mL The viral CPE assay Have potent in vitro activity against respiratory syncytial virus (EC50

2.46 µg/mL, IC50 42.2 µg/mL) [104]

Angiogenic properties Aucubin 10 mg/kg Female C57BL/6 mice
Induced angiogenesis via vascular endothelial cell growth factor
(VEGF)/Akt/endothelial nitric oxide synthase (eNOS) signaling

pathway
[105]

Sedative effect Total iridoids 0.3, 0.6, 0.9 g/kg Male mice Reduce the number of autonomous activities, prolong the sleep time of
mice, and strengthen the hypnotic effect of pentobarbital sodium [106]

Anticonvulsant Total iridoids 1.0, 1.5, 2.0 g/kg Pentetrazol-induced mice epilepsy
model

Reduce the mortality of mice and prolong the latent period of
convulsion [106]

Improving irritable bowel
syndrome Total iridoids 0.3 mg/kg Irritable bowel syndrome model rats Regulating TPH1 and MAO-A factor, reducing 5-HT expression in

serum and visceral sensitivity in rats with irritable bowel syndrome [107]

Antibacterial activity Phloyoside I, Phlomiol,
Pulchelloside I - 12 different strains Exhibited from low to moderate levels (MIC = 0.05–0.50 mg/mL) of

antibacterial activity [108]

Antimalarial activity

Epoxygaertneroside,
Methoxygaertneroside,

Gaertneroside, Acetylgaertneroside,
Gaertneric acid

1.3, 2.3, 4.3, 5.4, and 7.1
mg/mL MT-4 cells Displayed antiamoebic activity with IC50 values of 1.3, 2.3, 4.3, 5.4, and

7.1 mg/mL [109]

DNA polymerase inhibitory Catalpol, 8-O-acetylharpagide,
Harpagide 47.8 mM Adequate primer/template DNA and

nucleotide analogues
Inhibition of tag DNA polymerase activity with an IC50 value of 47.8

mM [110]

Anti-melanogenesis activity

9-epi-6α–methoxy geniposidic acid,
Asperulosidic acid, Deacetyl

asperulosidic acid, Scandoside
methyl ester

100 mM
B16 melanoma cells induced by

a-melanocyte-stimulating hormone
(a-MSH)

Exhibited anti-melanogenesis activity with 40–50% reduction of
melanin content at 100 mM [111]
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4. Pharmacokinetic of Iridoids

In recent years, iridoids have been proven to have a wide range of biological activities, and their
pharmacokinetic characteristics have also been widely studied [112]. The different structures of parent
nuclei of iridoids result in different metabolic pathways, mainly through the hydrolysis ofβ-glucosidase,
glucose-aldeacidification, isomerization, and other metabolic processes throughout the body [8]. The
pharmacokinetics have been defined based on the different structures of the parent nucleus.

4.1. Iridoid Glycosides

The pharmacokinetics of iridoid glycosides are summarized based on several active compounds
as examples, including geniposide and agnuside.

In general, glycosides do not work directly in the blood, but in the digestive system enzymes,
stomach acid, intestinal bacteria, intestinal membrane enzymes, and other changes into another
structure, and then plays a role. The in vivo and in vitro studies using the intestinal perfusion and
Caco-2 model demonstrated that geniposide absorbed by passive diffusion had better absorption in
the duodenum and jejunum from the intestinal perfusion model, suggests that the correlation between
the pattern of use and bioavailability. On the other hand, verapamil influenced the transportation
of geniposide, while EDTA did not which indicated that the absorption of geniposide in vivo may
involve the active efflux mechanism mediated by P-glycoprotein [113]. The discovery of gardenoside
in the brain suggests that it can pass through the blood-brain barrier for therapeutic purposes [114].
The pharmacokinetics of geniposide in rats with type 2 diabetic rats had higher Cmax, larger area
under curve (AUC), longer Tmax, lower clearance rate (CL), and shorter mean residence time (MRT)
(p < 0.05), compared to the healthy rats. The variable results that are attributed to geniposide can
be hydrolyzed to aglycone by β-glucosidase produced by intestinal epithelia cells and absorbed into
the blood circulation in the type 2 diabetic rats [115]. Yang et al. studied the effects of G. jasminoides
extract on rat liver, and the oral results showed that the extract was significantly better than genipin,
possibly because the main component of the water extract, gardenia glycoside, was better dispersed in
the gastrointestinal tract and was easier to be absorbed through intestinal epithelial cells after being
decomposed into ginipin by intestinal microorganisms [116]. The metabolic processes of genistein
are shown in Figure 5. After intravenous administration of naosuning injection mainly containing
geniposide, 70 percent of the urine was excreted within 10 h, suggesting that excretion through the
kidney was the main excretion mode of the geniposide [117]. The metabolic process of geniposide is
shown in Figure 7.

Similarly, one study determined the content of agnuside in mouse plasma and various tissues
such as liver, spleen, kidney, lung, and brain. The total agnuside exposure (AUC0→∞) was highest
in the small intestine, followed by kidney and liver, while the heart had the lowest of it. AGN is
detected in the brain within 24 h, indicating it could effectively cross the blood-brain barrier and the
selective retention in the brain. When taken orally for 0.5 h (Tmax), the serum concentration of agnuside
increased rapidly (Cmax = 422.33 ± 10.73 ng/mL, half-life (T1/2) = 0.90 ± 0.16 h), indicating that agnuside
could be rapidly absorbed and distributed in tissues. At the same time, the apparent distribution
volume (Vd) of agnuside was 143.02 ± 79.02 L/kg, indicating that agnuside is more widely distributed
in tissues than in plasma. On the other hand, the Cmax value of agnuside when injected intravenously
(62,852.32 ± 16,013.94 ng/mL) was significantly higher than that of the oral administration. It is the
highest in the intestine, which may be the reason for its low oral bioavailability, and it could be cleared
out of all tissues within 8 h. Agnuside had the highest content in the intestine, followed by the kidney,
indicated that it plays an important role in the extrahepatic clearance as the main excretory organ [118].
At present, there have been some studies on the pharmacokinetics of iridoids, but only limited to a
few compounds, the pharmacokinetics of this class of compounds should be fully explored, and their
metabolites and mechanisms should be comprehensively and systematically studied.
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4.2. Secoiridoids

The metabolism of the secoiridoids such as gentiopicroside, swertiamarin, sweroside, and
picroside-I, II, and III has been reviewed in the following section.

The structure of both gentiopicrin and sweroside are similar to swertiamarin, but for swertiamarin,
it is hard to penetrate the blood-brain barrier [119]. In the model of rats, gentiopicrin and
swertiamarin are found to be hydrolyzed by bacterial beta-glucosidase to form aglycones, which is
then transformed into iso-coumarin derivative erythrin lactone. Under the action of the liver and
intestinal bacteria, gentiopicrin undergoes reactions such as isomerization and lysis to form the final
metabolite to be expelled from the body, where swertiopicrin is converted into isocoumarin and
nitrogen-containing metabolite [120]. The isocoumarins and alkaloids produced during metabolism
are the pharmacodynamic components of gentiopicrin and Swertia picroside in rats [121,122]. Another
study showed that gentiopicroside might be inhibited or induced by cytochrome P450 enzymes, which,
which can contribute to the gentiopicroside metabolism [123–125]. In feces samples, it is speculated
that GPS reportedly transforms into five active constituents, SWS is metabolized by intestinal bacteria
by the first-pass effect. Gentiopicroside, swertiamarin, and sweroside are mainly excreted by the
kidneys and in lower amounts in the bile and feces [126]. The metabolic processes of gentiopicrin are
shown in Figure 8.

High-performance liquid chromatography-electrospray tandem mass spectrometry
(LC-ESI-MS/MS) was used to determine the picroside I-III levels in rat plasma and tissue
homogenates. Three compounds were found to be widely distributed and quickly eliminated. In
addition, picroside I-II were also found to be able to rapidly pass the blood-testicular barrier, but not
the blood-brain barrier [127]. In addition, the highest concentrations of picroside I and III were found
in kidneys, while picroside II was found in the liver. Moreover, it was found that picroside II exhibits
the slowest metabolism with the terminal elimination half-lives (T1/2) were reported to be 0.941 ±
0.235 h [96]. Another study showed that because picroside I, II has a lipophilic and ionizable state, it
can be completely metabolized [128].
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4.3. Others

In addition to the aforementioned compounds, bis-iridoids and non-glycosidic iridoids have a
wide range of pharmacological effects, and their in vivo metabolism has also been studied.

Studies have found that intestinal bacteria can convert geniposide to genipin. After sulfatase
(type H-1) hydrolysis of plasma samples, many genipins appeared, indicating that genipin sulfate is
the main metabolite of genipin. Furthermore, both oral administration and injection of genipin could
quickly detect the presence of ginipin sulfate, indicating that genipin sulfate is produced when passing
through the intestines and liver. When administered to rats at doses of 200 mg/kg, genipin was found
to be highly toxic. Therefore, the dose of genipin should be properly formulated to ensure safety [129].
Another study found that the plasma concentration of apocynin can reach Cmax at 504.42 ± 1.14 ng/mL
within 6 h, and it has the largest AUC0-t value compared with picroside I and II. Apocynin can be
quickly absorbed but is eliminated slowly. Meanwhile, HPLC analysis of urine from the rat, showed no
detection of apocynin, indicating that apocynin can be completely metabolized in vivo, which could
be because of its high lipophilicity and ionizability [128].

Iridoids mostly exist in the form of glycosides, and its metabolic process has undergone
β-glycosidase enzymes hydrolysis, glucose metabolism aldehyde acidification, and isomerization.
However, in vivo, metabolism is a complex process, the metabolism of each compound has its own
characteristics, the metabolic mechanism of the compound is not limited to a certain way. At present,
the research on the pharmacokinetics of iridoids mainly focuses on the pharmacokinetics of medicine
absorption, distribution, metabolism, and excretion, with less research on the mechanism and more
focused on intestinal metabolism, but less on the mechanism of other metabolic sites in vivo. Therefore,
we should systematically study the metabolic mechanism of iridoid and consider the interaction
between the mechanisms.



Molecules 2020, 25, 287 18 of 24

5. Conclusions

Iridoids are a type of natural products widely distributed in the plant kingdom, which
have a variety of biological activities and prodrug characteristics, with high medicinal value.
Modern pharmacological studies have found that these compounds have anti-tumor, anti-depression,
liver-protecting, neuroprotective, and other biological effects. The anti-tumor activity and therapeutic
effects of iridoid on diabetes have been widely studied; it was found that ether terpenes can also
inhibit DNA polymerase activity, suggesting that new anti-tumor medicine can be developed to inhibit
DNA synthesis.

In recent years, with the continuous improvement in extraction methods and storage conditions,
increasing numbers of iridoids have been identified. However, they are prone to degradation under
both physical and chemical stress conditions and have poor chemical stability, which produces
limitations in the study of their monomers, and hinders the study of their activities and functions.
Moreover, most of the studies on iridoids are still focused on the determination of their structures
and analysis of their activities. There is a lack of systematic research on their structure types and
structure-activity relationship. Therefore, the analysis of and comparative studies on the structure and
function of iridoids should be further intensified, to better confirm the main active functional groups
and effects of iridoids, and provide effective data support for chemical modification and new medicine
development, which will be a new hotspot of studies on natural products.

Several recent studies have shown that a variety of iridoids can be used as a therapeutic medicine
for intracerebral targeting because they can pass the blood-brain barrier. However, the content
distribution in the brain is low, and the compounds undergo rapid absorption and elimination in vivo
and wide distribution to tissues and organs and have low biological benefits when administered by
the oral route. The metabolic process for iridoids in vivo was mainly studied in animal models such as
rats and mice; however, the metabolic process and pharmacokinetic parameters in the human body
have been rarely studied. There are a few toxic and side effects reported—however, there is a lack
of research on the preparation of iridoid monomers for use in clinical treatment. Therefore, in-depth
studies on iridoids are necessary to improve their bioavailability and to develop new dosage forms
after a detailed study on their toxicity.

In summary, recently, new structures and effects of iridoids have been elucidated at a rapid rate.
In vivo characterization of iridoids will help determine the pharmacodynamic properties and explore
the therapeutic potential of compounds used in medicine. The types, constituents, pharmacological
activities, and metabolism of iridoids have been systematically summarized in this review to lay a
foundation for further studies on iridoid glycosides.
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