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Abstract

This research investigates the influence of demographic factors on human genetic sub-structure. In our discovery cohort, we
show significant demographic trends for decreasing autozygosity associated with population variation in chronological age.
Autozygosity, the genomic signature of consanguinity, is identifiable on a genome-wide level as extended tracts of
homozygosity. We identified an average of 28.6 tracts of extended homozygosity greater than 1 Mb in length in a
representative population of 809 unrelated North Americans of European descent ranging in chronological age from 19–99
years old. These homozygous tracts made up a population average of 42 Mb of the genome corresponding to 1.6% of the
entire genome, with each homozygous tract an average of 1.5 Mb in length. Runs of homozygosity are steadily decreasing
in size and frequency as time progresses (linear regression, p,0.05). We also calculated inbreeding coefficients and showed
a significant trend for population-wide increasing heterozygosity outside of linkage disequilibrium. We successfully
replicated these associations in a demographically similar cohort comprised of a subgroup of 477 Baltimore Longitudinal
Study of Aging participants. We also constructed statistical models showing predicted declining rates of autozygosity
spanning the 20th century. These predictive models suggest a 14.0% decrease in the frequency of these runs of
homozygosity and a 24.3% decrease in the percent of the genome in runs of homozygosity, as well as a 30.5% decrease in
excess homozygosity based on the linkage pruned inbreeding coefficients. The trend for decreasing autozygosity due to
panmixia and larger effective population sizes will likely affect the frequency of rare recessive genetic diseases in the future.
Autozygosity has declined, and it seems it will continue doing so.
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Introduction

Rates of travel and migration within North America have

increased substantially over the past century due to advancements

in infrastructure and technology. It has been hypothesized that this

ease of travel and globalization has shaped the demographic

structure of both North American and world populations in recent

generations. Within the past two centuries, population growth,

admixture and expansion have been rapid, causing increasing

genetic variation in many populations [1,2].

In our research, we have investigated how demographic trends

in the past century have been recapitulated in quantifiable genetic

changes, and how this may impact medical genetics and genetic

diseases. We focused our study on genome-wide rates of

autozygosity and measured tracts of extended homozygosity in

two age-heterogeneous samples of North Americans to estimate

the genetic effect possibly attributable to demographic change.

We measured autozygosity in the form of runs of extended

homozygosity (ROHs). We analyzed these extended tracts of

homozygosity genome-wide, showing a strong positive association

between increasing chronological age and increasing rates of

autozygosity. These homozygous runs were used to quantify

consanguinity in our analysis populations. We also utilized a

modified inbreeding coefficient to quantify decline in the

proportion of excess homozygosity outside of linkage disequilib-

rium. This modified inbreeding coefficient, has been calculated

using data that has had all neighboring single nucleotide

polymorphisms (SNPs) that are in linkage disequilibrium (LD)
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with each other removed (LD pruned data), and is referred to as

Fld. Our results show that older members of the population have a

tendency to possess more homozygous runs, which comprise a

higher percentage of the total genomic length, than those found in

younger participants. These older participants also exhibit a larger

proportion of excess homozygosity based on estimates from

inbreeding coefficients.

The homozygous runs representing autozygosity in relatively

outbred populations may also be highly relevant in disease gene

discovery. The mapping of these regions on a genome-wide scale

could help to identify low-frequency variants associated with

complex disease [3,4]; therefore helping to alleviate the method-

ological constraints of the common-disease/common-variant

mode of inheritance that is generally utilized in whole-genome

associations studies [5]. Genetic effects of consanguinity have been

shown to be associated with epistatic effects at disease susceptibility

loci causing reduced resistance to environmental risk factors and

infectious diseases [6,7]. Epidemiological studies, and animal

models, have provided empirical evidence that consanguinity is a

risk for complex diseases such as high blood pressure, cancers,

osteoporosis, schizophrenia, epilepsy and depression [1,6,8–10].

Results

We first measured the runs of homozygosity in our discovery

population comprised of a cohort of controls compiled by the

Coriell Institute, to be a representative sample of neurologically

normal North Americans of European descent. We generated

summary descriptive statistics for all 809 individuals aged 19–99

that quantified mean and standard deviations for number of

ROHs, total percentage of the genome in ROHs (%ROH) and

average ROH length (Table 1). We then compared these measures

across strata of ,20 year age groups. In comparisons of the

youngest and oldest age strata, significant differences exist in all

measures of homozygosity. The oldest age group (estimated

current age $80 years) presented larger, more frequent ROHs,

causing more of the genome to be comprised of ROHs than the

youngest age group (estimated current age #39 years). These

differences were significant (|t|.2.5, p-value#0.01) for all ROH

measures, although the greatest difference appeared in comparing

%ROH between the two age groups (|t| = 3.53, p-val-

ue = 0.0005). Differences in Fld were suggestive (|t| = 1.91, p-

value = 0.056). This illustrates possible generational differences in

autozygosity in an outbred population of unrelated individuals

(Table 2).

The trend of increasing autozygosity associated with chrono-

logical age remained significant in a number of linear regression

models, each model incorporating different covariates (Table 3). In

multivariate regression models following up the initial results, the

associations of chronological age and both the number of ROHs

and the %ROH were unattenuated by the introduction of

statistical adjustments for either observed or expected homozy-

gosity outside of linkage disequilibrium, Fld (standardized b$0.10,

t-statistic$2.5, p-values#0.01). Trends showing a positive associ-

ation between Fld and chronological age were also significant

(standardized b$0.08, t-statistics$2.14, p-value#0.033). This

association between Fld and chronological age was relatively

unattenuated in models adjusted for average ROH length. The

weakest associations with chronological age occurred when

examining the linear association with average ROH length. The

effect size of this association with average ROH length was small,

with standardized beta-coefficients varying between 0.06 and 0.07

(t-statistics between 1.77 and 2.12), although still below our a priori

significance threshold of p,0.05 for two of the models. All models

for the association between chronological age and average ROH

length were at least borderline significant (p-value,0.10).

The predictive models based on the results of our regression

analyses forecasts a multi-faceted trend for increasing autozygosity

as years since birth increases (from the temporal present). These

models, summarized in Figure 1, describe patterns of autozygosity

and excess homozygosity having decreased over the twentieth

century. Based on these hypothetical models that include data

imputed to additional years outside of the 80 birth year range for

participants in this study, the number of ROHs has decreased by

14.0% over the past 100 years; while the %ROH and average run

lengths have also decreased by similar factors, 24.3% for the

former and 10.5% for the latter. Fld has decreased by a factor of

30.5% in our models.

Replication
A subset of participants from the Baltimore Longitudinal Study

of Aging (BLSA), were selected to replicate these associations from

our analyses of the Coriell Control cohort. These participants were

selected based on their similarity to the Coriell cohort used in the

initial analyses. The results from the BLSA cohort supported all of

our hypotheses tested in the initial discovery cohort.

Table 1. Descriptive statistics for total population.

Cohort Coriell BLSA

N 809 477

Percent female 58.0 47.3

Current age (years) 61.7 (16.7) 68.3 (13.7)

Number of ROHs 28.6 (5.9) 27.6 (5.4)

% Genome in ROHs 1.6 (0.6) 1.5 (0.5)

Average ROH length (Mb) 1.5 (0.3) 1.4 (0.2)

Fld (%) 0.7 (1.9) 20.3 (1.2)

All measures in mean (standard deviation).
doi:10.1371/journal.pgen.1000415.t001

Author Summary

Population geneticists use genetic markers to quantify and
compare levels of inbreeding in populations and identify
disease-associated loci; epidemiologists utilize demo-
graphic factors to quantify disease risk modifiers. Our
research group sought to investigate the intersection of
these two disciplines and examine the way in which
demographic trends associated with decreasing levels of
inbreeding may influence genomic structure and how this
may affect medical genetics research. By examining two
age-heterogeneous populations of outbred North Ameri-
cans, we were able to ascertain genetic changes occurring
over the past century that have been likely brought about
by recent increases in mobility, urbanization, and popula-
tion admixture. Using multiple measures of the genomic
manifestations of distant consanguinity, we showed
significant trends towards decreasing levels of autozygos-
ity and more marginal inbreeding coefficients as study
participant birth years neared the chronological present
day. We believe this finding is particularly important, as
decreasing autozygosity and less homozygosity genome-
wide may help to slightly reduce the burden of rare
recessive diseases in the future.

Measures of Autozygosity in Decline
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In the BLSA cohort, significant differences in rates of

homozygosity exist when comparing participants between the

standardized chronological ages of 40–59 years to those aged 80–

99 years. These two, more demographically similar, age groups

were compared to stringently test replication due to the relatively

few BLSA samples in the 19–39 year old cohort (N = 19) that

would have limited statistical power for comparisons. Results

were consistent to those in the initial analyses of the Coriell

Control cohort, with t-tests showing significant differences

between age strata for number of ROHs (|t| = 2.8, p-

value = 0.0051), %ROH (|t| = 3.1, p-value = 0.0022), and aver-

age ROH length (|t| = 2.0, p-value = 0.0485). The younger

participants were generally less homozygous than the older

strata, with significant differences in Fld (|t| = 3.15, p-val-

ue = 0.0018).

Linear regression models of age-associated decrease in measures

of autozygosity were also utilized to test the validity of our initial

results. Identical regression models as those used in the Coriell

cohort were used in the BLSA cohort. The smaller BLSA cohort

successfully replicated all trends found to be significant in the

analyses of the Coriell cohort. These models were generally more

significant in the replication analyses than in the initial discovery

cohort (Table 3).

Discussion

This research has definitively shown the existence of a trend for

decreasing autozygosity with younger chronological age in the

North American population of European ancestry. The ROHs we

identified, larger than 1 Mb, are clearly representative of

autozygosity due to distant consanguinity in our outbred

populations, and not chromosomal abnormalities or common

copy number variants [3,11,12]. Using our predictive models of

decreasing Fld, we show a quantifiable decrease in consanguinity

over the twentieth century. Based on data provided in Carothers et

al [13], this decrease in Fld found in our discovery population is on

the order of individuals transitioning from a single inbreeding loop

4–5 generations prior, to no inbreeding loops within ,6

generations. We postulate that the increased mobility, urbaniza-

tion and outbreeding in North America in the last century has led

to less consanguinity (and thus less homozygosity and homogene-

ity) in younger individuals [1,2].

We have shown a weaker association with chronological age for

the measured average ROH length. It is possible that since

populations that are becoming more outbred, less consanguinous

and more heterogeneous recombination could fracture ROHs into

smaller segments, for which a robust measure such as %ROH

Table 2. Measures of autozygosity vary by 20-year age groups.

Age range (years) 19–39 40–59 60–79 80–99

Cohort Coriell BLSA Coriell BLSA Coriell BLSA Coriell BLSA

N 104 16 198 109 395 239 112 113

Current age (years) 31.9 (4.9) 33.5 (3.6) 49.7 (5.8) 53.7 (4.8) 68.9 (5.7) 69.9 (6.1) 85.0 (4.4) 84.9 (3.8)

Number of ROHs 27.2 (5.4)* 26.3 (4.3) 28.4 (5.9) 26.4 (4.9)$ 28.9 (5.9) 27.8 (5.9) 29.5 (5.8)* 28.4 (5.6)$

% Genome in ROHs (%ROH) 1.44 (0.3)* 1.36 (0.2) 1.57 (0.5) 1.41 (0.3)$ 1.61 (0.7) 1.51 (0.5) 1.67 (0.6)* 1.58 (0.5)$

Average ROH length (Mb) 1.40 (0.1)* 1.36 (0.1) 1.46 (0.3) 1.41 (0.1)$ 1.47 (0.4) 1.43 (0.2) 1.48 (0.3)* 1.47 (0.3)$

Fld (%) 0.39 (2.4)* 20.29 (0.9) 0.57 (1.8) 20.60 (1.3)x 0.69 (1.7) 20.21 (1.1) 0.99 (2.2)* 20.07(1.2)x

All measures in mean (standard deviation) format when applicable.
*indicates significant difference of within row-comparison of measures in Coriell samples (p-value,0.05).
$indicates significant difference within row-comparison of measures in BLSA samples (p-value,0.05).
xindicates suggestive (p-value,0.07).
doi:10.1371/journal.pgen.1000415.t002

Table 3. Linear regression models showing autozygosity measures are positively correlated with chronological age (standardized
to 2008), reporting standardized b coefficients and p-values.

Number of ROHs Percent Genome ROH (%ROH) Average ROH Length Inbreeding Coefficient (Fld)

Study Coriell BLSA Coriel BLSA Coriell BLSA Coriell BLSA

Model 1 0.12, 0.001 0.16, ,0.001 0.12, 0.001 0.18, ,0.001 0.07, 0.035 0.11, 0.016 0.08, 0.015 0.15, 0.001

Model 2 0.10, 0.005 0.14, 0.003 0.10, 0.005 0.15, 0.002 0.06, 0.066 0.09, 0.047 NA NA

Model 3 0.12, 0.001 0.16, ,0.001 0.11, 0.001 0.18, ,0.001 0.07, 0.038 0.11, 0.016 NA NA

Model 4 0.10, 0.006 0.13, 0.004 0.10, 0.006 0.14, 0.003 0.06, 0.077 0.09, 0.058 0.08, 0.033 0.14, 0.021

R2, maximum 0.12 0.08 0.10 0.10 0.03 0.03 0.01 0.02

Model 1 is unadjusted.
Model 2 includes covariate of observed homozygosity outside of LD.
Model 3 includes covariate of expected homozygosity outside of LD.
Model 4 includes covariate of Fld for dependent variables of number of ROHs, %ROH and average ROH length, for the models using Fld as the dependent variable
average ROH length was used as a covariate.
doi:10.1371/journal.pgen.1000415.t003

Measures of Autozygosity in Decline
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would be less affected than average ROH size. This could

contribute to higher variation in average run length measure-

ments, resulting in increased variation in the measure causing

more possible type I error and decreased statistical power when

compared to %ROH.

With extended regions of homozygosity decreasing in size and

becoming less frequent, this structural genomic trend may have

some latent effect on public health, as well as the recently

developed methods for genome-wide association studies (GWAS).

Theoretically, an excess of ROHs and excess homozygosity

(identified using the linkage pruned inbreeding coefficient, Fld)

may increase the chances of rare recessive genetic diseases. The

trends shown in this research may have a larger impact in

modifying the epigenetic, epistatic and polygenic pathways that

influence many complex traits [6,7]. This is particularly of interest

when considering the rates at which partially recessive alleles may

decline in frequency and reduce phenotypic variation in complex

polygenic traits.

Our results show that if demographic trends continue towards a

globalized, urbanized and more freely mobile world, populations

will become less consanguineous.

Materials and Methods

Genotyping and Quality Control
This initial genome-wide analysis was undertaken on a subset of

the 828 unrelated clinical controls from the National Institute of

Neurological Disorders and Stroke (NINDS) funded Neurogenet-

ics repository at the Coriell Institute. These samples were collected

by Coriell to be used as convenience genetic controls, represen-

tative of the North American population of varied European

descent. The replication cohort for this study was taken from the

Baltimore Longitudinal Study of Aging, a community based

longitudinal study of aging currently in its 50th year of follow up.

Individuals from both cohorts were genotyped concurrently at

the National Institute on Aging’s Laboratory of Neurogenetics

(LNG) using the Illumina Infinium technology (Illumina Inc., San

Diego, CA). The assays used for genotyping included were the

Infinium II HumanHap550 v. 1, Infinium II HumanHap550 v. 3,

or a composite of Infinium HumanHap300 and Infinium II 240S.

By combining the genotype data from Infinium HumanHap300

and Infinium II 240S assayed participants, to an equivalent level of

genomic coverage as the Infinium II HumanHap550 assays, we

were able to standardize participant data across a total of 545,066

single nucleotide polymorphisms genotyped on the Illumina

platforms. The raw genotype data were stored and quality

controlled using GERON genotyping (http://neurogenetics.nia.

nih.gov), an intranet repository for genotype data created on the

Illumina platform.

All samples from both cohorts were first quality controlled for a

minimum of a 97% successful genotype call rate. Any samples

failing this initial quality control step were re-genotyped using a

new DNA aliquot until a 95% successful call rate was achieved. 13

of the initial DNA samples from our neurological control

population were ultimately excluded due to consistent call rates

below our inclusion threshold of 97%. Of the 848 participants

from BLSA that were genotyped who based on available data were

not self-reported African American, 34 samples had call rates

below 97%. SNPs with minor allele frequencies less than 5% and

departures from Hardy-Weinberg equilibrium (HWE test,

Figure 1. Linear predictive models show declining measures of autozygosity and Fld. Estimates of trends for declining autozygosity in
individuals born in the twentieth century. These predictive models include decreasing (A) %ROH, (B) number of ROHs, (C) Fld and the (D) average
length of ROHs. The black lines represents linear predictive trends, and the grey shaded area represents the 95% confidence interval for these
estimates.
doi:10.1371/journal.pgen.1000415.g001

Measures of Autozygosity in Decline
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p,0.01) and missingness per SNP greater than 5%, were excluded

from further analyses. PLINKv1.0.1 was used to carry out sex-

checks based on heterozygosity of the X chromosome genotypes

were used to exclude 4 participants from the Coriell cohort whose

self-reported sex did not match that presented in the genotypic

data [14, http://pngu.mgh.harvard.edu/,Purcell/plink/]. 14 of

the samples from the BLSA cohort were excluded due to X

chromosome heterozygosity inconsistent with self-reported sex.

Blinded sex-checks were carried out for all samples using the

default function for genotypic estimates of gender in the Illumina

Beadstudio package (Illumina Inc., San Diego, Caliornia). The

only conflicting genders reported by the Beadstudio results were

identical to those reported by PLINK.

All samples utilized from both studies underwent further

quality control procedures to check for any indications of

population stratification or substructure. Identical by descent

(IBD) analyses were used to identify repeated samples or

distantly related individuals, with an apriori exclusionary

criteria of sharing at most a 2.0% proportion of the genotyped

SNPs as identical by descent in any pair-wise combinations of

samples. This strict exclusionary criteria is necessary, as

including any participants that are related within recent

generations could bias our analyses and lead to a non-

independence of measures of autozygosity. Probands from

groups of related individuals were randomly selected for

inclusion in the analyses. This IBD filtering called for the

removal of one duplicate sample from the Coriell population.

This filter eliminated 101 cryptically related individuals from

the BLSA. The high number of related individuals in the BLSA

is to be expected as a result of recruitment patterns in the study.

The BLSA itself is a cohort of volunteers initially recruited from

a group of retired Federal scientists, who subsequently recruited

friends and family members. Family members of early

participants in the BLSA were given priority enrollment during

the course of the study.

Identical by state distances were generated using multi-

dimensional scaling for the remaining samples in an attempt to

identify population outliers not already considered during the

admission/adjudication of the participants. The distribution was

standardized on HapMap samples used to aid in the detection of

stratification and outliers. One participant was removed from the

Coriell cohort of neurological controls due to ancestry consistent

with African samples. There were no identifiable sub-population

clusters or outliers apparent within the European American

samples in the multidimensional scaling analyses of the Coriell

dataset. When the Coriell cohort, BLSA cohort, and HapMap

samples underwent combined multidimensional scaling analyses

(using 410,834 shared quality controlled SNPs as a basis for

comparison), additional outliers for possible stratification effects

were removed from the BLSA cohort, with 222 samples being

more than two standard deviations from the combined population

mean for any of the four components of the MDS model. BLSA is

a relatively ethnically diverse population, compared to the Coriell

samples. Beginning in 1990, a conscious effort was made to recruit

African Americans, while Asians, Latin Americans and partici-

pants from other ethnic groups were also recruited in recent

decades. This deviation from mean component measures in BLSA

during the quality control process may be due to some slight level

of additional cryptic relatedness or population admixture/

stratification not seen in the discovery cohort samples. All

genotyping quality assessments, sex-checking, IBS and IBD

calculations were carried out using PLINK v1.0.1. A summary

of quality control results can be found in Table S1 in the

supplemental materials.

Coriell Popualtion
After the quality control process, we were left with an analytic

population of 809 neurologically normal participants genotyped at

476,962 SNPs. These participants were sampled between the ages

of 15 and 95 years old (age range = 80 years, mean age at

sampling = 61.7 years old, standard deviation = 16.7 years).

However, records show a 6 year period over which these controls

were adjudicated and sampled. There was no statistical correlation

between the dates of sample collection and participant age

(Pearson correlation, p-value.0.05), this suggests no sampling bias

with regard to age at collection. This data allowed for the

calculation of the participants’ estimated current chronological age

(within less than1 year) standardized to the year 2008. Chrono-

logical age refers to the participant’s calculated current age,

regardless of death, and ranges between 19–99 years of age (mean

age of 61.7 years616.8). The population is comprised of 57.9%

female participants.

BLSA Population
477 participants from the BLSA were selected for replication

purposes after passing similar quality control to the Coriell cohort,

including the removal of genotyping failures, population outliers

and cryptically related samples. These samples were individually

standardized to 450,364 quality controlled SNPs. BLSA samples in

the replication population possessed a population standardized

mean chronological age of 68.3 (S.D. = 13.7). With regard to

autozygosity measures, the BLSA samples were slightly lower than

those of the Coriell cohort in both the entire population and the

four age strata (Tables 1 and 2). The BLSA samples also exhibited

,1% more excess heterozygosity than the Coriell cohort, based on

mean Fld calculations. This may be due to the fact that the BLSA

cohort is derived from an urban dwelling population based in

Baltimore, MD. The BLSA cohort was comprised of slightly more

males than the Coriell cohort, but this should not be a factor in the

replication as all analyses were confined only to the 22 autosomes.

Quantifying Autozygosity using Runs of Homozygosity
We utilized the PLINK v1.0.1 toolkit to identify runs of

homozygosity. Primary criteria for inclusion of a genomic region

into a homozygous run are the region must be at least 1 megabase

in length and contain at least 50 adjacent SNPs (per Mb) with

homozygous genotype calls. This robust size and SNP density

threshold for inclusion into ROHs allows for the algorithmic

exclusion of copy number variants, centromeric and SNP-poor

regions. The density requirement of at least 50 SNPs per Mb is

based on an apriori genome-wide coverage target of ,500,000

quality controlled SNPs in analytic populations. This requirement

of at least 50 SNPs per Mb is similar to the requirements for

ROHs found in the Gibson et al., 2005 analysis of runs of

homozygosity in HapMap Phase II data [15]. A sliding window of

50 SNPs was used to identify these runs, and included no more

than 2 SNPs with missing genotypes and 1 possible heterozygous

genotype. These analyses were limited to the 22 autosomal

chromosomes. Identical parameters were used to generate these

measures in the BLSA cohort as were used in the Coriell cohort.

Our metrics for comparing rates of autozygosity among the

participants in this study were able to be calculated after

identifying the ROHs. Our primary measures of autozygosity

include: total percentage of the genome included in ROHs and the

average length of ROHs. The total percentage of the genome

included in ROHs was calculated by summing the length of each

individual ROH per participant. This summed length of identified

ROHs was then divided by a factor of 2,645 and subsequently

converted to a percent by multiplying the dividend by 100. The

Measures of Autozygosity in Decline
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division by 2,645 in the generation of the %ROH measure is

based on the number of megabases covered by SNPs included in

the Infinium HumanHap 550v.1 and 550v.3 assays used to

generate our genome-wide datasets. This estimate of coverage of

2,645 Mb was calculated by summing the distance between the

first and last available SNP of each chromosomal arm for each of

the 22 autosomes. The average length of ROHs was calculated by

dividing the total length by the number of ROH segments per

participant. Both of these measures are expressed in Mb.

Linkage-Pruned Inbreeding Coefficient (Fld) and
Covariates

As ROHs are associated with regions of high linkage

disequilibium, we also attempted to examine rates of homozygosity

outside of LD. To calculate the additional measure of Fld, we

created LD pruned versions of each of the genome-wide datasets.

We accomplished this by algorithmically excluding SNPs in LD

with neighboring SNPs to create the LD pruned datasets, and then

calculating inbreeding coefficients based on the remaining data.

Using data from all 809 participants in our analysis population

(and a separate-identical analysis for all 477 participants in our

replication study), we calculated variance inflation factors (VIF) for

each of the possible pairwise combinations of SNPs within a sliding

window of 50 SNPs (with 5 SNP overlaps per window). We

excluded all SNPs with a VIF.1.05 within each sliding window.

This VIF threshold corresponds to a maximum multiple

correlation coefficient representative of ,1% co-linearity of

genotype calls with any other SNP in the sliding window of

analysis. This stringent variance threshold allowed us to trim the

genome-wide dataset for the Coriell cohort to 48,902 SNPs

dispersed relatively evenly across the 22 autosomes, and to 34,307

autosomal SNPs in the BLSA cohort.

We calculated expected rates of homozygous calls per

participant based on HWE expectations of genotype frequencies

using the LD-pruned datasets. We then calculated cohort specific

observed rates of homozygosity within the LD-pruned datasets,

expressed as a summed count of homozygous genotypic calls per

participant. Using PLINK, we then calculated single population

inbreeding coefficients (F statistics) to summarize the proportion of

homozygous genotypes differing from our HWE based expecta-

tions per participant. These F statistics, based on calculations

carried out on the datasets containing only SNPs not in LD with

each other, comprise the summary measure we refer to as the LD

pruned inbreeding coefficient (Fld). We converted this to a

percentage in our tables for ease of comparison, although actual

Fld coefficients are used in the predictive models. In our randomly

selected populations of unrelated individuals, the Fld values we

calculated are a proxy for the occurrence of excess homozygosity

on a genome-wide level. The Fld statistic allows for an accurate

assessment of autozygosity outside of linkage disequilibrium,

without being adversely affected by low SNP density after

removing SNPs in regions of LD. The linkage pruned sub-sets of

the genotypic data was used for the calculation of observed and

expected rates of homozygosity outside of LD as well of the

generation of the inbreeding coefficients that comprise the Fld

statistic. A discussion of the use of the LD-pruned data to construct

ROHs may be found in the supplemental materials in Text S1.

Statistical Analyses
Descriptive statistics were generated for all variables involved in

analyses. These include counts, means and standard deviations for

all three measures of autozygosity (number, %ROH and average

run length) and Fld to be used as dependent variables, as well as for

the primary predictor variable of estimated chronological age.

These measures were all relatively normally distributed in our

population of neurological controls.

Generational differences were estimated by sorting participants

into 4 age strata based on 20 year intervals. Descriptive statistics

were calculated again to compare mean variation in measures of

autozygosity and Fld. Differences in mean measures of auto-

zygosity and Fld between the oldest (estimated current age of 80–

99 years) and youngest (estimated current age of 19–39 years in

the Coriell cohort) generations were compared using a basic two-

way t-test for each of the autozygosity measures.

Linear regression models were constructed in order to

investigate possible associations between chronological age and

autozygosity measures. Similar models were used to evaluate the

association between Fld and chronological age. Separate regression

models were constructed for dependent variables of number of

ROHs, %ROH, average ROH length and Fld. These models were

initially adjusted for gender only (gender was not a statistically

significant term in any models, p-value.0.05), although to create

more parsimonious models, gender was not included. Additional

covariates of observed and expected rates of homozygosity outside

of LD were added to the second and third sets of models

respectively to further scrutinize and follow-up the initial results.

Fld was used as a covariate in the fourth model set to account for

the possible confounding effect of chance homozygosity outside of

LD in the examinations of trends involving measures of

autozygosity derived from ROHs. Subsequent regression models

evaluating the trend for increasing Fld with chronological age were

adjusted for average ROH length. Additional regression models

investigating associations in combined cohorts are described in the

supplemental materials in Text S1 and Figure S1.

A second set of linear regression models were created to

investigate the possible multiplicative effect of age, by using age2 as

the primary predictor of increasing autozygosity measures (gender

adjusted) or Fld. However, none of these models that incorporated

age2 showed a stronger association with the measures of

autozygosity, as the standardized-beta-coefficients and r2 values

were actually smaller than those in the previous models of linear

age. These models are not included in the manuscript as they add

no additional pertinent information, but are available upon

request.

Linear predictive models of autozygosity decrease over the

twentieth century were extrapolated from regression models based

on the Coriell discovery cohort. These models estimate decreasing

rates of autozygosity and excess homozygosity as time progresses.

These are based on the regression coefficients from the original

un-adjusted models of chronological age predicting demographic

change in the total number of ROHs, %ROH, average ROH

lengthand Fld. These models provide estimates of time dependent

means and confidence intervals for both measures. Percent change

over 100 years was estimated for each measure using these models.

All estimates of percent change were based on a minimum value of

zero except for Fld, when a scalar minimum for the calculation

based on the lowest value within the 95% confidence interval of

the predictive model (Fld = 20.0031) was used.

Supporting Information

Figure S1 Regression plots showing trends for %ROH and Fld

decline as participant birth year increases. Regression plots

showing trends in declining autozygosity in combined cohorts.

Panel A shows decreasing percent of the genome contained in

ROH as birth year increases. Panel B shows decreasing Fld as birth

year increases. Red lines represent linear trends adjusted for study
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site. Points represented by the symbol ‘+’ indicate Coriell samples,

points represented by the symbol ‘x’ indicate BLSA samples.

Found at: doi:10.1371/journal.pgen.1000415.s001 (1.56 MB TIF)

Table S1 Summary of exclusions made in data cleaning process.

Found at: doi:10.1371/journal.pgen.1000415.s002 (0.03 MB

DOC)

Text S1 Supplemental materials.

Found at: doi:10.1371/journal.pgen.1000415.s003 (0.04 MB

DOC)
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