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A novel functional brain imaging endophenotype of
autism: the neural response to facial expression of
emotion

MD Spencer', RJ Holt', LR Chura', J Suckling?, AJ Calder®, ET Bullmore? and S Baron-Cohen'

Siblings of individuals with autism have over 20 times the population risk of autism. Evidence of comparable, but less marked,
cognitive and social communication deficits in siblings suggests a role for these traits in the search for biomarkers of familial
risk. However, no neuroimaging biomarkers of familial risk have been identified to date. Here we show, for the first time, that the
neural response to facial expression of emotion differs between unaffected siblings and healthy controls with no family history of
autism. Strikingly, the functional magnetic resonance imaging (fMRI) response to happy versus neutral faces was significantly
reduced in unaffected siblings compared with controls within a number of brain areas implicated in empathy and face
processing. The response in unaffected siblings did not differ significantly from the response in autism. Furthermore,
investigation of the response to faces versus fixation crosses suggested that, within the context of this study, an atypical
response specifically to happy faces, rather than to faces in general, accounts for the observed sibling versus controls
difference and is a clear biomarker of familial risk. Our findings suggest that an atypical implicit response to facial expression of
emotion may form the basis of impaired emotional reactivity in autism and in the broader autism phenotype in relatives. These
results demonstrate that the fMRI response to facial expression of emotion is a candidate neuroimaging endophenotype for

autism, and may offer far-reaching insights into the etiology of autism.
Translational Psychiatry (2011) 1, e19; doi:10.1038/tp.2011.18; published online 12 July 2011

Introduction

Siblings of individuals with autism have a greatly enhanced
risk of developing autism—estimated to be in excess of a 20-
fold increase compared with the general population.’™
Furthermore, it is increasingly understood that many appar-
ently unaffected siblings (and their parents, as another
example of first-degree relatives) display subtle impairments
in the cognitive domains characteristically affected by
autism.*” Siblings of individuals with autism have however
been the subject of relatively little neuroimaging research.8='°

The concept of an endophenotype—a marker of familial risk
for a condition—has in recent years become the focus of
considerable attention in neuropsychiatric research. Although
the term was first used in the 1960s in the field of insect
biology,'" within a few years it was applied within psychiatry.'?
An endophenotype is a heritable feature associated with a
condition, present in affected individuals regardless of
whether their condition is manifested, which co-segregates
with the condition in families and which is present in
unaffected family members at a higher rate than in the
general population.”® In such family members, endopheno-
types represent instances in which genes associated with a
particular condition exert measurable effects in individuals in
whom they are insufficient to cause the condition itself to

become manifest. The promise of characterizing endopheno-
types lies in their hypothesized intermediate position between
genotype and phenotype. Syndromes such as autism,
schizophrenia and bipolar disorder are complex constellations
of clinical signs and symptoms. Considerable phenotypic
heterogeneity exists within clinical populations and it is
likely that the etiologies of these conditions contain hetero-
geneity too. In the case of autism, it has been recognized that
a unitary cause is unlikely.' Attempts to characterize the
genetics of these conditions therefore will ultimately be
hampered by a reliance on traditional classificatory systems
that coalesce this heterogeneity into a unitary diagnosis.
As a smaller and simpler phenotypic unit than the condition
itself, the etiology of the endophenotype is likely to be
correspondingly simpler: it can be said to be ‘closer to the
level of gene action’."®

Difficulties in empathy and in the understanding of social
stimuli and situations form a central aspect of the autistic
phenotype.'® The neurophysiological response to faces, and
in particular facial emotional expressions, is atypical in autism.
This has been documented using electroencephalography,’”
magnetoencephalography,'® positron emission tomogra-
phy'® and functional magnetic resonance imaging (fMRI)*°
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studies. A considerable body of evidence reveals atypical
fMRI response to faces and other social stimuli within a
network of brain structures that has been termed the ‘social
brain’.2"22 This comprises the amygdala and its interconnec-
tions with the superior temporal sulcus (STS), orbitofrontal
cortex, anterior cingulate cortex and fusiform face area (FFA),
among other regions. The STS is of particular importance not
only in being activated during a range of mentalizing tasks in
controls®® but also as a site within which brain structure and
function correlate with autistic traits in the general popula-
tion.2* Similarly, the FFA located within the fusiform gyrus of
the occipitotemporal cortex is particularly activated by facial
stimuli in controls®® and is greatly reduced in activation in
people with autism.2’ Given reports of social deficits in
relatives of those with autism,?® the neural response to
emotional expressions in faces seems a promising area within
which to investigate possible endophenotypes of autism.

The aim of this study was to investigate the neural response
to facial expressions of emotion in adolescents with autism,
their unaffected siblings and controls with no family history of
autism, in order to enable the separation of neurobiological
markers associated with familial risk for autism from those
associated with the condition itself, and thus to suggest
candidate endophenotypes of autism.

Participants and methods

Participants. Participants comprised 40 adolescents (aged
12-18 years) with an autism spectrum disorder (ASD)
diagnosed as either autism or Asperger syndrome, 40
unaffected siblings and 40 typically developing controls. All
ASD participants met Diagnostic and Statistical Manual of
Mental Disorders, fourth edition criteria’® for autism or
Asperger syndrome, and were assessed as positive on
both the Autism Diagnostic Interview-Revised®” and the
Autism Diagnostic Observation Schedule-Generic.2®

Participants with autism and their siblings were recruited by
approaching support groups for families with autism and
schools; controls were recruited through notices in schools
and community groups in similar neighborhoods to the
participants in the autism and sibling groups—in order to
minimize possible confounds relating to geography and
demographics. All siblings and controls scored below thresh-
old on a screening tool for ASD—the Social Communication
Questionnaire.?® Siblings were full biological siblings of the
participants with autism, based on parental report; controls
were defined as having no history of an ASD within any first- or
second-degree relative. General exclusion criteria were: full-
scale intelligence quotient (IQ) <70 as measured using the
Wechsler Abbreviated Scale of Intelligence,®° any psychiatric
diagnosis (other than ASD in the autism group), any current or
previous psychotropic medication, any history of seizures,
any history of head injury or intracranial surgery and any
history of drug abuse.

Participants with autism (35 males:5 females) had mean
age 14.56 years (range: 12.01-18.53; s.d.: 1.74) and mean 1Q
106.5 (range: 73-146; s.d.: 16.6). Siblings (12 males:28
females) had mean age 14.83 years (range: 12.01-18.95;
s.d.: 2.14) and mean 1Q 113.1 (range: 88—133; s.d.: 10.1).
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Controls (20 males:20 females) had mean age 15.06 years
(range: 12.08-18.17; s.d.: 1.63) and mean IQ 112.4 (range:
83-136; s.d.: 11.1). Groups did not differ in terms of mean age
(P=0.481; F=0.737). The autism group had significantly
lower mean IQ than the sibling group (P=0.033; F =4.71) but
not the control group (P=0.065; F=23.50). Importantly, for
our investigation of markers of familial risk expressed as
differences between sibling and control groups, sibling and
control groups did not differ in terms of mean 1Q (P=0.753;
F=0.100).

The protocol was approved by the Cambridgeshire 1
Research Ethics Committee. All participants and their parents
provided written informed consent.

Task protocol. Participants completed a task of implicit
facial emotion processing comprising eight blocks of happy
faces, eight blocks of fearful faces, eight blocks of neutral
faces and eight blocks of fixation crosses. Facial stimuli were
from an established battery of emotional faces,® and
comprised eight different facial identities expressing happy,
fearful and neutral expressions (that is, 24 faces in total).
Stimuli were presented in a blocked design in one of two
pseudorandom orders (which were counterbalanced across
all participants in each study group) and were presented in
e-Prime version 2.0 Professional (Psychological Software
Tools, Pittsburgh, PA, USA). Each block lasted 20s and
comprised four stimuli presented for 4s each with an
interstimulus interval of 1s. Blocks were separated by a 2s
interblock interval. During task conditions (happy, fearful and
neutral faces) participants were required to press one of
two buttons to indicate the gender of the face using a
button box held in the right hand. During fixation blocks,
the participants were required to stare passively at a
fixation cross. As with the facial blocks, four fixation cross
stimuli were presented for 4s each with an interstimulus
interval of 1s.

Imaging protocol. All participants were scanned using
the same Siemens 3T Tim Trio scanner (Siemens Healthcare,
Erlangen, Germany) at the Medical Research Council Cogni-
tion and Brain Sciences Unit, Cambridge, UK. Func-
tional images were acquired with a gradient echo planar
imaging sequence with the following parameters: repetition
time = 2000 ms, echo time =30 ms, voxel size=3 x 3 x 3mm,
field of view =192 x 192mm, 64 x 64 acquisition matrix and a
78° flip angle. In all, 32 slices were acquired descending in the
transverse plane (slice thickness=3mm, slice gap=25%).
Each volume was acquired over 2 s and the first three volumes
were discarded to avoid equilibration effects.

Statistical analysis

Behavioral data. Behavioral data comprising accuracy and
reaction time of response on the sex discrimination task were
recorded in order to investigate whether any participant
performed at or below the level of chance and analyzed using
analysis of variance in PASW Statistics 18, Release Version
18.0.0 (SPSS, Chicago, IL, USA). The effect of group on
accuracy (P=0.111; F=2.241) and reaction time
(P=0.191; F=1.679) of response was not statistically
significant (analyses covarying for age and sex). Only two



participants (one participant with autism and one control)
performed at or below the level of chance on the sex
discrimination task. In case this was indicative of reduced
attention to the facial stimuli, all analyses were repeated
excluding these two participants to confirm that all
statistically significant results reported were robust to the
exclusion of the data from these two participants.

Imaging data. Preprocessing and first-level analyses were
performed in SPM8 (Wellcome Department of Cognitive
Neurology, London, UK) implemented using the automatic
analysis platform as previously described®® (Medical Research
Council Cognition and Brain Sciences Unit, Cambridge, UK)
according to the standard Medical Research Council Cogni-
tion and Brain Sciences Unit pipeline comprising sinc
interpolation to correct for the acquisition of different brain
slices at different times, coregistration of echo planar imaging
and structural scans, normalization to Montreal Neurological
Institute (MNI) space®® and smoothing using a Gaussian
kernel of 10mm full width at half maximum. For each
subject, fMRI responses were modeled using a canonical
hemodynamic response function and the general linear model
was used to perform a first level, within-participants analysis
on the functional data from each subject individually for the
primary contrasts (happy minus neutral and fearful minus
neutral faces), with spatial realignment parameters entered as
covariates.

Table 1 Main activations to happy and fearful versus neutral faces
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To characterize the patterns of activation within the brain in
the three participant groups, the first-level contrast images for
each study group were taken through to a second-level
analysis using a random-effects model, with age and sex
specified as covariates. Group-level activation maps were
generated with a global threshold set at P<0.05 following
correction for multiple comparisons on a whole-brain level
family-wise error (FWE) basis, and with a cluster extent (kg)
threshold set at 20 voxels. In the same way, all activation
results quoted (Table 1) are after the whole-brain level FWE
correction for multiple comparisons and kg threshold of
20 voxels.

To investigate possible biomarkers of familial risk as com-
pared with autism versus control differences, we examined
between-group differences in the fMRI response in autism,
sibling and control participants within the specific brain regions
identified as being significantly activated in the control group. We
therefore defined our regions of interest as the clusters of FWE
corrected P<0.05 significant activation within the control group
activation maps (Table 1), and used MarsBar®* to extract mean
activations for the primary contrast (happy minus neutral and
fearful minus neutral) for each subject for each region of interest.
For illustration, we plotted these FWE corrected activation
maps onto the canonical Montreal Neuroimaging Institute
(MNI) 152 template brain image® using SPM8, and onto a
three-dimensional-rendered template brain image using MRI-
cron software (http://www.sph.sc.edu/comd/rorden/mricron/).®®

MNI coordinates P-value Z-score Cluster Region
(FWE-corrected) size
X y z ke (voxels)
Happy versus neutral faces
Control group
-28 10 54 0.002 5.07 129 Left superior frontal gyrus
46 20 —-16 0.003 4.90 78 Right temporal pole
—42 14 —-16 0.004 4.86 200 Left temporal pole
—36 —62 24 0.006 4.76 77 Left temporoparietal junction
—54 —64 10 0.009 4.66 115 Left posterior STS
44 —52 -28 0.010 4.65 60 Right FFA
—4 26 54 0.012 4.60 64 Left dorsomedial prefrontal cortex
66 —28 2 0.015 4.54 32 Right middle STS
28 —-92 8 0.018 4.51 26 Right cuneus
—62 -52 4 0.026 4.41 26 Left middle STS
—24 —-94 8 0.031 4.37 20 Left cuneus
Sibling group
Nil
Autism group
Nil
Fearful versus neutral faces
Control group
44 —48 —22 0.006 4.78 38 Right FFA
Sibling group
40 —42 -16 0.005 4.80 33 Right FFA

Autism group
Nil

Abbreviations: FFA, fusiform face area; FWE, family-wise error; MNI, Montreal Neuroimaging Institute; STS, superior temporal sulcus.
Activated brain regions, corresponding MNI coordinates, cluster sizes, Z-scores and P-values. All analyses are corrected for multiple comparisons, and P-values are

expressed following whole brain level FWE correction at the threshold of P<0.05.
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We conducted analyses of variance within PASW Statistics
18 to measure the overall effect of group on the primary
contrast activation data (happy minus neutral and fearful
minus neutral) for each region of interest. Age and sex were
modeled as covariates in all analyses. Similarly, we used
analyses of variance to investigate autism versus control,
control versus sibling and autism versus sibling differences,
again taking age and sex as covariates. We investigated
linear trend effects across the three groups using polynomial
regression, and where a statistically significant linear effect
was found, we examined the quadratic effect to confirm that
this was nonsignificant. We plotted the mean activation
contrast estimate (expressed in arbitrary units + standard
error of the mean) for the three study groups.

To investigate whether the atypical response to happy
versus neutral faces was driven by an atypical response to
happy or neutral faces, or to both, we examined the response
to faces versus fixation crosses. First-level analysis was as
above, taking the primary contrasts as happy and neutral
faces versus fixation crosses. Second-level statistical analy-
sis proceeded as described above for the emotional versus
neutral contrasts.

Results

Neural response to facial expressions of emotion: happy
versus neutral faces. We examined the differential
response within the brain to happy compared with neutral
faces. In controls, happy faces elicited increased activation
compared with neutral faces (Figure 1 and Table 1) within a
range of areas strongly implicated in face processing,
empathy and mentalizing: the right (P=0.003) and left
(P=0.004) temporal poles, left temporoparietal junction
(P=0.006), left posterior STS (P=0.009), right FFA
(P=0.010), dorsomedial prefrontal cortex (P=0.012) and
right (P=0.015) and left (P=0.026) middle STS. Increased
activation was also detected in the left superior frontal gyrus
(P=0.002) and the right (P=0.018) and left (P=0.031)
cuneus. All P-values are expressed following correction for
multiple comparisons on a whole-brain level FWE basis. In
contrast, no activation differences were detected within
sibling and autism groups at the threshold of P<0.05 FWE
corrected.

To investigate biomarkers of familial risk compared with
autism versus control differences, we examined between-
group differences in the fMRI response in autism, sibling and
control participants within the specific brain regions identified
above as being significantly activated in controls to happy
versus neutral faces (listed in Table 1). For all 11 brain
regions, activation was significantly reduced in autism
compared with controls, with siblings demonstrating an
intermediate degree of impairment.

Activation in siblings was significantly reduced compared
with controls for 7 of the 11 brain regions: the left superior
frontal gyrus (P=0.001; F=11.664), the right (P=0.002;
F =9.986) and left (P=0.005; F = 8.551) temporal poles, the
right middle (P=0.004; F=9.068) and left posterior
(P=0.016; F=6.064) STS, the left dorsomedial prefrontal
cortex (P=0.005; F=8.570) and the right FFA (P=0.044;
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Figure 1 Neural response to happy versus neutral faces. Activation differences
(means £ s.e.m.) between the functional magnetic resonance imaging response to
happy and neutral faces in adolescents with autism (n=40), unaffected siblings
(n=40) and controls (n = 40). Activation map indicates neural response to happy
versus neutral faces in controls, and shows activations to happy versus neutral
faces (P<0.05, FWE corrected) overlaid onto the canonical Montreal Neurological
Institute (MNI) 152 template brain image (axial section, z-coordinate indicated in
Montreal Neurological Institute space), with the colored bar indicating the T-value of
the plotted activation differences. DMPFC, dorsomedial prefrontal cortex; FFA,
fusiform face area; STS, superior temporal sulcus; TPJ, temporoparietal junction.

F =4.184) (univariate analyses of variance, covarying for age
and sex; Figures 1 and 2). Furthermore, for all 11 regions,
activation in the autism group was significantly reduced
compared with controls, the effect of group was significant
across all the three groups, and polynomial regression linear
contrast effects across all the three groups were significant
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Figure2 Differences between ‘unaffected’ siblings and controls with no family history of autism in the neural response to happy versus neutral faces. Activation differences
(means + s.e.m.) between the functional magnetic resonance imaging response to happy and neutral faces in adolescents with autism (n = 40), unaffected siblings (n = 40)
and controls (n=40). Activation map corrected for multiple comparisons at P<0.05 family-wise error corrected, and overlaid onto a three-dimensional-rendered template

brain within MRlIcron. STS, superior temporal sulcus.

Table 2 Between-group differences in activations to emotional versus neutral faces

Region of significant activation

Between-group differences

Effect of group Polynomial regression

in controls P-value (F-statistic) (across all three groups) linear trend effect
Control versus Control Sibling versus P-value P-value
sibling versus autism (F statistic)
autism
Happy versus neutral faces
Left superior frontal gyrus 0.001 (11.664) <0.001 (17.222) NS <0.001 (9.448) <0.001
Right temporal pole 0.002 (9.986) <0.001 (13.703) NS <0.001 (8.994) <0.001
Right middle STS 0.004 (9.068) <0.001 (18.608) NS <0.001 (11.073) <0.001
Left dorsomedial prefrontal cortex 0.005 (8.570) <0.001 (18.714) NS <0.001 (8.957) <0.001
Left temporal pole 0.005 (8.551) <0.001 (15.181) NS <0.001 (8.763) <0.001
Left posterior STS 0.016 (6.064) 0.002 (9.790) NS 0.002 (6.335) 0.001
Right FFA 0.044 (4.184) <0.001 (21.161) NS <0.001 (9.813) <0.001
Left middle STS NS <0.001 (13.595) NS 0.002 (6.711) <0.001
Left cuneus NS 0.001 (10.918) NS 0.004 (5.899) 0.001
Left temporoparietal junction NS 0.003 (9.769) NS 0.010 (4.802) 0.003
Right cuneus NS 0.007 (7.772) NS 0.014 (4.400) 0.004
Fearful versus neutral faces
Right FFA NS 0.025 (5.193) NS NS 0.017

Abbreviations: FFA, fusiform face area; NS, not significant; STS, superior temporal sulcus.

with no significant quadratic component. For all 11 regions,
activation in the autism group did not differ statistically
significantly from activation in siblings (Table 2).

Neural response to facial expression of emotion: fearful
versus neutral faces. In controls and in siblings, fearful
faces elicited increased activation compared with neutral
faces (Figure 3 and Table 1) within the right FFA (controls:
P=0.006, siblings P=0.005; FWE corrected). However, the
autism group did not display any significant activation
differences at the threshold P<0.05 FWE corrected.

As with the happy versus neutral analyses above, we
examined between-group differences in the fMRI response in
autism, sibling and control participants within the right FFA,
characterized above as the brain region significantly activated
in controls in fearful versus neutral faces. Activation in the

autism group was significantly reduced compared with
controls and a significant polynomial regression linear
contrast effect with no significant quadratic component was
detected across all the three groups (Figure 3 and Table 2).
However, activation in the sibling group did not differ
significantly from activation in controls or the autism group.

Neural response to faces versus fixation crosses. These
findings demonstrate a clear linear progression across
autism, sibling and control groups for atypical fMRI
activation to happy versus neutral faces. To address the
question as to whether the neural basis for this marker is an
atypical neural response to happy faces, neutral faces or to
both, we used the same brain regions defined by the
significant activations within controls to happy versus
neutral faces (comprising the 11 clusters listed in Table 1)

o
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Figure 3 Neural response to fearful versus neutral faces. Activation differences
(means * s.e.m.) between the functional magnetic resonance imaging response to
fearful and neutral faces in the right FFA in adolescents with autism (n=40),
unaffected siblings (n= 40) and controls (n = 40). Activation map indicates neural
response to fearful versus neutral faces in controls, corrected for multiple
comparisons at P< 0.05 family-wise error corrected and overlaid onto the canonical
Montreal Neurological Institute (MNI) 152 template brain image (coronal section,
y-coordinate indicated in Montreal Neurological Institute space), with the colored bar
indicating the T-value of the plotted activation differences. Activation map overlaid
onto a three-dimensional-rendered template brain within MRIcron. FFA, fusiform
face area.

to extract activation contrast data for happy and neutral faces
versus fixation crosses. For happy faces versus fixation
crosses, we demonstrated a significant polynomial regre-
ssion linear contrast effect (with no significant quadratic
component) for all 11 regions: the right FFA (P=0.001), left
dorsomedial prefrontal cortex (P=0.001), left (P=0.001) and
right (P=0.013) temporal poles, left posterior STS
(P=0.010), right (P=0.002) and left (P=0.016) middle
STS, right (P=0.007) and left (P=0.008) cuneus, left
temporoparietal junction (P=0.007) and left superior frontal
gyrus (P=0.026). In contrast, no statistically significant
polynomial regression linear contrast effects were
demonstrated for neutral faces versus fixation crosses. This
strongly suggests that, within the context of this study, an
atypical response specifically to happy faces accounts for the
atypical response to happy versus neutral faces in autism and
sibling groups. This therefore provides a clear biomarker of
familial risk for autism.

Discussion

Hypoactivation of the FFA and related ‘social brain’ areas in
response to facial stimuli is one of the most consistently
reported fMRI findings in autism.2° We have shown that
activation in a range of brain areas, including the FFA, is
significantly reduced in autism compared with controls in
response to emotional versus neutral faces, and furthermore
our findings indicate that the response within the FFA itself
differs significantly between siblings and controls. Moreover,
in siblings with no autism spectrum diagnosis and no manifest
severe behavioral features of autism, we have demonstrated
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significant differences from controls in terms of the fMRI
response to happy versus neutral faces within a range of other
brain areas, particularly regions related to the STS and
temporal poles.

Importantly, the emotion and control conditions differed
only in terms of facial expression—with all other aspects of
these conditions, such as those related to the sex discrimina-
tion task, being identical. This suggests that it is specifically
the implicit response to facial expression of emotion rather
than some other aspect of the task that is associated with the
significant sibling versus control differences observed.

The temporal poles, STS, temporoparietal junction and
medial prefrontal cortex form a network of brain areas strongly
implicated®®3%-28 in empathy, mentalizing and theory of mind
(the ability to attribute mental states to others). On the basis of
the set of emotions tested here (happiness and fear), the
finding of an atypical neural response within these brain areas
in autism and sibling groups specifically to happy faces may
reflect the possibility that an implicit response to happy faces
is driven by empathy—impairments of which have a central
role within the phenotype of autism—whereas the response to
fearful stimuli (found in this study to be intact in siblings but not
individuals with autism) is likely driven by their role as
indicators of threat. Observed facial fear and anger may be
of sufficient evolutionary importance as danger cues that,
unlike facial happiness, they elicit an intact response in the
broader phenotype of autism. This is consistent with reports®®
of an intact ‘anger superiority effect’ in autism, where angry
faces are salient and easier to spot within a collection of faces
than happy faces.

We did not select sibling pairs on the basis of gender and
hence, in keeping with known gender ratios in high-functioning
autism and Asperger syndrome, there is an over-representa-
tion of males in the autism group. Gender is a very unlikely
explanation for our results, particularly as we have demon-
strated a strong fit to a linear trend across all three study
groups (autism<siblings <controls), whereas the gender
differences between autism versus sibling and sibling versus
control groups are in opposite directions. Furthermore, our
main findings of significant sibling versus control differences
(see Table 2) are most unlikely to be driven by gender as there
was no significant effect of gender in our analysis of variance
for happy versus neutral faces for these seven brain regions.

A potential statistical limitation of this study is that
participants with autism, their siblings and controls were
compared within the same analysis of variance models,
whereas the autism and sibling groups are not independent of
one another. However, our main findings of sibling versus
control differences are not affected by this potential limitation.

The heterogeneous phenotype and likely non-unitary
nature™ of autism require a dissection of the condition into
simpler building blocks with the goal of characterizing the
etiology of autism at the fine-resolution level of specific
components of neural structure or function and their genetic
associates. We propose that the fMRI response to happy
versus neutral faces within these brain areas is an endophe-
notype of autism. As a biomarker of familial risk for autism, this
candidate endophenotype has the advantage of being a
quantitative measure, with greater statistical power than
categorical measures. These findings offer an attractive



strategy to future genetic research, investigating the genetic
correlates of this candidate endophenotype.

Kanner’s original description of autism*® highlighted the role
of impaired ‘emotional reactivity’ in the phenotype of autism,
together with the observation of similar traits in family
members. Our findings suggest that an atypical implicit
response to facial expression of emotion may form the basis
of impaired emotional reactivity in autism and in the broader
autism phenotype®®*! in relatives. The identification of this
fMRI endophenotype of autism may serve as an important
step toward an understanding of the causal mechanisms that
underlie autism at a neural and genetic level.
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