
Heliyon 8 (2022) e10879
Contents lists available at ScienceDirect

Heliyon

journal homepage: www.cell.com/heliyon
Research article
A wireless sensor network node fault diagnosis model based on belief rule
base with power set

Guo-Wen Sun a, Wei He a,b,*, Hai-Long Zhu a, Zi-Jiang Yang c, Quan-Qi Mu a, Yu-He Wang a

a Harbin Normal University, Harbin, 150025, China
b Rocket Force University of Engineering, Xi'an 710025, China
c Heilongjiang Agricultural Engineering Vocational College, Harbin, 157041, China
A R T I C L E I N F O

Keywords:
Fault diagnosis
Wireless sensor network
Belief rule base
Power set
* Corresponding author.
E-mail address: he_w_1980@163.com (W. He).

https://doi.org/10.1016/j.heliyon.2022.e10879
Received 22 May 2022; Received in revised form 2
2405-8440/© 2022 The Author(s). Published by Els
A B S T R A C T

Wireless sensor network (WSN) is inevitably subject to node failures due to their harsh operating environments
and extra-long working hours. In order to ensure reliable and correct data collection, WSN node fault diagnosis is
necessary. Fault diagnosis of sensor nodes usually requires the extraction of data features from the original
collected data. However, the data features of different types of faults sometimes have similarities, making it
difficult to distinguish and represent the types of faults in the diagnosis results, these indistinguishable types of
faults are called ambiguous information. Therefore, a belief rule base with power set (PBRB) fault diagnosis
method is proposed. In this method, the power set identification framework is used to represent the fuzzy in-
formation, the evidential reasoning (ER) method is used as the reasoning process, and the projection covariance
matrix adaptive evolution strategy (P-CMA-ES) is used as the parameter optimization algorithm. The results of the
case study show that PBRB method has higher accuracy and better stability compared to other commonly used
fault diagnosis methods. According to the research results, PBRB can not only represent the fault types that are
difficult to distinguish, but also has the advantage of small sample training. This makes the model obtain high
fault diagnosis accuracy and stability.
1. Introduction

A wireless sensor network (WSN) is a new type of information
acquisition and processing network. It consists of a large number of low-
power sensor nodes. The sensor nodes communicate through a wireless
network. WSN has been widely used in mechanical parameter detection,
industrial monitoring, mine safety, medical and health, environmental
monitoring and other industries. With the rapid development of Internet
of Things (IOT) industry, WSN is also widely used in smart home field.
The application scenarios of WSNs usually require real-time and reliable
data collection. However, the working environment of industrial WSN is
harsh, usually in a high temperature and high pressure environment. In
the field of IoT, it is difficult to avoid communication interference be-
tween multiple networks. Moreover, with the accumulation of the
working time of WSN node, the possibility of its failure gradually in-
creases. Therefore, to ensure the real-time reliability of the data collected
by WSN and to grasp the fault of WSN node in time, the fault diagnosis of
WSN node is particularly important [1].
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Commonly used WSN fault diagnosis methods can be divided into
three types: model analysis methods, data-driven methods and hybrid
information-based methods. First, some of the methods based on model
analysis are not accurate due to the complexity of the system and the
relative simplicity of the model. Second, data-driven based approach
needs a large number of uniform fault samples is required to obtain
better diagnosis. Moreover, whether the approach is model-based, data-
driven or mixed-information, there is a common problem. Fault types
that are difficult to distinguish during diagnosis, i.e., ambiguous infor-
mation, cannot be represented, this affecting the accuracy of fault
diagnosis.

The proposedmethod ofWSN node fault diagnosis based on power set
belief rule base (PBRB) has two advantages. Firstly, the model can ex-
press the fuzzy information of fault classification caused by the similarity
of data features in power set. Second, the setting of the initial parameters
of the model is derived from expert knowledge, which can effectively
improve the accuracy of model diagnosis and has little dependence on
the number of training samples.
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The basic structure of the paper is as follows. Section 2 is related
work, which introduces the common methods and existing problems of
WSN fault diagnosis. In Section 3, the problems of WSN node fault
diagnosis are formulated, and then a new fault diagnosis model is con-
structed based on the PBRB. In Section 4, the implementation process of
the model is designed. In Section 5, the case study is constructed to verify
the effectiveness of the model. In Section 6, the results of the case study
are discussed. In Section 7, the content of the paper is summarized, and
future work is planned.

2. Related work

Due to the wide application of WSN and the importance of WSN node
fault diagnosis. WSN node fault diagnosis is the research direction of
many scholars.

The first type of method is based on model analysis. It is defined as
simulating the cognitive process of things, which includes expert system-
based models, fuzzy logic-based models, decision tree-based models and
hypothesis testing-based models [2, 3, 4, 5, 6, 7]. Febriansyah, II.
Saputro, WC. et al. studied and implemented a combination of multiscale
principal component analysis (MSPCA) and decision trees to detect fault
data from WSN and classify faults [4]. The different factors of sensor
nodes are analyzed, and a fault diagnosis method for heterogeneous WSN
based on fuzzy logic is proposed by M. Masdari et al. [5]. Laiou, A. et al.
constructed an autonomous fault diagnosis model in a WSN based on a
decision tree [6]. Sun, QY. Sun, YM. et al. proposed a method for
multi-classification of WSN nodes based on a combination of recursive
principal component analysis (RPCA) and support vector data description
(SVDD) [7]. This type of method does not rely on fault samples and has a
wide range of applications. However, the model is affected by the com-
plex environment, the modeling accuracy of the model is low, and the
model learning ability is poor.

The second type of method is the data-driven method. It is defined by
learning the fault samples [8]. The types of methods mainly include
neural network-based (NN) models, extreme learning machine-based
models and extremely randomized trees [9, 10, 11, 12, 13, 14, 15]. An
automatic fault diagnosis model based on back propagation neural
network (BPNN) was proposed by Swain, R. R. Khilar, P. M. et al. to
determine multiple fault types of WSN hard and soft faults [9]. Gui, W.,
Lu, Q., Su, M., & Pan, F. proposed a convolutional neural network based
on the optimization of the Fireworks algorithm for fault diagnosis of WSN
nodes [10]. By considering the improved belief function fusion method,
an enhanced recurrent ELM-based method for WSN fault diagnosis was
proposed by A. Javaid et al. [14]. The data-driven method is currently the
main fault diagnosis technology of WSN, which has the advantage of high
model accuracy. However, these methods rely on the integrity of his-
torical data, there is no causal relationship in the modelling process, the
initial parameters of the model are set randomly, and the random pa-
rameters are largely incompatible with WSN mechanism, which can lead
to limited diagnostic accuracy of the model.

The third type of method is the hybrid information-based method.
Defined by learning qualitative knowledge and quantitative data [16]. In
this type of method, the Markov-based model, Bayesian network-based
model and belief rule base (BRB) model are often used. Zhao, Qun.
proposed a multi-channel information fusion method based on coupled
hidden Markov models for fault diagnosis of mechanical equipment [17].
Emperuman, M. et al. proposed a continuous density hidden Markov
model, combined with neural networks, for fault classification of sensor
devices in WSNs [18]. A diagnostic model based on Markov transition
fields and deep residual networks was proposed by Yan, J., Kan, J. et al.
[19]. Through the mapping relationship between fault trees and Bayesian
networks, Chunhua Zhang et al. constructed a fault diagnosis model for
Bayesian networks [20]. A fault diagnosis method using Bayesian net-
works as a model bridge was proposed through the mapping relationship
between fuzzy fault trees and BRBs by Cheng, X., Liu, S. et al. [21].
However, these methods have high modelling requirements. The validity
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and accuracy of the model can only be guaranteed when the type of fault
being diagnosed is identified and the characteristics are well defined.

BRB is an excellent modeling method for complex systems based on
hybrid information [22]. The BRBmodel is built using expert knowledge,
and the BRB model parameters are trained using historical data. In
addition, all kinds of uncertain information can be effectively processed
by BRB, including randomness, fuzziness, uncertainty, and inconsistency
[23]. The theory of BRB has gradually improved, and BRB are widely
used in many fields, such as medical decision-making [24], fault diag-
nosis [25], and safety assessment [26].

In the study of WSN node fault diagnosis, WSN node fault types are
diagnosed by the data features extracted from the original collected data.
However, in engineering practice, the data features of different types of
faults in a specific interval are similar, which makes it difficult to di-
agnose fault type. These faults, which cannot be clearly diagnosed, are
called ignorance information including local ignorance and global
ignorance. Therefore, WSN node fault diagnosis model should have the
ability to describe the ignorance information [27]. However, the
discriminative framework of the belief rule base cannot effectively
represent this ignorance information. In the latest research, to solve that
BRB cannot effectively describe local ignorance, ZJ. Zhou et al. extended
BRB with the power set framework [28]. The ignorance information of
complex systems can be more efficiently represented using a power set
identification framework.

Through the above analysis, in this paper, the PBRB is proposed as a
fault diagnosis method for WSN nodes. This method has several advan-
tages. First, both qualitative and quantitative information can be used as
inputs of the model to form IF-THEN rules, which are suitable for the
modelling requirements of large and complex systems. Second, it is
possible to represent information about fault types that are ambiguous
due to similar data features, improving the accuracy of fault diagnosis.
Finally, compared with other data-driven methods, this method is more
consistent with the working mechanism of the diagnosed device. It sets
parameters according to expert knowledge and enhances the interpret-
ability of the model while improving the diagnostic accuracy.

3. Problem formulation

In this section, the problems in fault diagnosis for WSN nodes are
formulated, and a new WSN node fault diagnosis model is constructed
based on the PBRB.
3.1. Problem formulation of WSN node fault diagnosis

In the WSN, a large number of sensor nodes are randomly distributed
in or near the monitoring area, which can form a network in a self-
organizing manner. The data detected by the sensor nodes are trans-
mitted to the sink node through the self-organizing network. The sink
node transmits the data to the management node, that is, the data pro-
cessing center, through Internet or satellite communication. Therefore, it
is an effective solution to implementWSN node fault diagnosis in the data
processing center, as shown in Figure 1. Here, four problems can be
included in WSN node fault diagnosis, which can be described as follows.

Problem 1. The extraction process of the data features is formulated. In
WSN, the data collected by different sensors have similarities, including
time correlation and space correlation. When WSN node fault occurs, the
time and space correlation features will be changed. The raw data
collected by the sensors therefore need to be analysed, and data features
that are time-correlated or space-correlated from the data are extracted
as input attributes to themodel. The extraction process is described as Eq.
(1):

X¼ f ðX;ψÞ (1)



Figure 1. WSN fault diagnose in the data processing center.
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where X ¼ fx1;⋯; xMg denotes the set of attributes used as inputs of the
model. M is the number of attributes. f ð ⋅Þ denotes the extraction process
of data features. X denotes the raw dataset collected by different sensors.
ψ denotes the parameter set of the data feature extraction process.

Problem 2. All fault diagnosis results, including global ignorance and
local ignorance, are defined. In WSN node fault diagnosis, fault types are
used as output of the model. Define Ω as a set of all WSN fault types,
which can be described as Eq. (2):

Ω ¼ fD1⋯DNg (2)

where Di is the ith fault type of WSN node andN represents the number of
WSN node fault types. In fault diagnosis of WSN node, local ignorance
represents the case where the fault may be any J of allN faults, where J <

N. Global ignorance represents the case where the fault may be any one
of all N faults. The set of fault types with local ignorance and global
ignorance can then be described as Eq. (3):

2Ω ¼f∅ ;D1;⋯;DN ; fD1;DNg;⋯fD1;⋯DN�1g;Ωg (3)

where ∅ is an empty set and fDi;Djg represents that WSN node fault
diagnosis result may be Di or Dj, which is used to describe local igno-
rance. Ω is a complete set, which is used to describe global ignorance.
Therefore, the fault diagnosis result of N fault types has 2N possibilities.

Problem 3. The fault diagnosis process of WSN node is designed. The
fault diagnosis process can be expressed by the following Eq. (4):

y¼ gðx1;⋯; xM ; ηÞ (4)

where x1;⋯; xM represents data features extracted in problem 1, i.e., the
input attributes of the model. η represents the parameter set of the fault
diagnosis process. gð ⋅Þ indicates the diagnosis process of a fault. y rep-
resents the power set of the output of the model defined in problem 2.

Problem 4. The optimization process of the fault diagnosis model is
designed. The initial parameters of the model are determined by expert
knowledge. It follows the general trend of the belief distribution, but it is
not the optimal solution. Therefore, parameters need to be adjusted by
optimization algorithm to improve the diagnostic accuracy of the model.
The optimization process of the parameters of the model can be described
as Eq. (5):
3

ηbest ¼ hðη0; ∅ Þ (5)
where hð �Þ denotes the optimization process of parameters of the model.
∅ is parameter set of the optimization process, and η0 is the set of pa-
rameters of the model initialized by expert knowledge. ηbest is the opti-
mized parameter set.

3.2. Construction of the new WSN node fault diagnosis model

To solve the above four problems, a new WSN node fault diagnosis
model based on PBRB is proposed. In PBRB, belief rules contain a power
set identification framework of output results and input attributes, but
this power set framework is the basic probability distribution and not the
final result. The final result needs to be derived by a rule fusion algo-
rithm. K belief rules are constructed, and each belief rule can be
described as Eq. (6):

Rk : IF
�
x1 is Ak

1

�
;⋯;

�
xM is Ak

M

�
THEN

��
D1; β

k
1

�
;⋯;

�
D2N ; β

k
2N
��

;
X2N
n¼1

βkn ¼ 1

WITH rule weight θk and attribute weight δ1;⋯; δM

(6)

where Rkðk¼ 1;⋯;KÞ denotes the kth belief rule in WSN node fault
diagnosis model. Ak

1;⋯;Ak
M denotes the value of the reference point ofM

input attributes of this model, which is defined by experts. D1;⋯;D2N are
the set of fault types in the power set. βknðn¼ 1;⋯;2NÞ denotes the belief
degree of different output results in the power set. θk is the weight of the
kth belief rule, which is used to describe the importance of the rule, and
δ1;⋯; δM are the weights of different attributes, which can reflect the
importance of attributes.

The new WSN node fault diagnosis model based on PBRB comprises
the following units. First, a WSN data feature extraction method was
designed to extract time-correlated or space-correlated data features to
be used as input attributes for the PBRB. Second, the features of the
power set identification framework of the PBRB method can be used to
represent the local ignorance and global ignorance of the fault diagnosis
results of WSN nodes and improve fault diagnosis accuracy. Third, the
initial parameters set by experts in PBRB are optimized using an opti-
mization algorithm to further improve the diagnostic accuracy of the
model. The fault diagnosis model consisting of the above three compo-
nents can be represented as Figure 2.



Figure 2. The WSN node fault diagnosis model based on PBRB.
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4. The WSN node fault diagnosis model based on PBRB

In this section, the modeling process of WSN node fault diagnosis is
defined, which includes the basic structure of the model, the reasoning
process of the model, and the optimization process of the model.
4.1. The basic structure of the model

To effectively describe WSN node fault diagnosis problem in
modeling. The fault mechanism and data features of the WSN are
analyzed. The basic structure of WSN node fault diagnosis is constructed,
which can be described as.

Step 1: The input attributes of the model are constructed. WSN node
faults cannot be directly represented by sensor raw data, so WSN node
data features are extracted as the input of the model.

AWSN is adistributeddata collectionnetwork. There aremany sensors
that have the same function to collect information on detected objects. As
shown in Figure 3, there are certain similarity characteristics in space and
time for the information of these sensors, which are shown as follows. The
Figure 3. Temperature da
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first is time correlation. The overall trend of the object being tested is
consistent over a period of time, and therefore, the data collected by the
sensor have a similar trend over time. For example. If a WSN is used to
monitor temperature changes in an area and the overall temperature in the
area is on an upwards trend over a period of time, then the data collected
by the sensors distributed in the area are all on an upwards trend and have
similarity. The second is spatial correlation, where the difference between
two monitored points is smaller the closer they are to the object being
detected. Therefore, sensors that are distributed closer together have a
strong similarity in monitoring data. For example, still monitoring tem-
perature changes in a certain area,when the distance between two sensors
is only 1 m, they have almost the same monitoring data.

When a WSN node failure occurs, the data features of time correlation
and space correlation are changed. The data features of different types of
faults are alsodifferent. Therefore, the data features of the time correlation
and space correlation of WSN node are selected as the input of the model.

Trend correlation is an expression of time correlation. It indicates the
degree of similarity in the trend of the collected data over a period. which
can be calculated by the following Eq. (7):
ta of adjacent sensors.



Figure 4. The Inference process of WSN node fault diagnose.
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PT
k¼0

½xiðt � kÞ � xiðtÞ�
�
xjðt � kÞ � xjðtÞ

�

χ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPT

k¼0
½xiðt � kÞ � xiðtÞ�2

PT
k¼0

�
xjðt � kÞ � xjðtÞ

�2s (7)

where xiðt�kÞ k ¼ ð0;⋯;TÞ denotes the data collected by sensor i at
time ½t � T; t�. xiðtÞ denotes the average value of the data collected by
sensor i from time t � T to time t.

The residual feature is defined to represent space correlation, which
can be described as Eq. (8):

bε¼ xiðtÞ � 1
S� 1

XS

j¼1;j6¼i

xjðtÞ (8)

where xiðtÞ denotes the data collected by sensor i at time t. 1=
ðS�1ÞPS

j¼1;j6¼ixjðtÞ denotes the average data of other sensors collected at
time t. S denotes the number of sensors.

More precisely, trend correlation and residual features are extracted
as the input attributes of the fault diagnosis model proposed in this paper.

Step 2: The output of the model is constructed. In WSN node fault
diagnosis model, fault types are used as the output of the model. WSN
node fault types are classified by offset fault, high noise fault, outlier fault
and fixed value fault [29]. All these faults can be described as Eq. (9):

Ω¼fD1;D2;D3;D4g (9)

where D1 is the offset fault, D2 is the high noise fault, D3 is the outlier
fault, and D4 is the fixed value fault.

The data features between fault types are sometimes similar, making
it difficult for the model to distinguish between specific fault types and
generate local ignorance and global ignorance. To represent local igno-
rance and global ignorance information more effectively, a frame of
discernment with a power set is defined, which can be described as Eq.
(10):

2Ω ¼

8>>>><>>>>:
∅;D1;D2;D3;D4;
fD1;D2g; fD1;D3g; fD1;D4g;
fD2;D3g; fD2;D4g; fD3;D4g;
fD1;D2;D3g; fD1;D2;D4g;
fD1;D3;D4g; fD2;D3;D4g;Ω

9>>>>=>>>>; (10)
5

where ∅ means that the current state may not be any of the already
defined fault types. Di ði¼ 1; 2;3;4Þ means that the current fault is Di.
fDi;Djg i; j ¼ 1; 2;3;4 i 6¼ j means that the current state may be fault Di

or fault Dj. fDi;Dj;Dkg and fDi;Djg have similar meanings. Ω represents
that the current fault may be of any of the types already defined.

Step 3: The belief rules of the model are defined as Eq. (11):

Rk : IF x1 is Ak
1 and x2 is Ak

2

THEN

8>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>:

�
∅; βk1

�
;
�
D1; β

k
2

�
;
�
D2; β

k
3

�
;
�
D3; β

k
4

�
;�

D4; β
k
5

�
;
�fD1;D2g; βk6

�
;
�fD1;D3g; βk7

�
;�fD1;D4g; βk8

�
;
�fD2;D3g; βk9

�
;�fD2;D4g; βk10

�
;
�fD3;D4g; βk11

�
;�fD1;D2;D3g; βk12

�
;
�fD1;D2;D4g; βk13

�
;�fD1;D3;D4g; βk14

�
;
�fD2;D3;D4g; βk15

�
;�

Ω; βk16
�

9>>>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>>>;
WITH rule weight θk and attribute weight δ1; δ2

(11)

where x1 and x2 represent the input attributes of the model. The WSN
node fault diagnosis model in this paper represents trend correlation and
residual features. Ak

1 and Ak
2 represent the reference points of the input

attribute, which are set by expert knowledge. βk1;⋯; βk16ðk¼ 1;⋯; LÞ
represents the rule basic probability distribution, and

P16
i¼1β

k
i ¼ 1. ∅

Di ði ¼ 1;2;3; 4ÞfDi;Djg i; j ¼ 1; 2;3;4 i 6¼ j, and fDi;Dj;Dkg have the
same meaning as in Eq. (10). θk; k ¼ 1;2;⋯; L represents the rule weight
of each rule, and δ1; δ2 represents the input attribute weight. Among
these parameters, the input attribute reference point, basic probability
distribution, rule weight and input attribute weight have expert knowl-
edge to be initialized.

4.2. The Inference process of the model

The inference process of WSN node fault diagnosis is designed in this
part, as shown in Figure 4. The specific reasoning process is described as
follows.



Figure 5. Flowchart of the P-CMA-ES optimization algorithm.
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Step 1: The input and reference values of the attributes are used to
calculate the matching degree of the reference point of the corresponding
attributes. First, assume that attribute ith has m reference values of ½A1

i ;⋯;

Ak
i ; A

kþ1
i ;⋯; Am

i �, and they are sorted in an increasing order. Then, the
matching of reference values at positions k and kþ1 can be calculated by
the following Eq. (12):

aji ¼

8>>>>>>><>>>>>>>:

Akþ1
i � xi

Akþ1
i � Ak

i

; j ¼ k;Ak
i � xi � Akþ1

i

xi � Ak
i

Akþ1
i � Ak

i

; j ¼ kþ 1

0; j ¼ 1; 2;⋯;m; j 6¼ k; and j 6¼ kþ 1

(12)

where aji denotes the matching degree with the jth reference value of the
ith attribute. xi is the value of the ith input attribute. Ak

i and Akþ1
i

represent the two adjacent reference values. If xi is between ½Ak
i ;A

kþ1
i �, the

matching degree of xi for Ak
i and Akþ1

i is calculated; otherwise, the
matching degree of other reference values is 0.
6

Step 2: The activation weight of the belief rule is calculated by the
rule weight and matching degree, and the process can be described as Eq.
(13):

ωk ¼
θk

YM
i¼1

�
aki
�δi

PK
j¼l

θj
YM
i¼1

	
aji

δi

(13)

where ωk denotes the activation weight of the kth belief rule.
θj ðj¼ 1; 2;⋯;KÞ denotes rule weight of the jth rule, and K is the total

number of rules. aji denotes the matching degree of the ith attribute on the
corresponding reference value in the jth rule. δi represents attribute
weight of the ith attribute. When ωk 6¼ 0, the current rule is activated.

Step 3: The basic probability mass is calculated, which can be
described as Eqs. (14) and (15):

mk
n ¼ωkβkn (14)



Figure 6. Wireless Sensor Network distribution map in Intel Berkeley Research Lab.
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mk
2Ω ¼ 1� ωk (15)
where ωk represents the activation weight of the kth rule. βkn represents
the belief degree of the nth outcome in the discriminative framework for
the kth rule. mk

n denotes the basic probability mass of the kthðk¼ 1;⋯;KÞ
belief rule for the nthðn¼ 1;⋯;2NÞ fault state. mk

2Ω denotes the basic
probability mass that is not assigned to the fault state in the kth belief
rule.

Step 4: The belief degree after rule fusion is calculated by the ER
analysis algorithm, which can be described as Eqs. (16) and (17):

κ¼ lP2N
n¼1

YK
k¼1

�
mk

n þmk
2Ω
�� �

2N � 1
�YK

k¼1

mk
2Ω

(16)

βn ¼
κ �

�YK
k¼1

�
mk

n þmk
2Ω
��YK

k¼l

mk
2Ω

#

l� κ �
�YK

k¼l

mk
2Ω

# (17)

where βnðn¼ 1;⋯; 2NÞ represents the confidence of the belief degree
result in the power set identification framework. N denotes the number
of fault types, and K denotes the number of rules. mk

n and mk
2Ω are

calculated by Eqs. (14) and (15).
Step 5: The output utility of the belief degree is calculated as Eq. (18):

y¼
X2N
n¼1

Dnβn (18)

where Dn; n ¼ 1;2;⋯;2N represents the 2N results in the power set
identification framework. βn; n ¼ 1; 2;⋯; 2N represents the belief de-
gree of 2N resulting in the power set identification framework. N denotes
the number of fault types. For example, there exists a discriminatory
framework fð1;0:2Þ; ð2;0:3Þ; ð3; 0:5Þg. Then, the final output utility y is
1� 0:2þ 2� 0:3þ 3� 0:5 ¼ 2:3. The calculation result in this case is
closest to 2, so the classification result is 2.
7

4.3. The optimization process of the model

The initial parameters of WSN node fault diagnosis model are con-
structed based on expert knowledge. However, there are two problems
with this. First, the extracted data features are similar in some cases.
Second, as the number of attributes increases, setting the initial pa-
rameters becomes more difficult. The initial parameters set by expert
knowledge are consistent with the working mechanism of the WSN to
some extent, but they are not optimal. Therefore, the model needs to be
trained by the data to obtain more accurate model parameters. The
optimization objective function can be expressed in the following Eq.
(19):

minMSEðηÞ
s:t:X2N

n¼1

βkn ¼ 1

0 � βkn � 1; k ¼ 1;⋯;K; n ¼ 1;⋯;2N

0 � θk � 1; k ¼ 1;⋯;K

0 � δm � 1; m ¼ 1;⋯;M

(19)

where η ¼ ½θ1;⋯; θK ; β
1
1;⋯; β12N ; β

K
1 ;⋯; βK2N ; δ1;⋯; δM � denotes the param-

eter set of the fault diagnosis model. The mean square error (MSE) is
used as the objective function of the optimization algorithm and is
denoted using MSEð ⋅Þ. The objective function can be expressed as Eq.
(20):

MSEðηÞ¼ 1
NUM

XNUM
i¼1

	
yi � yi

excepted



(20)

where NUM represents the number of training samples. yi is the actual
output of the ith training sample in WSN node fault diagnosis model,
and yiexp ected is the expected output of the ith training sample. The
projection covariance matrix adaptation evolution strategy (P-CMA-ES)
algorithm is selected to optimize the model parameters, as shown in
Figure 5.



Table 1. Simulation method of different type of fault.

Fault type Simulation method

Offset fault Randomly superimpose a random number between 0 and 10 on the
sample 400–799.

High noise
fault

Randomly superimpose a random number between 10 and 20 on the
sample 800–1199.

Outlier fault Randomly draw 10% of discrete data samples from samples 1200–1599
and replace them with random numbers between 0 and 40.

Fix value fault Change the value of sample 1600–2016 to the value of sample 1599
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4.4. Process of the model

Through the above analysis, the modelling process of WSN node fault
diagnosis is designed. This can be described as follows.

Step 1: The correlation features of the sensor data are extracted and
used as the input attributes of the diagnosis model.

Step 2: The WSN node fault diagnosis model based on the PBRB is
constructed by expert knowledge.

Step 3: The reasoning process of the fault diagnosis model is designed
based on the ER parsing algorithm.

Step 4: The P-CMA-ES algorithm was chosen as the optimization al-
gorithm for the initial parameters of the diagnostic model.
Figure 7. Simulated fau

Figure 8. Results of t
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5. Case study

In this section, a case study is designed to verify the effectiveness of
the proposed method in this paper, including problem formulation,
construction, training and testing of the model.

5.1. Problem formulation

In this case study, WSN datasets collected and published by Intel
Berkeley Research Labs were selected. This dataset contains information
about data collected from 54 sensors deployed in the Intel Berkeley
Research lab between February 28th and April 5th, 2004. The data
collected by each sensor node include temperature, humidity, light, and
voltage. The sensor is arranged in the laboratory according to Figure 6.
Sensors 1, 2, 3, and 4 are selected as the data sources for this article based
on the sensor installation location.

Step 2: Raw data is processed on demand. By analyzing the charac-
teristics of the data set, it is found that the sensor has data loss phe-
nomenon in a period of time. The data volume and time of sensors 1 to 4
are inconsistent. Therefore, on the basis of the source data, the method of
average value is adopted to make up the missing data. Finally, data from
sensors 1 to 4 were processed every 5 min from March 1 to March 7,
resulting in a total of 2016 data from each sensor.
lt data on sensor 1.

rend correlation.



Figure 9. Results of residual characteristics.

Figure 10. Simple structure of model.

Table 2. Reference point and reference value of trend correlation.

Reference point VL RL L M H RH VH

Reference value -1.1 0 0.2 0.4 0.6 0.8 1.1

Table 3. Reference point and reference value of residual characteristics.

Reference point VL RL L M H RH VH

Reference value -23 -10 0 5 10 15 23

Table 4. Reference point and reference value of model output.

Reference point N OSF HNF OF FVF

Reference value 0 1 2 3 4
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Step 3: Sensor failure data are simulated on senser 1. The simulation
method is shown in Table 1. The effect after simulating fault data in
sensor 1 is shown in Figure 7, where 1–399 are normal data and 400–799
are offset fault data. 800–1199 are high noise fault data, 1200–1599 are
outlier fault data and 1600–2016 are fix value fault data.

5.2. Construction of the model

Step 1: Extracting data features include trend correlation and residual
feature. To build a fault diagnosis model for WSN nodes, data features
need to be extracted from the raw sensor data first. In this paper, the
trend correlation is calculated by the method shown in Eq. (7) and rep-
resented by x1. The residual feature is calculated by the method shown in
Eq. (8) and represented by x2. The calculation results of the trend cor-
relation and residual feature are shown in Figure 8 and Figure 9,
respectively. A schematic diagram of the model structure is shown in
Figure 10.

Step 2: The reference point and reference value of the input attributes
are defined. By analyzing the data features and graphs of the input at-
tributes x1 and x2, the reference points of the two input attributes can be
determined. First, there are 7 reference points for x1, which are very low
(VL), relatively low (RL), low (L), medium (M), high (H), relatively high
(RH), and very high (VH) and can be described as Eq. (21). The reference
value corresponding to the reference point is shown in Table 2. Second,
9

there are 7 reference points for x2, which are very low (VL), relatively
low (RL), low (L), medium (M), high (H), relatively high (RH), and very
high (VH), as described in Eq. (22). The reference value corresponding to
the reference point is shown in Table 3. Finally, 5 reference points are set
for the output result of the model, which are normal (N), offset fault
(OSF), high noise fault (HNF), outlier fault (OF), and fix value fault (FVF),
which can be described as Eq. (23). The reference value is shown in
Table 4.

x1 ¼fVL;RL; L;M;H;RH;VHg (21)

x2 ¼fVL;RL; L;M;H;RH;VHg (22)

y¼fN;OSF;HNF;OF; FVFg (23)

Following the process of model construction introduced in Section
4.1, the power set framework needs to be constructed based on the set of
fault types y. Following the process of model construction introduced in



Figure 11. Variation trend of model accuracy with the number of iterations.
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Section 4.1, the power set framework needs to be constructed based on
the set of fault types Y. However, observing the images of the data fea-
tures, it is found that only adjacent faults in the defined faults have local
ignorance. Therefore, the local ignorance and global ignorance that do
not exist in the power set framework can be reduced. Eventually, the
discriminative framework y0 of the model is obtained as Eq. (24).

y
0 ¼ fN; fN;OSFg;OSF; fOSF;HNFg;HNF;
fHNF;OFg;OF; fOF; FVFg; FVFg (24)

Step 3: The initial belief rule base consisting of 49 rules is constructed
by the data features extracted in Step 1 and the reference point and
reference value determined in Step 2.
5.3. Training and testing of the model

In this part, the model constructed in Section 5.2 will be trained. After
the model is trained, the test data will be used to verify the accuracy and
effectiveness of the model.

Step 1: The training data and iteration number are determined. In
Step 3 of Part 1 of this section, different types of fault data on sensor 1 are
simulated and data features are extracted from the simulated data. The
1897 extracted data features were randomly divided into six groups of
8:2, 7:3, 6:4, 5:5, 4:6, and 3:7 according to the ratio of training and test
sets commonly used in machine learning.
Figure 12. Comparison of opti
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Step 2: Three evaluation indexes are defined in this step to verify the
effectiveness of the model. The first index is overall accuracy. which can
be described as Eq. (25):

Overall acc¼TN
all

� 100 (25)

where TN denotes the number of samples correctly diagnosed. all denotes
the total number of samples. The second index is fault diagnosis accu-
racy, which can be described as Eq. (26):

Fault acc¼ FN 0

FN
� 100 (26)

where FN denotes the number of fault samples and FN 0 denotes the
number of correctly diagnosed fault samples. The last index is the fault
detection rate, which can be described as Eq. (27):

Check rate¼ FN}

FN
� 100 (27)

where FN denotes the number of fault samples and FN} denotes the
number of samples in which the diagnosis result is a fault sample and the
source data is also a fault sample.

Step 3: The number of model iterations is determined, and the model
is trained. In the process of model training, the iteration times of model
training are set as 100, 200, 400, 800, 1600 and 2000. By comparing the
performance indicators defined in Step 2 under different iterations, it is
found that the accuracy of the model improves with the increase of the
number of training iterations. The improvement in model accuracy is
shown in Figure 11. Finally, the number of model iterations is deter-
mined to be 1600.

5.4. Optimization algorithm comparison

In this part, the parameters of the model are optimized. The rule
weights, attribute weights, and belief degree parameters are initially set
by the experts, but are not yet the optimal set of parameters for fault
diagnosis. Therefore, the set of parameters needs to be adjusted by an
optimization algorithm to obtain better diagnostic results. Common
optimization algorithms for BRB methods are the differential evolution
algorithm (DE) [30], the FMINCON function of the MATLAB optimiza-
tion toolbox [31], and the P-CMA-ES method [32, 33]. To choose the
most suitable optimization algorithm for this paper, each of the three
optimization algorithms was tested using six different scales of data
defined in the first step of Part C. The test results are shown in Figure 12.
First, the comparison of MSE values shows that the DE algorithm has the
mization algorithm results.



Table 5. Optimized parameters of model.

No. Rule Weight Attributes Belief Degree Distribution of the Discriminative Framework in the Rule

x1 x2 {N, {N, OSF}, OSF, {OSF, HNF}, HNF, {HNF, OF}, OF,{OF, FVF}, FVF}

1 0.399529974 VL VL {0.11545, 0.020355, 0.15021, 0.0073873, 0.2955, 0.088801, 0.2482, 0.055848, 0.018236}

2 0.884038038 VL RL {0.074501, 0.03547, 0.308, 0.010765, 0.21753, 0.010129, 0.087667, 0.12902, 0.12691}

3 0.576651296 VL L {0.0023282, 0.0037552, 0.0075553, 0.0040417, 0.0078722, 0.25359, 0.0064325, 0.064026, 0.6504}

4 0.903089289 VL M {0.44123, 0.12672, 0.15136, 0.054862, 0.068459, 0.011103, 0.10221, 0.042993, 0.0010561}

5 0.304424816 VL H {0.33713, 0.37554, 0.01902, 0.013802, 0.008199, 0.097889, 0.023963, 0.06298, 0.061469}

6 0.034714151 VL RH {0.12604, 0.32635, 0.019356, 0.018511, 0.25233, 0.0080164, 0.18146, 0.022055, 0.045887}

7 0.952804018 VL VH {0.069273, 0.14017, 0.09287, 0.085504, 0.26369, 0.017867, 0.2099, 0.010557, 0.11017}

8 0.3237199 RL VL {0.10123, 0.044336, 0.24541, 0.12796, 0.094825, 0.057874, 0.11255, 0.17972, 0.036097}

9 0.569802694 RL RL {0.00079271, 0.0020787, 0.0050308, 0.00598, 0.0054318, 0.0071128, 0.010104, 0.33297, 0.6305}

10 0.000594206 RL L {0.065542, 0.01169, 0.098833, 0.0062164, 0.098245, 0.04041, 0.25554, 0.3208, 0.10272}

11 0.032400634 RL M {0, 0, 0, 0.000267, 0.0010848, 0, 0.0030628, 0.0021301, 0.99364}

12 0.001569747 RL H {0.33749, 0.046717, 0.015232, 0.30554, 0.15658, 0.0010073, 0.049411, 0.056738, 0.031285}

13 0.349087936 RL RH {0.14313, 0.0086841, 0.15991, 0.011042, 0.31032, 0.10989, 0.13681, 0.0068827, 0.11334}

14 0.009531977 RL VH {0.029807, 0.085941, 0.013389, 0.15317, 0.19785, 0.31303, 0.0078153, 0.19111, 0.0078896}

15 0.060143858 L VL {0.050049, 0.12411, 0.010426, 0.29478, 0.12299, 0.076335, 0.20129, 0.096598, 0.023434}

16 1 L RL {0.0052607, 0.0025745, 0.083712, 0.097321, 0.12056, 0.0045116, 0.0067235, 0.27887, 0.40046}

17 0.142667231 L L {0.014407, 0.11414, 0.0016368, 0.11815, 0.012236, 0.060193, 0.23947, 0.36557, 0.074203}

18 0.081354952 L M {0.13157, 0.052286, 0.0077227, 0.01513, 0.020888, 0.3866, 0.20403, 0.0034161, 0.17836}

19 0.029183296 L H {0.23743, 0.64169, 0.037147, 0.049445, 0.018404, 0.0027982, 0.0025077, 0.0088973, 0.0016894}

20 0.788192356 L RH {0.045688, 0.14098, 0.013851, 0.26247, 0.076148, 0.026352, 0.22905, 0.022671, 0.18279}

21 0.644560024 L VH {0.21415, 0.062333, 0.070602, 0.088775, 0.025262, 0.27236, 0.091476, 0.013664, 0.16138}

22 0.615972989 M VL {0.039148, 0.0107, 0.0080824, 0.016983, 0.11598, 0.051009, 0.335, 0.23488, 0.18822}

23 0.014966941 M RL {0.090879, 0.15404, 0.10957, 0.040033, 0.011336, 0.4126, 0.014906, 0.15882, 0.0078213}

24 0.114503188 M L {0.30202, 0.12944, 0.24657, 0.098925, 0.11354, 0.043025, 0.014214, 0.0063892, 0.045876}

25 0.398891895 M M {0.5326, 0.027558, 0.071872, 0.045141, 0.19132, 0.0020263, 0.027525, 0.039554, 0.062406}

26 7.61169E-05 M H {0.2106, 0.27317, 0.023461, 0.04197, 0.021375, 0.0028051, 0.064145, 0.1319, 0.23058}

27 0.889461496 M RH {0.12443, 0.016554, 0.081213, 0.12473, 0.17322, 0.20419, 0.20283, 0.01781, 0.05501}

28 0.105470958 M VH {0.12453, 0.20933, 0.0069261, 0.071924, 0.052146, 0.29303, 0.025139, 0.024612, 0.19236}

29 0.77626393 H VL {0.067203, 0.18075, 0.16794, 0.062219, 0.13276, 0.1368, 0.12478, 0.051967, 0.075566}

30 0.992519391 H RL {0.0030521, 0.30969, 0.00039447, 0.050446, 0.10656, 0.18908, 0.1269, 0.21353, 0.0003362}

31 0.187562322 H L {0, 0, 0.002528, 0.0033252, 0.10184, 0.0052884, 0.13939, 0.26073, 0.4874}

32 0.646065683 H M {0.40952, 0.31575, 0.0040091, 0.037773, 0.022622, 0.0040326, 0.16204, 0.0038513, 0.040403}

33 0.156381892 H H {0.00081054, 0.0094361, 0.24418, 0.26878, 0.033386, 0.070094, 0.042281, 0.20089, 0.13015}

34 0.366103612 H RH {0.00050531, 0.062234, 0.31206, 0.131, 0.13815, 0.034392, 0.1529, 0.13598, 0.032775}

35 0.297837179 H VH {0.09299, 0.1899, 0.024836, 0.064693, 0.30527, 0.030432, 0.065971, 0.014697, 0.2112}

36 0.708587308 RH VL {0.024263, 0.018946, 0.045449, 0.22304, 0.075586, 0.084306, 0.12995, 0.094788, 0.30367}

37 0.204247808 RH RL {0.11586, 0.15345, 0.01189, 0.16214, 0.010336, 0.10576, 0.0081615, 0.28551, 0.14689}

38 0.37275653 RH L {0.61625, 0.30428, 0.049802, 0.0072397, 0.014736, 0.0029189, 0.0027477, 0, 0.002201}

39 0.996848591 RH M {0.34157, 0.024249, 0.29396, 0.058938, 0.20486, 0.032458, 0.016887, 0.015002, 0.012081}

40 0.36579236 RH H {0.11419, 0.13033, 0.0094586, 0.15198, 0.10677, 0.080684, 0.27026, 0.10252, 0.033802}

41 0.705622324 RH RH {0.19704, 0.12974, 0.01917, 0.21543, 0.010068, 0.0078929, 0.095593, 0.010264, 0.3148}

42 0.322165953 RH VH {0.17864, 0.097687, 0.052442, 0.031136, 0.025114, 0.2601, 0.03801, 0.22456, 0.092318}

43 0.023256976 VH VL {0.012036, 0.087267, 0.032161, 0.18292, 0.079334, 0.18631, 0.15823, 0.10249, 0.15925}

44 0.349244664 VH RL {0.31911, 0.19144, 0.021428, 0.019725, 0.044562, 0.02411, 0.065145, 0.05613, 0.25835}

45 0.986747975 VH L {0.99506, 0.0024281, 0.0020914, 0, 0.0024628, 0, 0, 0, 0}

46 0.64769478 VH M {0.0016223, 0.063919, 0.3821, 0.061863, 0.056823, 0.25212, 0.03316, 0.021439, 0.12695}

47 0.658565611 VH H {0.14947, 0.079303, 0.11347, 0.0073799, 0.057477, 0.20393, 0.15675, 0.15326, 0.07896}

48 0.375137552 VH RH {0.033137, 0.24617, 0.0073748, 0.028994, 0.036864, 0.03905, 0.21558, 0.14237, 0.25046}

49 0.842594229 VH VH {0.026995, 0.016485, 0.15844, 0.05408, 0.091956, 0.084011, 0.021042, 0.19358, 0.35341}
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largest MSE value and the worst optimization effect. The MSE values of
the FMINCON and P-CMA-ES methods are very close, and the P-CMA-ES
method is slightly better than the FMINCON method. Second, in terms of
the length of time for optimization, the DE algorithm and the P-CMA-ES
method take approximately the same amount of time. However,
considering the large MSE of the DE method, finally, the P-CMA-ES
method was chosen as the optimization method for the model
parameters.
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After the optimization algorithm is determined, the initial parameters
of the model are optimized, and the optimized rule weights and belief
degree are shown in Table 5. Where the No column of the table indicates
the number of the rule, and there are 49 rules in the current model. The
second column represents the weight of the current rule. x1 in the
Attribute column represents the reference point for the trend correlation,
and x2 represents the reference point for the residual characteristic.



Table 6. Results of model based on PBRB.

Experimental group 8:2 7:3 6:4 5:5 4:6 3:7

Overall accuracy 90.50% 88.58% 88.52% 88.50% 86.73% 87.26%

Fault diagnosis accuracy 90.04% 89.04% 87.38% 89.05% 84.64% 87.13%

Fault detection rate 100.00% 100.00% 99.67% 100.00% 99.43% 100.00%

Figure 13. Overall Accuracy of different methods.

Figure 14. Fault Diagnosis Accuracy of different methods.

Figure 15. Fault Detection Rate of different methods.
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5.5. Comparison with other methods

In this section, the index defined in Section 5.3 is used to verify the
effectiveness of the model that we proposed, named the PBRB, compared
with some other common fault diagnosis methods for wireless sensor
network nodes, including backpropagation neural networks (BPNN), K-
nearest neighbor (KNN), Extreme Learning Machine (ELM) and Belief
Rule Base without power set (BRB).

First, using the PBRB method proposed in this paper, six fault diag-
nosis experiments are executed according to the division method of
training and test sets defined in the first step of Section 5.3. Each group of
experiments was recorded for overall accuracy, fault diagnosis accuracy
and fault detection rate. These results are calculated by Eq. (25) (26) and
(27) and shown in Table 6.
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Second, frequently used fault diagnosis methods were chosen as
control experiments. where include BPNN, ELM and BRB. The same
experimental process as for the PBRB method was executed with six sets
of experiments for each method, and each group of experiments was
assigned different proportions of training and test sets according to the
hly_10879_gr8_bw.tif - method in Section 5.3. The results of the control
experiments are calculated by Eq. (25) (26) and (27) and shown in Fig-
ures 13, 14, and 15.

6. Results and discussion

According to Figure 13, we concluded that the overall accuracy of the
PBRB method is highest, followed by the BRB method. The overall ac-
curacy of the other diagnostic methods began to decline rapidly after the
2nd group of tests. The factors contributing to the above results are as
follows. First, the PBRBmethod can better describe the local ignorance in
the results compared to the BRB method. Therefore, the overall accuracy
of the PBRB method is slightly higher than that of the BRB method.
Second, the belief degree in the initial parameters of the PBRB and BRB
methods is initialized by expert knowledge, which is closer to the optimal
solution of the diagnosis, and the belief degree represents the size of the
probability, which is more consistent with the mechanism of WSN.
However, the parameters of the other methods are set randomly and aim
to fit nonlinear functions as closely as possible, without mechanistic
support. Therefore, the model is not as effective as the BRB and PBRB
methods for diagnosis. Third, the initial parameters of the PBRB method
and BRB method are set in accordance with the mechanism of the
diagnosed object. Therefore, it is more suitable for small sample training.
However, the other methods fit the approximate nonlinear function by
adjusting the parameters, and when the training samples are small, the
fitting effect will be affected more, which leads to a sharp decrease in the
overall accuracy.

According to Figure 14, PBRB has the highest fault diagnosis accu-
racy, followed by BRBmethod. At the same time, fault diagnosis accuracy
of the BPNN, KNN, and ELM methods showed a significant decrease in
the latter groups of tests. The reasons for the above phenomena are as
follows. First, since the PBRB and BRB methods can better handle the
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ambiguity information in the extracted data features, while the initial
parameters set according to the expert knowledge are consistent with the
WSN mechanism, they can go for better diagnostic results. Second,
because the initial parameters of the BPNN, KNN, and ELM methods are
random, their inference process fits a nonlinear function, so the model
effect will be significantly decreased when the training samples are small.

According to Figure 15, it can be seen that the PBRB method had the
highest fault detection rate, with three 100% detection rates. The
detection rates of the other methods were lower than that of the PBRB
method. Among them, the detection rate of the KNN method showed a
great decrease in the sixth group of experiments. There are several rea-
sons for the above phenomenon. First, the BPNN, KNN, and ELMmethods
have better fault detection rates in the first five groups of experiments,
considering that their overall accuracy and fault detection accuracy show
a significant decrease after the third group, which indicates that they
have a high error detection rate. Second, the PBRB can effectively handle
the information input of fuzzy uncertainty and initial parameter setting
in accordance with the mechanism. Therefore, there is no substantial
decrease in fault diagnosis accuracy with a high detection rate.

Through the above six groups of comparative experiments, it can be
seen that PBRB method has several advantages. Firstly, it can effectively
deal with fuzzy uncertain information and the local ignorance caused by
it. Secondly, the initial parameters of PBRBmodel are set according to the
expert knowledge, which is more consistent with the WSN mechanism.
Finally, the PBRB method can obtain good diagnostic results in the case
of small sample training.

7. Conclusion

Existing commonly used wireless sensor network fault diagnosis
methods have the following problems. First, local ignorance and global
ignorance generated by the similarity of fault data features cannot be
represented, which affects the diagnosis accuracy of the model. Second,
the parameter settings of these methods are random and has no real
physical meaning, and the interpretability of the model is poor. Third,
the data-driven methods require a large amount of data to train the
model to improve the accuracy of the model, and it is difficult to
improve the accuracy of the model when the amount of training data is
small.

Therefore, a fault diagnosis method of WSN node based on PBRB is
proposed. First, local ignorance and global ignorance are represented by
a power set. Second, the initial parameters of the model are determined
by expert knowledge, which is more consistent with the working mech-
anism and reduces the dependence on the number of training samples.
Third, the P-CMA-ES algorithm is selected to optimize the parameters of
the model. In Section 5 of this paper, a case study is constructed to verify
the effectiveness of the model. The results of the case study showed that
compared with other methods, the accuracy of diagnosis is a small in-
crease. At the same time, better diagnostic results can be obtained with
fewer training samples. However, the method proposed in this paper is
still in the initial stage and has the following limitations. When the model
has more prerequisite attributes or more reference points for the attri-
butes, there is the problem of the explosion of the number of rule com-
binations. The following research will be carried out in the following
aspects.

1. The reasoning process of the PBRB model needs to be optimized to
improve the diagnosis accuracy of the model.

2. Some new wireless sensor network node data features need to be
extracted, the fuzziness and uncertainty of data features are reduced,
and the accuracy of node fault diagnosis is improved.

3. Rule eliminationmethods need to be proposed to solve the problem of
rule combination explosion.
13
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