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Production of targeted volatile fatty acid (VFA) composition by fermentation is a
promising approach for upstream and post-stream VFA applications. In the current
study, the bioaugmented mixed microbial culture by Clostridium aceticum was used to
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cheese processing wastewater. The efficiency and stability of the bioaugmentation
strategy were monitored using the production and composition of VFA, the quantity
of C. aceticum (by gPCR), and bacterial community profile (16S rRNA Illlumina
Sequencing). The bioaugmented mixed culture significantly increased acetic acid
concentration in the VFA mixture (from 1170 + 18 to 122 + 9 mgCOD/L) compared
to the control reactor. Furthermore, the total VFA production (from 1254 + 11 to
5493 + 36 mgCOD/L) was also enhanced. Nevertheless, the bioaugmentation could
not shift the propionic acid dominancy in the VFA mixture. The most significant
effect of bioaugmentation on the bacterial community profile was seen in the relative
abundance of the Thermoanaerobacterales Family Ill. Incertae sedis, its relative
abundance increased simultaneously with the gene copy number of C. aceticum during
bioaugmentation. These results suggest that there might be a syntropy between species
of Thermoanaerobacterales Family lll. Incertae sedis and C. aceticum. The cycle analysis
showed that 6 h (instead of 24 h) was adequate retention time to achieve the same
acetic acid and total VFA production efficiency. Biobased acetic acid production is widely
applicable and economically competitive with petroleum-based production, and this
study has the potential to enable a new approach as produced acetic acid dominant
VFA can replace external carbon sources for different processes (such as denitrification)
in WWTPs. In this way, the higher treatment efficiency for WWTPs can be obtained by
recovered substrate from the waste streams that promote a circular economy approach.

Keywords: volatile fatty acid, acetic acid, Clostridium aceticum, bioaugmentation, bacterial community profile,
qPCR, cheese production wastewater, fermentation
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INTRODUCTION

The current size of global chemical production is unknown.
In Europe, it was 330 million tons in 2007 (Eurostat, 2020),
and is increasing by a 7% compound annual growth rate
(UNEP, 2013) to meet the demands for industrial, agricultural,
pharmaceutical applications. On the other hand, the adverse
environmental effects of petroleum based production have
resulted in an increase of CO, emissions from two billion
tons to over 36 billion tons in the last 115 years (Ritchie and
Roser, 2019). Therefore, sustainable, environmentally friendly,
and economically competitive bioproduction is a vital method in
achieving Sustainable Development Goals (United Nations, 2018)
and the targets of the Paris Agreement, (UNFCCC, 2015). One
of the crucial methods of attaining sustainable bioproduction
is transforming traditional wastewater treatment plants into
biorefineries, that use waste streams as feedstock (Dietrich et al.,
2017; Mussatto, 2017).

Several studies for biobased chemical production from waste
streams have been conducted in recent years (Lu et al., 2019;
Xie et al, 2019). Foremost among them, volatile fatty acid
(VFA) is one of the most promising products because of its
versatile usage area in post stream and upstream applications
(Khan et al., 2016b; Atasoy et al, 2018). Nevertheless, low
production efliciency, unstable VFA composition for upstream
and post stream applications, complications in purification, and
separation of the end products, post-process requirements, and
high substrate cost, etc., limit the industrialisation of biobased
VFA production. Various studies have been carried out to
enhance biobased VFA production efficiency by optimizing
operational and environmental conditions (Khan et al., 2016a;
Bhatia and Yang, 2017; Atasoy et al., 2018; Fang et al,
2020). These studies showed that different parameters such
as pH, temperature, retention time, loading rate, reactor type,
and mixing, etc., must be taken into account for efficient
biobased VFA production.

The end product spectrum of VFA is another crucial factor
in post stream and upstream applications. For example, acetic
acid dominant VFA as a carbon source achieved the highest
polyhydroxyalkanoates (PHA) production yield (Ciesielski and
Przybylek, 2014; Kedia et al., 2014) and acetic acid has been used
as an efficient carbon source for denitrification processes (Du
et al,, 2019). Furthermore, every industry has different feedstock
requirements, for example, acetic acid has been extensively used
in the polymer industry for the production of vinyl acetate
monomer (Gunjan and Haresh, 2020). Thus, enhancement of
specific acid concentration in the VFA mixture is preferred
for easier separation/purification of the end product. For these
reasons, the efficient and sustainable production of the desired
acid composition is one of the primary research problems that
need to be addressed in the commercialization of biobased VFA
production. Therefore, the current study aimed to develop acetic
acid dominant VFA mixture production.

Acetic acid comprises a large part of the VFAs market (Bhatia
and Yang, 2017) and has been used as a vinyl acetate monomer,
purified terephthalic acid, acetate esters, acetic anhydride in
several industries such as chemical, food and beverage, inks,

paints, and coatings, etc., (Vidra and Németh, 2018; Allied
Market Research, 2020). The global acetic acid market is
estimated to reach 20.3 million tons by 2024 (Expert Market
Research, 2019). Nevertheless, more than 90% of acetic acid is
produced synthetically (Atasoy et al., 2018). In several wastewater
treatment plants, acetic acid has been used as a carbon source
in the denitrification process (Mielcarek et al., 2018; Du et al,,
2019). However, this acetic acid is mostly bought externally,
which is obtained by petroleum-based methods. Furthermore,
biobased acetic acid is approved and generally recognized as safe
(GRAS) by the United States Food and Drug Administration
(FDA, 1989) and has been preferred as a food additive (Younes
et al., 2020). In this sense, biobased acetic acid production is
essential to achieve sustainable and environmentally friendly
chemical production. Accordingly, the current study aimed to
produce an acetic acid dominant VFA mixture by the application
of a bioaugmentation strategy.

Recent studies suggested that bioaugmentation is a successful
strategy to not only enhance microbial community performance
for obtaining desired products (Tang et al., 2019; Atasoy and
Cetecioglu, 20205 Li et al., 2020; Wu et al., 2020) but also improve
the microbial community and their interactions for better
adaptations to various environmental conditions (Tabatabaei
etal., 2020). Bioaugmentation is a promising approach by adding
microorganisms externally to the existing microbial community
for improving the degradation rate of the contaminants (Cirne
et al., 2006), enhancing the production efficiency of specific
products (Chi et al., 2018; Tabatabaei et al., 2020), reducing the
inhibition effects of some substances in the process (Yang et al.,
2019), which has been used to find a solution for several practical
issues in wastewater treatment plants (Herrero and Stuckey, 2015;
Hong et al, 2020). Yang et al. (2019) investigated the effects
of bioaugmentation with several pure cultures on anaerobic
digestion to improve biogas production via preventing ammonia
inhibition (Yang et al, 2019). In anaerobic digestion, the
microbial community is comprised of undefined mixed culture,
which is robust and easy for operation; nevertheless, monoculture
produces a specific product. Therefore, bioaugmentation is a
promising strategy for developing a new microbial consortium
for strong, higher productivity and open for manipulation to
produce targeted product profiles.

Clostridium aceticum is the first isolated acetogen from
soil, found by Wieringa in 1936 (Kiisel and Drake, 2011). It
is a well-known acetic acid producer bacteria (Braun et al.,
1981). C. aceticum 1is strictly anaerobic and can grow both
autotrophically and heterotopically (Poehlein et al., 2015).
Because of its versatile growth ability, C. aceticum has been
widely used for acetic acid production (Sim et al., 2007; Arslan
et al., 2019; Riegler et al., 2019). In our previous study, we used
C. aceticum for acetic acid production from semi-synthetic milk
processing wastewater fermentation under alkali pH (Atasoy
et al., 2020a). Therefore, C. aceticum is selected as pure culture
in the current study to bioaugment mixed microbial culture for
acetic acid dominant VFA mixture.

Although different types of waste streams have been used
for acetic acid production via fermentation, one of the most
promising waste streams comes from dairy industry, which
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has a massive wastewater production volume (Hansen, 1974)
with a rich carbohydrate, protein, and fat content (Britz
and van Schalkwyk, 2006). Lagoa-Costa et al. (2020) showed
that cheese whey has great potential for VFA production
as a substrate because it includes more than 90% of easily
degradable compounds. Their results stated that acetic acid
concentration in VFA mixture from cheese whey fermentation at
acidogenic pH was almost similar under different retention times,
food/microorganism (F/M) ratios, and sludge retention times
(SRTs), despite the degree of acidification and the acidification
yield was changed under different conditions. On the other hand,
Jankowska et al. (2017) showed the effects of various pH on
VFA composition from cheese whey fermentation: acetic acid
production was around 20% under acidic pH and approximately
40% without pH adjustment (neutral pH), whereas, it was more
than 91% under alkali pH (Jankowska et al, 2017). Atasoy
et al. (2019a) stated that higher acetic acid concentration was
obtained from the monoculture (C. aceticum) (743 mg COD/L)
than mixed culture (541 mg COD/L) from milk processing
wastewater fermentation under alkali pH (Atasoy et al., 2019a).
As previously stated, various waste streams as substrate provide
an excellent opportunity for acetic acid and VFA production
via fermentation. Nevertheless, further studies are required to
increase the production yield for economically competitive and
sustainable VFA production from waste streams.

In the current study, enhancement of acetic acid in VFA
mixture was aimed by bioaugmentation. With this approach,
the produced acetic acid dominant VFA mixture could be
used in different processes (such as denitrification) as a
carbon source to achieve a circular economy approach in
WWTPs. In this regard, the mixed culture is bioaugmented
by C. aceticum. Cheese production wastewater was used as
a substrate to integrate the bioaugmentation strategy into
industrial waste streams. The long term ASBR was operated
under alkali pH to investigate the effects of the bioaugmentation.
The bacterial community profile was analyzed by 16S rRNA
sequencing and C. aceticum was quantified by quantitative real-
time polymerase chain reaction (qPCR). Cycle analysis was
also conducted to investigate the effects of bioaugmentation on
acid composition.

MATERIALS AND METHODS

Substrate and Inoculum

Cheese production wastewater was used as a substrate in all
reactors. The wastewater was taken from the cheese production
industry, which is located in Sweden. The wastewater included
20000 = 60 mg COD/L, 200 mg/L total nitrogen, 18 mg/L
total phosphate, and 11 mg/L orthophosphate. The wastewater
contained 14.26 4+ 6 mg COD/L VFA and 0.22 £ 0.08 mg COD/L
lactic acid. The medium, vitamin, and trace element solutions
were prepared according to the OECD 311 (OECD, 2003) and
used for pure culture incubation. The medium and trace element
solution was autoclaved separately for 30 min at 121°C. The
vitamin solution was also filtered through a membrane filter with
a 0.22 pm pore size filter for sterilization.

Mixed Culture

The granular seed sludge (*3.5 mm with 43% total solids (TS)
and volatile solids (VS) 30%) were used as a mixed culture, which
was collected from the UASB reactor at Hammarby Sjostadsverk
Pilot Plant, Stockholm, Sweden. It was stored at +4°C until
the experiments were set up. The detailed characterization of
granular seed sludge was described by Atasoy et al. (2019b).

Monoculture

The bioaugmentation of mixed culture was applied by
C. aceticum (No. 1496, DSMZ, Germany) to enhance acetic acid
production in mixed culture fermentation. The monoculture
was grown in YPD Liquid Media (VWR Life Science, Sweden)
at 32.5°C in an incubator with 120 rpm mixing for 36 h under
anaerobic conditions. Before bioaugmentation, the monoculture
was cultivated with the substrate to observe and evaluate
their growth and interactions. The growth of monoculture
was observed by using OD600. The pure culture from the
actively growing culture (the OD600 was 2.0) was used for
bioaugmentation. In addition, approximately 50 mL (aliquoted
5 mL) of pure culture was stored in glycerol (50% as volume) at
—80°C for further usage.

Reactor Design and Operation
The AMPTS II System (Bioprocess Control, Sweden) was used
for an anaerobic sequencing batch reactor which had 1400 mL
active volume, 2000 mL total volume. The reactors were operated
by cycling through a sequence of four phases in a single reaction
vessel, the detailed operation of the reactors was presented in
Figure 1. The system was mixed continuously at 120 rpm under
35°C and pH 10 =+ 0.5, which was adjusted using 2 M NaOH.
The reactors were fed in a stepwise manner with different
organic loading rates (OLR) which are explained in detail
in Atasoy et al. (2020a). In steady-state conditions (based
on influent and effluent chemical oxygen demand (COD)
concentrations), the bioaugmentation was applied with a
0.6 F/M ratio. The SRT was 35 days, calculated according to
the VS loss during decanting. The hydraulic retention time
(HRT) was 3.5 days.

Cycle Analysis

The cycle analysis was conducted to observe the bioaugmentation
effects on VFA composition shift during a cycle, which was
carried out after 7 days the bioaugmentation was completed
in each reactor. The samples were taken in each hour during
one cycle (24 h) as well as before (—Ist hour) and after
feeding (0th hour).

Bioaugmentation Strategy

The bioaugmentation strategy was applied as explained by Atasoy
and Cetecioglu (2020). It included three main phases; Phase
A: before bioaugmentation (steady-state conditions based on
COD concentration), Phase B: during bioaugmentation (the
monoculture was added to the bioaugmented reactor in each
cycle for 7 days as 10% of the reactor volume), and Phase C: after
bioaugmentation (the reactors were operated for two sludge ages
to observe the growth of monoculture in mixed culture).
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Analytical Methods

During the whole operation, Total COD (TCOD), soluble
COD (SCOD), organic acids, VFA compositions, and pH were
monitored in both influent and effluent of the reactor. The
COD equivalent of each VFA was calculated to validate the
mass balances derived. The SCOD/TCOD, organic acids, total
Nitrogen, and Phosphorus were measured using LCK 514
COD (100-2000 mg/L), organic acids LCK 365 Organic Acids
(50-2500 mg/L), LCK 238 total Nitrogen (5-40 mg/L TN),
and LCK 348 Phosphate (Orto + total) (0.5-5 mg /LPO4 -
P) (Hach Lange, United States) cuvette tests by Hach Lange
DR 3900 spectrophotometer. Also, TS and VS of the sludge
were measured according to the Standard Methods (APHA
et al, 2012). The concentration and composition of VFA
(formic, acetic, butyric, propionic, valeric, isovaleric, hexanoic,
and heptanoic acids) in the effluents were analyzed by gas
chromatography (GC 6890, Agilent) with a flame ionization
detector, as described in the previous study (Atasoy et al.,
2019b). Biomethane production (BMP) was monitored during

operation, nevertheless, a negligible amount of biomethane was
produced because of alkali pH. Therefore, the biomethane data
did not present in the results. During and after the feeding of
the reactors, the reactors flushed with nitrogen gas to enable
anaerobic conditions.

Bacterial Community Analysis

The bacterial community profile was analyzed by 16S rRNA gene
sequencing. Total genomic DNA from 0.5 g samples with three
replicates were isolated using NucleoSpin Soil Kit, (Macherey-
Nagel, Germany) following the manufacturer’s instructions. The
bacterial 16S rRNA gene was amplified using primers 516F
(5" to 3': TGC CAG CAG CCG CGG TAA) and 806R (5
to 3: GGA CTA CHV GGG TWT CTA AAT) (Caporaso
et al., 2011; Klindworth et al., 2013). The PCR amplification
conditions, purification and quantification of the PCR products,
and preparation of the sequencing libraries were followed by
Atasoy et al. (2019b). The samples were sequenced using the
Mlumina MiSeq platform by Science for Life Laboratory, the
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National Genomics Infrastructure, NGI (Sweden). Biophyton
1.78 was used to merge and quality filter the sequence data as
well as to assign taxonomies at 97% similarity cut-off value (Cock
et al., 2009). Raw sequence data is available at NCBI (project no.
of PRINA667606).

Quantification of Clostridium aceticum

The C. aceticum was quantified by using quantitative real-time
polymerase chain reaction (QPCR) by using total genomic DNA.
For the DNA extraction, 0.5 g samples as triplicate were isolated
by using NucleoSpin Soil Kit, (Macherey-Nagel, Germany). The
concentration of the extracted DNA was measured by fluorimetry
using Qubit dsDNA HS Assay Kit (Invitrogen, Thermo Fisher
Scientific, North America).

Quantitative real-time polymerase chain reaction was
performed by using Applied Biosystems® QuantStudio® 3 Real-
Time PCR System Thermo Fisher Scientific (United States). For
each PCR run with PowerUp SYBR Green Master Mix, Applied
Biosystems (Thermo Fisher Scientific Co., United States)
detection, a melting curve analysis was performed to confirm the
specificity in each reaction tube by the absence of primer-dimers
and other nonspecific products. Reactions for all samples were
shown to have only one melting peak, which indicated a specific
amplification, making it suitable for accurate quantification.
Controls were included for each PCR run during the analyses. At
the end of the reactions, melting curve analyses were applied to
confirm the absence of primer dimers and nonspecific products.

The primer for the quantification of C. aceticum sets targeting
formyltetrahydrofolate synthetase gene (fhs) fthsl (GTW TGG
GCW AAR GGY GGM GAA GQG) and fhs2 (GAR GAY GGW
TTT GAY ATY AC) (Xu et al, 2009). Although fhs gene
encoding 10-formylte- tetrahydrofolate synthetase is used for
quantification of authentic acetogenic bacteria (De Vrieze and
Verstraete, 2016), it was used to quantify C. aceticum in the
current study, since the bioaugmentation was applied by using
a specific strain. Standard curves were obtained for QPCR
constructed from PCR products of C. aceticum by using a 10-fold
dilution series, separately. Standard curves were constructed in
each PCR run, and the copy numbers of the genes in each sample
were interpolated using these standard curves.

Calculation of Products Yield

Acetic acid production yield (Yacetic) (Eq. 1) and total VFA
production yield (Yvra) (Eq. 2) were calculated as the ratio of acid
concentration to the consumed COD concentration (Jankowska
etal., 2017; Atasoy et al., 2020a).

Cacetic
Yacetic = = (1)
Ccopconsumed
Cvra
Yvpa = —— 2
Ccopconsumed

where, Cycetic is the acetic acid concentration (g COD/L) in
the effluent, Cypa is the total VFA concentration (g COD/L)
in the effluent and Ccopconsumed 1S the consumed COD
concentration (g COD/L).

Statistical Analysis

All experiments were conducted in triplicate, the standard
deviation of the average results was calculated. Additionally,
Pearson’s correlation analysis was conducted to identify the
relationship between the quantification of monocultures and each
acid type production. All statistical analysis was performed using
IBM SPSS Statistics, Version 25.0.

RESULTS AND DISCUSSION

The effects of bioaugmentation on both the acetic acid
production efficiency and total VFA production and acid
composition were evaluated, separately. The assessment of acetic
acid production efliciency was performed based on acetic acid
concentration and quantification of C. aceticum, before, during
and after the bioaugmentation. Additionally, the quantification
of C. aceticum was correlated with the concentration of each
acid type to investigate the effects of bioaugmentation regarding
VFA composition from the mixed culture fermentation. Also, the
cycle analysis to observe the shift of acids type during a cycle
(24-h) was conducted.

Acetic Acid Dominant VFA Production

The acetic acid concentration in the bioaugmented and
the control reactor with the gene copy number of the
C. aceticum is represented in Figure 2, regarding before
bioaugmentation (Phase A), during bioaugmentation (Phase B),
and after bioaugmentation (Phase C). The average acetic acid
concentration before bioaugmentation (Phase A) was 88 £ 23 mg
COD/L in the bioaugmented reactor, while it was 96 £ 29 mg
COD/L in the control reactor. During bioaugmentation (Phase
B), the concentration was 287 + 102 mg COD/L in the
bioaugmented reactor, 156 = 43 mg COD/L in the control
reactor. After bioaugmentation was completed, the acetic acid
concentration increased to 836 + 261 mg COD/L in the
bioaugmented reactor, while it was 200 &= 87 mg COD/L in the
control reactor. The results showed that the average acetic acid
production was increased almost four times by bioaugmentation
of C. aceticum. The maximum acetic acid production was
1170 £ 18 mg COD/L at day 63 in the bioaugmented reactor;
it was 122 = 9 mg COD/L in the control reactor. Based on the
maximum acetic acid production, the concentration increased
by almost 10 times in the bioaugmented reactor than in the
control reactor.

The effects of bioaugmentation on acetic acid production
were evaluated based on the literature studies as summarized
in Table 1. For instance, Lagoa-Costa et al. (2020) used
cheese whey for VFA production from acidogenic fermentation
under different retention times and F/M ratios. In their
study, the highest acetic acid concentration was obtained as
3580 mg COD/L from 55000 mg COD/L substrate concentration,
regardless of operational parameters (Lagoa-Costa et al,
2020). In another study, the highest acetic acid concentration
(5500 £ 70 mg COD/L) was obtained by lettuce fermentation
(SCOD content of substrate was 35700 mg COD/L) under
acidic pH (6 & 0.4) from the evaluation of VFA production
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feasibility from agro-industrial waste (cucumber, tomato, and
lettuce) (Greses et al., 2020). Lim et al. (2020) investigated VFA
production from fermentation of palm oil mill effluent under pH
5 (Lim et al., 2020). Their results stated that the highest acetic
acid concentration was obtained as 918 mg COD/L at day 30 from
33400 mg COD/L content of the substrate. She et al. (2020) used
the pretreatment (freezing/thawing) for VFA production from
waste activated sludge. The pretreatment increased the acetic
acid production from 933 + 46 to 1281 £ 57 mg COD/L as
maximum concentration (the SCOD concentration of substrate
was 5852 mg/L) (She et al., 2020). From the view of substrate
concentration in terms of COD content, the bioaugmentation
of C. aceticum enhanced acetic acid production via fermentation
more than 10 times than other studies. Based on the calculation
of acetic acid production yield, it was 0.05 gCOD/ gCOD at
Phase A, 0.125 gCOD/gCOD at Phase B, and 0.181 gCOD/gCOD
at Phase C, respectively in the bioaugmented reactor with the
0.21 gCOD/gCOD (day 63) maximum value. Nonetheless, it was
0.06 & 0.02 g COD/gCOD as an average at the control reactor
in all phases. The bioaugmentation of C. aceticum increased
acetic acid production yield 3.5 times than the control reactor.
Jankowska et al. (2017) stated that the acetic acid production
yield from cheese whey fermentation varied under different pH:
as an average acetic acid production yield was 0.056 gCOD/gCOD
under acidic pH, 0.31 gCOD/gCOD under alkali pH, and
0.164 gCOD/gCOD under neutral pH.

Atasoy et al. (2019a) compared acetic acid production
efficiency from monoculture and mixed culture during
fermentation of milk processing wastewater under alkali

pH. Higher acetic acid concentration was obtained from
C. aceticum as 743 mg COD/L than the mixed culture as 541 mg
COD/L (Atasoy et al., 2019a). The result of the current study
showed that bioaugmentation of mixed culture with C. aceticum
produced almost two times higher acetic acid concentration than
monoculture fermentation. Talabardon et al. (2000) evaluated the
acetic acid production from milk permeate under thermophilic
(60°C) fermentation. Although many thermophilic acetogens
are not able to ferment lactose, they investigated that Clostridium
thermolacticum can convert lactate to acetate, ethanol, CO,
and H, (Talabardon et al., 2000). From this point of view,
our results stated that C. aceticum not only grew with cheese
production wastewater as substrate but also it increased acetic
acid production in mixed culture.

Quantification of Clostridium aceticum
During the Reactor Operation

The efficiency of the bioaugmentation was monitored via acetic
acid production and the adaptation of C. aceticum in the mixed
culture. For this reason, C. aceticum was quantified in every
phase during the operation, as represented in Figure 2. The
results showed that the average gene copy number of C. aceticum
was 2.2 x 106 £ 1.5 x 10 before bioaugmentation (Phase A),
while it increased 4.6 x 10° & 1.1 x 10* during the application
of bioaugmentation (Phase B). After the bioaugmentation was
complete (Phase C), the gene copy number increased 5.3 x 106 +
1.6 x 10> on average. Based on the quantification of C. aceticum,
the average copy gene number increased almost 2.5 times by

Frontiers in Microbiology | www.frontiersin.org 6

September 2021 | Volume 12 | Article 658494


https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles

Atasoy and Cetecioglu

Manipulated Volatile Fatty Acids Production

TABLE 1 | Acetic acid production by mixed microbial culture fermentation under various operational and environmental conditions.

Substrate Operational and environmental Acetic acid production as Acetic acid production as References
conditions concentration yield
Cheese production Mixed culture fermentation under After bioaugmentation (Phase C) After bioaugmentation (Phase This study

wastewater pH 10 at 35°C

Mixed culture fermentation under
pH 5 at 30°C

Mixed culture fermentation under
pH 6 + 0.4 at 25°C

Cheese whey

Agro-industrial waste:
lettuce waste

COD/L
Mixed culture fermentation under
pH 4.8-5.5 at 29°C
Mixed culture fermentation under
pH 6.8 at 35°C (application of

Palm oil mill effluent

Waste activated sludge

836 + 261 mg COD/L as average;
1170 £ 18 mg COD/L as maximum
in the bioaugmented reactor; and
150 £ 80 mg COD/L as average in
the control reactor

The maximum acetic acid
concentration 3580 mg COD/L
The maximum acetic acid
concentration 5500 + 70 mg

The maximum acetic acid
concentration 918 mg COD/L
The maximum acetic acid
concentration 1281 + 57 mg

C) 0.181 gCOD/gCOD as
average; 0.21 gCOD/gCOD as
maximum in the bioaugmented
reactor; and 0.06 £+ 0.02
gCOD/gCOD as average in the
control reactor

0.195 gCOD/gCOD Lagoa-Costa

et al., 2020
0.35 gCOD/gVsS Greses et al.,
2020
0.035 gCOD/gCOD Lim et al., 2020

0.218 gCOD/gCOD She et al., 2020

freezing/thawing pretreatment) COD/L
Cheese whey Mixed culture fermentation under n/a 0.056 gCOD/gCOD under pH Jankowska et al.,
different pH at 35°C 5; 0.164 gCOD/gCOD under 2017
neutral pH; and 0.31
gCOD/gCOD under pH 10
Semi-synthetic milk Mixed culture and pure culture 743 mgCODY/L acetic acid by n/a Atasoy et al.,
processing wastewater fermentations under pH 10 at 35°C C. aceticum; 541 mgCOD/L acetic 2019a

acid by mixed microbial culture

bioaugmentation. The highest gene copy number was obtained
on day 21 as 5.7 x 10° £ 1.2 x 10%. Nevertheless, as stated
before, the highest acetic acid production was obtained at day 63.

Even though the main product of C. aceticum is acetic acid,
there are several other products such as ethanol, butyric acid,
and acetone etc., based on the metabolic pathway type (Jones
et al,, 2016). Arslan et al. (2019) investigated acetic acid and
ethanol production by C. aceticum under acidic and alkali pH
conditions (Arslan et al.,, 2019). Their results showed that C.
aceticum had a fast biomass growth under pH 8 with 1.8 g acetic
acid production in the first 44 h of the fermentation. Nevertheless,
the biomass growth of C. aceticum gradually decreased when the
pH reached acidic conditions. Additionally, they observed that
C. aceticum converted ethanol to acetic acid in the solventogenic
phase as a reverse reaction (Arslan et al, 2019). From the
perspective of their results, the growth of C. aceticum in the mixed
culture might be promoted by the alkali pH. The reverse reaction
ability of C. aceticum could result in higher other acid types of
production at C. aceticum in the bioaugmented reactor than the
control reactor.

Clostridium aceticum has been studied mainly for autotrophic
growth on carbon dioxide, carbon monoxide, and hydrogen
gasses to produce acetic acid (Sim et al., 2007; Riegler et al,
2019). Nevertheless, the results of the current study revealed that
C. aceticum adapted well to the mixed culture under high alkali
pH (10) in carbon-rich substrate fermentation.

Bacterial Community Profile
Besides the quantification of C. aceticum, the bacterial
community profile in the bioaugmented reactor was analyzed.

Analysis of the sequencing data for each phase (Phase A, B,
and C) were presented as phylum and family levels in Figure 3.
The results showed that despite the most dominant phylum,
members were the same in each phase (Figures 3A,C,E). Their
relative abundance varied depending on the bioaugmentation
stage. The most dominant phylum was Bacteroidetes in Phase
A (53 &+ 12%), while its relative abundance decreased to 37 4+ 9
and 38 & 16% in Phase B and in Phase C, respectively. Firmicutes
was the second most dominant phylum member in Phase A
(25 £ 7%). The relative abundance of Firmicutes increased by
bioaugmentation: it was 45 £ 4% in Phase B and 38 + 11% in
Phase C. In this regard, the bioaugmentation effect in each phase
was more distinctly based on the relative abundance of family
members (Figures 3B,D,F).

The bacterial community profile in the control reactor
was presented in our recently published study (Atasoy and
Cetecioglu, 2021). The results showed that the dominant phylum
members changed through the reactor operation in the control
reactor. Firmicutes (30 £ 3%) were dominant at the beginning
of the reactor operation, while Bacteroidetes became dominant
gradually, their relative abundance increased to 35 £ 11 and
49 £ 13% after almost 4 and 21 weeks of reactor operation,
respectively (Atasoy and Cetecioglu, 2021).

The most dominant family members were Flavobacteriaceae
(15 £ 6%) in Phase A; Thermoanaerobacterales Family III.
Incertae sedis (24 £ 6%) in Phase B and Porphyromonadaceae
(14 £ 7%) in Phase C, respectively in the bioaugmented
reactor. On the other hand, the most dominant family members
in the control reactor were Porphyromonadaceae (12 £ 2%),
Coriobacteriaceae (8 £ 3%), and Flavobacteriaceae (8 £ 5%)
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FIGURE 3 | Bacterial community profile for Phase A, Phase B, and Phase C for phylum level (A,C,E) and family level (B,D,F).

at the beginning of the reactor operation. After 21 weeks,
Porphyromonadaceae (27 £ 12%), Bacteroidaceae (17 £+ 4%),
and Veillonellaceae (11 & 3%) became dominant in the control
reactor (Atasoy and Cetecioglu, 2021).

Thermoanaerobacterales Family II1. Incertae sedis belongs to
the Firmicutes phylum, main fermentation products are acetate,
succinate, ethanol and formate (Gries et al., 2019). The results
revealed that the relative abundance of Thermoanaerobacterales
Family III. Incertae sedis increased simultaneously with the gene
copy number of C. aceticum during bioaugmentation. From this
point of view, despite that, there is no study in the literature about
the relations between species of the Thermoanaerobacterales
Family III. Incertae sedis and C. aceticum, the results of the
current study suggest that there might be a syntropy for acetic
acid production.

The relative abundance of Porphyromonadaceae, which
is a family member of Bacteroidetes phylum, increased
by bioaugmentation. Since Porphyromonadaceae is mainly
responsible for propionic acid production (Rios-Covian et al.,
2017), an increase in propionic acid production during and
after bioaugmentation might link with the high abundance
of Porphyromonadaceae. Furthermore, Porphyromonadaceae
(27 £ 12%) was the most dominant family member in
the control reactor at the end of the reactor operation
(Atasoy and Cetecioglu, 2021).

The relative abundance of Rikenellaceae from the phylum of
Bacteroidetes, dramatically decreased by bioaugmentation: it was

12 £ 3% in Phase A; 2 £ 0.7% in Phase B, and 3 £ 1.02%
in Phase C. Apart from the effects of bioaugmentation, the
relative abundance of Rikenellaceae decreased by the retention
time in anaerobic digesters (Nakasaki et al., 2020). Rikenellaceae
is a well-known species in anaerobic digesters (Koo et al., 2019;
Nakasaki et al., 2020; Schwan et al., 2020) and participates in
easily degradable compounds (i.e., glycerol) degradation to acetic
acid in fermentation (Nakasaki et al., 2020). In the current study,
the decreasing relative abundance of Rikenellaceae in Phase B and
Phase C might be caused by either rapid consumption of readily
biodegradable compounds or competing with C. aceticum and
members of the Rikenellaceae family.

Volatile Fatty Acid Composition Shift at
the Bioaugmented Reactor

The main aim of mixed culture bioaugmentation with
C. aceticum was to enhance acetic acid production in the
VFA mixture. As stated before, acetic acid concentration was
increased by bioaugmentation by C. aceticum: the average acetic
acid percentage in the VFA mixture was 8 + 0.2% in Phase
A, 15 £ 4% in Phase B and 22 £ 5% in Phase C (Figure 4A).
Interestingly, the results stated that the dominant acid type,
which was propionic acid, did not change by bioaugmentation.
Although C. aceticum is not responsible for propionic acid
production according to its metabolic pathway (Alexander
and Weuster-Botz, 2017; Arslan et al., 2019), propionic acid
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production was enhanced by bioaugmentation of C. aceticum.
The average percentage propionic acid concentration in the VFA
mixture was 34 £ 23% in Phase A, 55 & 13% in Phase B, and
49 =+ 9% in Phase C. The dominant acid type was propionic acid
in the control reactor during operation (Figure 4B). The acid
composition in the control reactor as an average was: 59 &+ 12%
propionic acid, 13 & 7% acetic acid, 8 £ 3% isovaleric acid,
7 £ 2% butyric acid, and 6 £ 3% isobutyric acid. The results
stated that despite the propionic acid was dominant at both
reactors, the bioaugmentation of C. aceticum suppressed the
propionic acid percentage in the VFA mixture, while it increased
the ratio of acetic acid.

The manipulation of the operational conditions in mixed
culture fermentation can affect the acid composition (Lu et al.,
2011). Nevertheless, control of the manipulation mechanism
depends on thermodynamic and metabolic principles: the
product mixture is specified by thermodynamic constraints and
enzyme availability in pure culture fermentation, while, it is
more complicated in mixed culture fermentation because of the
wide range of metabolic activities and energetic considerations
(Mohd-Zaki et al., 2016). Many studies have been conducted to
identify metabolic flux and energy conversions in mixed culture
fermentation (Lee et al., 2008; Hoelzle et al., 2014; De Vrieze
and Verstraete, 2016; Cetecioglu et al., 2019). Lee et al. (2008)
evaluated H, production from glucose fermentation under
several pH conditions, thermodynamically (Lee et al, 2008).
Based on their calculations, the standard Gibbs Free Energy
(AG®) for acetic acid and propionic acid production via glucose
fermentation under pH 10 stated that acetic acid production has
—1,14KkJ/e™; propionic acid production has —6,78 kJ/e . Though
thermodynamic calculations in fermentation depend on many
parameters such as pH, temperature, substrate composition,
therefore available electron acceptors, etc., the rough estimate
would be an explanation for high propionic acid production
in the bioaugmented reactor since propionic acid production
provides more energy than acetic acid production.

Besides acetic and propionic acid production, other acid type
production during the operation were observed: the average
acid composition during Phase C was composed of 11 + 8%
of iso-valeric acid, 6 £+ 4% of valeric acid, 5 & 4% of iso-
butyric acid, and 5 & 3.2% of butyric acid in addition to acetic
acid and propionic acid. Therefore, the bioaugmentation of
C. aceticum enhanced not only acetic acid production but also
increased propionic acid production indirectly and other acid
productions (Alexander and Weuster-Botz, 2017). Nevertheless,
the bioaugmentation of mixed culture by C. butyricum showed
that the dominant acid type (propionic acid) was shifted
to butyric acid by bioaugmentation (Atasoy and Cetecioglu,
2020). In addition, their results stated that bioaugmentation of
C. butyricum did not only change dominant acid type but also
significantly affect the VFA composition as well: propionic acid
was decreased (from 60 =+ 12 to 30 & 17%) whereas, acetic
(from 12 £ 7 to 20 £ 11%), butyric (from 21 £ 9 to 35 % 4%),
and valeric (from 8 4+ 4 to 15 + 5%) acids were increased
by bioaugmentation (Atasoy and Cetecioglu, 2020). Therefore,
despite pH (Atasoy et al., 2019b; Eryildiz et al., 2020), substrate
type (Jankowska et al., 2017; Ma et al., 2017), and temperature

(Jiang et al., 2013; Vanwonterghem et al., 2015) affected the VFA
composition, the current results showed that type of monoculture
in bioaugmentation is also one of the important parameters to
effect acid type in fermentation.

Total VFA Production at the
Bioaugmented Reactor

The total VFA production in the bioaugmented reactor was
1204 £ 340 mg COD/L (0.67 gCOD/gCOD yield) at Phase A,
1878 + 338 mg COD/L (0.79 gCOD/gCOD yield) at Phase B,
and 4166 £ 988 mg COD/L (0,85 gCOD/gCOD yield) at Phase C.
Also, the highest total VFA production was obtained at day 70th
as 5493 £ 36 mg COD/L with a 0,98 gCOD/gCOD production
yield. In the control reactor, the average total VFA concentration
was 1254 £ 11 mg COD/L with 0.68 & 0.02 gCOD/gCOD yield.
Thus, based on the total VFA concentration in the bioaugmented
and the control reactor, the average concentration increased 3.3
times, whereas the maximum concentration increased 5 times.

The efficiency of VFA production via fermentation depends
on several operational and environmental conditions. Jankowska
et al. (2017) showed the importance of substrate type on
VFA production (Jankowska et al., 2017). Their results stated
that the highest VFA was obtained from microalgae biomass
(0.83 gVFA/gSCOD), maize silage (0.78 gVFA/gSCOD), and
cheese whey (0.71 gVFA/gSCOD), respectively, under initial
alkaline pH conditions. Moretto et al. (2019) investigated the
optimized conditions for VFA production under mesophilic and
thermophilic conditions with different pH values by using a
batch reactor and continuously stirred tank reactor (CSTR) from
urban waste fermentation (Moretto et al., 2019). Their results
showed that the batch reactor and CSTR produced almost the
same VFA concentration with thermal pretreatment under pH
9 (41 = 2 gCOD/L for batch; 39 gCOD/L for CSTR). The
pH did not affect VFA concentration (pH 9: 30 = 2 gCOD/L;
pH 7: 27.5 &+ 2 gCOD/L) as well (Moretto et al,, 2019). In
addition, Atasoy et al. (2019b) confirmed that the pH had
almost no effect on VFA production yield. From the point of
parameters that affect VFA production, the results of the current
study stated that the VFA production depends on the type of
bacterial strain as well as their interactions with each other and
their environment.

The Correlation Analysis Between VFA
Composition and Quantity of C. aceticum

The concentration of each acid type and quantity of C. aceticum
was correlated during fermentation (Phase A, B, and C) to
investigate their mutual effect on each other, the results are shown
in Table 2. The correlation analysis results stated that acetic
acid production positively correlated with total VFA (0.898), iso-
valeric acid (0.866), propionic acid (0.789), and iso-hexanoic acid
(0.720) production at a 0.01 significance level as well as the
gene copy number of C. aceticum (0.553) at 0.05 significance
level. Nevertheless, the bioaugmentation of C. aceticum resulted
in higher propionic acid production in all phases. There was
no correlation between propionic acid production and the
gene copy number of C. aceticum. However, the total VFA
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FIGURE 4 | VFA composition (A) in the C. aceticum bioaugmented reactor at Phase A: before bioaugmentation; Phase B: during bioaugmentation, and Phase C:
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production was correlated (0.490 at 0.05 significance level) with
C. aceticum. Therefore, the correlation analysis of C. aceticum
bioaugmentation reactor data might be explained as C. aceticum
enhanced propionic acid production indirectly.

Cycle Analysis in the Bioaugmented
Reactor

The acid composition was observed during a cycle (24-hour)
to investigate the acid shift. Therefore, the cycle analysis was
conducted after seven days of bioaugmentation application (day
28). The acid shift during a cycle for the bioaugmented reactor is
represented in Figure 5.

The cycle analysis of C. aceticum in the bioaugmented reactor
showed that almost all acid types were increased to the peak
point in the first 5 h, then it was stable until the 9th hour. From
the 13th hour, the production was increased again until at the
end of the cycle. Mainly, acetic acid production in the 1st hour
was 279 £ 17 mg COD/L, then it increased in the first 3 h to
1157 % 29 mg CODY/L. Following this, the production was almost
stable in the next 14 h; afterwards, it reached 1148 + 36 mg
COD/L at the 24th hour. Propionic acid, which was the dominant
acid type during a cycle, started from 1859 + 204 mg COD/L
in the Ist hour. It reached 3465 £+ 108 mg COD/L at the end
of the cycle (24th hour), although the highest propionic acid
concentration was between the 5th and 9th hours.
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TABLE 2 | Correlation coefficients between the quantification of C. aceticum with VFA composition after bioaugmentation.

Acetic Propionic Iso-butyric Butyric Iso-valeric Valeric Iso hexanoic Hexanoic n-heptanic Total C.aceticum
acid acid acid acid acid acid acid acid acid VFA copy number

Acetic acid 1 0.789** 0.312 0.012 0.866** 0.542* 0.720™* 0.424 0.551* 0.898** 0.553*
Propionic acid 0.789** 1 0.226 0.013 0.878** 0.433 0.770** 0.383 0.197 0.968** 0.437
Iso-butyric acid ~ 0.312 0.226 1 0.476* 0.471* —0.095 0.583** —-0.217 0.426 0.361 0.194
Butyric acid 0.012 0.013 0.476* 1 0.073 —0.402 0.403 —0.468* 0.058 0.109 —0.33
Iso-valeric acid 0.866** 0.878** 0.471* 0.073 1 0.489* 0.729** 0.277 0.406 0.943** 0.646**
Valeric acid 0.542* 0.433 —0.095 —0.402 0.489* 1 —0.023 0.837** 0.329 0.483* 0.42
Iso hexanoic 0.720** 0.770** 0.583** 0.403 0.729** —0.023 1 0.01 0.292 0.816** 0.233
acid
Hexanoic acid 0.424 0.383 -0.217 —0.468* 0.277 0.837** 0.01 1 0.151 0.379 0.173
n-heptanoic 0.551* 0.197 0.426 0.058 0.406 0.329 0.292 0.151 1 0.355 0.177
acid
Total VFA 0.898** 0.968** 0.361 0.109 0.943** 0.483* 0.816™* 0.379 0.355 1 0.490*
C. aceticum 0.553* 0.437 0.194 —0.33 0.646** 0.42 0.233 0.173 0.177 0.490* 1

copy number

**Correlation is significant at the 0.01 level (2-tailed); *Correlation is significant at the 0.05 level (2-tailed).

Time (hour)
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FIGURE 5 | VFA composition shift during a cycle analysis at the bioaugmented reactor for 24 h.

The sCOD concentration from the 1st hour to the
24th hour (Figure 5) showed that the sCOD reduction
was negligible. Nevertheless, the reason for the drop in
total VFA production between the 11th and 17th hours
could be explained by CO; production. On the other
hand, as described previously, the metabolic pathway of
C. aceticum has reversible reactions from acetic acid to ethanol
production as well as vice versa (Grimalt-Alemany et al,
2018). Therefore, the results might be explained by chain
elongation (De Groof et al, 2019) from short-chain fatty

acids (VFA) to medium or large chain fatty acids as well as
ethanol or CO;, production after the 16th hour. Following
this, the reversible reactions might have increased VFA
production again from the 14th hour. The cycle analysis
stated that the highest VFA production, as well as acetic acid
concentration, could be obtained in the first 6 h of the cycle,
shortening the retention time or reduction of the reactor
volume. In addition, cycle analysis was also conducted in
the control reactor. The results showed that 12 h would
be sufficient as a cycle duration to achieve a similar VFA
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composition and production efficiency in the control reactor
(Atasoy and Cetecioglu, 2020).

CONCLUSION

In this study, mixed microbial culture was bioaugmented
by C. aceticum to obtain an acetic acid dominant VFA
mixture. Despite the fact that acetic acid concentration was
increased by bioaugmentation (almost 10-fold compared to
the control reactor), the dominance of the propionic acid in
the VFA mixture did not change. However, the effects of the
bioaugmentation indicate certain unknown syntrophic relations
and corresponding metabolic pathways. It is crucial to gain
a deeper understanding of bioaugmentation’s effects on the
microbial community, particularly to establish its profile and the
functions and interactions in the mixed culture. Furthermore, the
identification of metabolic networks for acid production is crucial
for a comprehensive view of bioaugmentation effects.
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