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Abstract

The growing number of next-generation sequencing (NGS) data presents a unique opportu-

nity to study the combined impact of mitochondrial and nuclear-encoded genetic variation in

complex disease. Mitochondrial DNA variants and in particular, heteroplasmic variants, are

critical for determining human disease severity. While there are approaches for obtaining

mitochondrial DNA variants from NGS data, these software do not account for the unique

characteristics of mitochondrial genetics and can be inaccurate even for homoplasmic vari-

ants. We introduce MitoScape, a novel, big-data, software for extracting mitochondrial DNA

sequences from NGS. MitoScape adopts a novel departure from other algorithms by using

machine learning to model the unique characteristics of mitochondrial genetics. We also

employ a novel approach of using rho-zero (mitochondrial DNA-depleted) data to model

nuclear-encoded mitochondrial sequences. We showed that MitoScape produces accurate

heteroplasmy estimates using gold-standard mitochondrial DNA data. We provide a com-

prehensive comparison of the most common tools for obtaining mtDNA variants from NGS

and showed that MitoScape had superior performance to compared tools in every statisti-

cally category we compared, including false positives and false negatives. By applying

MitoScape to common disease examples, we illustrate how MitoScape facilitates important

heteroplasmy-disease association discoveries by expanding upon a reported association

between hypertrophic cardiomyopathy and mitochondrial haplogroup T in men (adjusted p-
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value = 0.003). The improved accuracy of mitochondrial DNA variants produced by MitoS-

cape will be instrumental in diagnosing disease in the context of personalized medicine and

clinical diagnostics.

Author summary

Recent studies have highlighted the importance of mitochondrial DNA variation in both

primary mitochondrial disease and complex, human pathology including COVID-19, and

space-flight stress. The vast amount of existing, next-generation sequencing (NGS) data

can be leveraged to interrogate both nuclear and mitochondrial DNA (mtDNA) sequence

simultaneously, allowing for analysis of the interplay between mitochondrial and nuclear

encoded genes in mitochondrial function. Identifying mtDNA sequence accurately is

complicated by the presence of nuclear encoded mitochondrial sequences (NUMTs),

which are homologous to mtDNA. Current software for analyzing mtDNA from NGS do

not accurately model the unique characteristics of mitochondrial genetics. We introduce

MitoScape, a novel, big-data, software which models mitochondrial genetics through

machine learning to accurately identify mtDNA sequence from NGS data. MitoScape

takes advantage of rho-zero cell data to model the characteristics of NUMTs. We show

that MitoScape produces more accurate heteroplasmy estimates compared to published

software. We provide an example of applying MitoScape in replicating an association

between hypertrophic cardiomyopathy and mitochondrial haplogroup T in men. MitoS-

cape is an important contribution to mitochondrial genomics allowing for accurate

mtDNA variants, and the ability to tailor mtDNA analysis in different population and dis-

ease contexts, which is not available in other software.

This is a PLOS Computational Biology Software paper.

Introduction

Both mitochondrial DNA (mtDNA) and nuclear DNA (nDNA) variants are known to impair

the function and structure of mitochondria, leading to primary mitochondrial disease [1]. But

studies have also implicated mtDNA variants in a myriad of common, complex, human dis-

eases, including cancer, cardiovascular disease, diabetes and neurodegenerative disease [2–6].

More recently, mtDNA variation and damage have been implicated in COVID-19 [7,8] and

even spaceflight [9]. Thus, there is a need to interrogate both mtDNA and nDNA variants

simultaneously in both primary mitochondrial and complex disease. Existing, large-scale,

next-generation sequencing (NGS) datasets are a valuable resource for retrospectively analyz-

ing both mtDNA and nDNA variation in an array of common diseases. Today, such large data-

sets are both abundant and necessary in genetic association studies for overcoming biases and

false negatives due to a lack of statistical power. For example, the Cancer Mitochondrial Atlas

(TCMA) identified signatures of mtDNA variation in different forms of cancer, using data

from thousands of whole genome sequencing (WGS) samples [5].

Due to fundamental differences between Mendelian and mitochondrial genetics, erroneous

interpretation and poor data analysis are common in analyzing mtDNA [10]. Inherent
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complexities of mitochondrial genetics include heteroplasmy, nuclear-encoded mtDNA

sequences (NUMTs), and low-complexity regions. Heteroplasmy is the presence of multiple

copies of mtDNA with differing nucleotide sequences in a single cell or population of cells and

tissues. Heteroplasmy arises since each human nucleated cell typically comprises 100s to 1000s

of mitochondria with each mitochondrion containing 2–8 copies of mtDNA, and each copy

accumulating independent variants. Low and high percentages of mtDNA variants give rise to

low and high heteroplasmy, respectively. While nDNA variants follow the laws of Mendelian

genetics, mtDNA variants abide by the principles of population genetics [6]. The prevailing

hypothesis is that cells are resilient to low levels of mtDNA having genetic defects, and bio-

chemical defects only occur once the levels of defective mtDNA exceed a critical threshold, a

phenomenon termed the threshold effect [11]. Since the level of heteroplasmy appears to be

positively correlated with disease severity, the threshold effect suggests that high percentages

of an mtDNA variant are required to produce a functional effect. But detecting low-level het-

eroplasmy is essential for two reasons: first, since heteroplasmy varies by tissue, low hetero-

plasmy in blood may allude to high heteroplasmy in internal organs; and second, low-level

heteroplasmy variants appear to be widespread and present in all humans, and can be heritable

and functional [12]. Low-level heteroplasmy also increases with age and hence, may contribute

to common late-onset diseases [12]. Consequently, the primary question in mitochondrial

genetics, is not whether or not a variant exists, but at what heteroplasmy level. Thus, accurate

computation of mtDNA heteroplasmy especially at low levels, is crucial for understanding and

diagnosing complex disease.

Contributing to the complexity of obtaining heteroplasmy levels, are NUMTs, which result

from mtDNA fragments that were transferred into the nucleus and incorporated into the

nuclear genome [13]. The formation of NUMTs, termed numtogenesis, is a dynamic, on-

going, and evolutionarily-conserved process [14]. Human NUMTs range from 64–100%

sequence identity to mtDNA and vary in length from approximately 40bp to almost the entire

mtDNA [15]. Reads from standard NGS are shorter than many NUMTs, which means that

using sequence alignments alone to distinguish mtDNA from NUMTs is prone to error. Align-

ment of a NUMT to the mtDNA, results in a false positive and inflation of heteroplasmy. Con-

versely, alignment of mtDNA to NUMTs, results in false negatives and an underestimate of

heteroplasmy. The effects of NUMT variants are often underappreciated in studies of mtDNA

heteroplasmy [16], and the effect of NUMTs on mtDNA heteroplasmy is perceived to be negli-

gible. This assumption is flawed, however, since the human genome contains over 700 germ-

line NUMTs and multiple NUMTs correspond to the same mtDNA region [17].

Current, computational methods for obtaining mtDNA variants from NGS data can be

broadly classified into two categories: 1) those that rely on unique alignments of mtDNA

(unique alignment approach), and 2) those that rely on post-filtering of mtDNA variants

(post-filtering approach). Unique alignment approaches such as MToolBox [18], contend with

NUMTs by discarding sequence reads that do not uniquely map to mtDNA. Such approaches

that solely rely on sequence alignment are likely to result in genuine mtDNA being discarded

and both over- and underestimates of heteroplasmy [6,19,20]. Post-filtering approaches such

as mtDNA-Server [21], limit the influence of NUMTs on mtDNA variants by discarding or

flagging variants that flank published NUMT regions [5]. Post-filtering has several drawbacks

compared to the unique alignment approach. First, filtering can result in potentially important

variants being overlooked. Second, the composition of NUMTs varies depending on the dis-

ease, population and even individual [15,22], making a complete list of NUMT regions

impractical to formulate. Furthermore, the NUMTs can also vary by tissue or cells collected,

meaning that post-filtering is not generalizable to different samples collected. Third, post-fil-

tering of mtDNA variants suspected to be from NUMTs overlooks the fact that mtDNA
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variants are often in high linkage-disequilibrium and cannot be treated independently of each

other. Post-filtering loses information about which variants occur on the same read, an impor-

tant factor in determining legitimate mtDNA variants. Fourth, mtDNA copy number estima-

tion, another important measure of mtDNA variability, is not possible from post-filtering

methods. Fifth, post-filtering does not accommodate retrospective quality-control analysis of

NGS reads. Sixth, from a software engineering perspective, post-filtering systems are tightly

coupled, inflexible to changes in individual components, for example, changes to the align-

ment software, and do not scale or generalize well. Therefore, in summary, accurate mtDNA

variants are only possible from accurate mtDNA alignments. Low complexity regions suffer

similar consequences as NUMTs, as nucleotides that flank these regions are commonly filtered

[21,23].

Published methods for obtaining mtDNA variants are based on some combination of the

aforementioned techniques and assumptions. These approaches rely on rigid and often arbi-

trary thresholds for filtering NUMTs, and do not adequately model the variable nature of

mtDNA. Sequence alignment alone is insufficient to distinguish mtDNA from NUMTs, and

filtering of NUMT and low-complexity regions is restrictive. We present MitoScape, a novel,

machine learning-based software to align mtDNA from NGS data (Fig 1 and Design and

Implementation). MitoScape incorporates two novel advancements: first, we use machine

learning to model and learn the unique characteristics of mtDNA and NUMTs; and second,

we use rho-zero cells for the first time as a source of NUMTs for training the classifier. An

advantage of a machine learning classifier is that mtDNA sequence alignments are assigned

probabilities of being from mtDNA as opposed to being discarded, unknown to the user. Fur-

thermore, we take advantage of the fact that machine learning can learn the salient characteris-

tics of NGS to discriminate mtDNA reads from NUMT reads, without making unnecessary

and arbitrary assumptions. The training datasets can also be altered to accommodate different

populations or diseases, for example. MitoScape is a big-data, cloud-based software system and

is scalable to virtually any number of NGS samples. The main application of MitoScape is to

retrospectively analyze mtDNA variation in existing NGS data in common disease contexts.

We tested MitoScape on a novel, gold-standard benchmark dataset comprised of mtDNA-

enriched data.

Design and implementation

Ethics statement

The IBBC study was approved by “The Committees for the Protection of Human Subjects

(IRB)” at the Children’s Hospital of Philadelphia, under protocol “Genetic Modifiers of

22q11.2 Abnormalities”, IRB 07–005352. Each participant and his or her caregiver, when

appropriate, provided informed written consent/assent to participate prior to recruitment.

Training data

Aligning NGS reads to the human genome reference sequence results in a subset of reads that

align ambiguously to both the mtDNA (revised Cambridge Reference Sequence or rCRS [24])

and the nDNA (Fig 1). Sequence alignments alone cannot discriminate mtDNA from

NUMTs. Rather than rely on restrictive filters that use hard thresholds, we developed a novel

approach using a machine learning classifier to compute the probability that a sequencing read

is from mtDNA. Our classifier automatically learns characteristics of both mtDNA and

NUMT reads to better align mtDNA sequences. We use a positive training set comprised of

authentic mtDNA reads, and a negative training set comprised of NUMT sequences for super-

vised learning. For the negative training set, we sequenced both wild-type and mtDNA-
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Fig 1. Overview of MitoScape algorithm. WGS data containing total DNA includes both mtDNA and NUMTs. After

alignment to the reference genome, some NUMTs will erroneously align to mtDNA, and some mtDNA will

erroneously align to NUMTs. To correct these alignment errors, we use a random forest classifier. The classifier is

trained on positive, mtDNA-enriched alignments, and negative mitochondria-depleted alignments. We also use

linkage disequilibrium r2 scores and common NUMT locations to determine the probability that an ambiguous read is

truly from mtDNA.

https://doi.org/10.1371/journal.pcbi.1009594.g001
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depleted (rho-zero or ρ0) WAL2A lymphoblastoid and 143B osteosarcoma cell lines [25], each

in duplicate, for a total of eight samples. The use of rho-zero cells to model NGS characteristics

of NUMT sequences is a novel departure from other computational approaches for aligning

mtDNA. To obtain NUMT sequences from each sample:

1. Align reads to the rCRS.

2. Re-align the aligned reads from step 1 to the nuclear genome, i.e. all of the human reference

genome except for the rCRS.

3. These aligned reads comprise the negative training set of NUMTs.

For the positive training set, we sequenced ten samples of mtDNA-enriched samples gener-

ated by amplifying mtDNA in two overlapping long-range PCR fragments of about 8,500bp

each from WAL2A cell lines. The resulting amplified DNA sequences were then aligned to the

rCRS to create our positive training set of mtDNA reads.

Feature selection and machine learning classifier

We chose a random forest classifier [26] for resolving ambiguities in aligning reads to the

rCRS, due to this classifier’s simplicity and resistance to overfitting when the number of train-

ing samples is small, as is our case. We also tested gradient boosted trees as a classifier but

found that random forest classifiers had a lower test error. Training of the classifier was per-

formed using k-fold cross-validation whereby 80% of all reads from all samples were chosen at

random for training and the remaining 20% used for validation. An 80%-20% split corre-

sponds to k = 5, with four groups for training and one group for testing. Defined as 2 � (preci-

sion–recall) / (precision + recall), the resulting F1 score from k-fold cross-validation was 0.81.

To train the classifier, we required quantities that are measurable and informative of

whether a read is a NUMT or mtDNA, termed features. Several features were tested for model

selection using the random forest classifier (Table 1). We discuss those features here. Accord-

ing to data in our human mitochondrial genome database, MITOMAP (www.mitomap.org),

approximately 55% of mtDNA loci have been reported as mtDNA variants. Furthermore, the

frequency of each mtDNA variant is dependent on the population of interest. Therefore,

Table 1. Summary of features considered for random forest classifier. Each feature is considered for determining

whether the alignment of the read in SAM format corresponds to mtDNA or a NUMT. The SAM Tag field indicates

the corresponding field in the SAM alignment format specification. Features in bold were used in the final model for

the random forest classifier.

Feature Description SAM

Tag

mtDNA edit

distance

Edit distance between the read and aligned mtDNA sequence. A lower edit distance

indicates that there are fewer differences between the read sequence and the

reference sequence.

NM

Nuclear edit

distance

Edit distance between the read and aligned nuclear genomic sequence. NM

mtDNA

alignments

Number of alignments to the mtDNA sequence NH

Nuclear

alignments

Number of alignments to the nuclear genomic sequences NH

Mapping score Non-normalized mapping quality score XQ

Mapping quality Mapping quality field of SAM entry

MT LD Linkage disequilibrium scores of variants within the paired alignment to mtDNA

NUMT Overlap Percentage of overlap of the paired read with a known, validated NUMT region.

https://doi.org/10.1371/journal.pcbi.1009594.t001
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relying solely on mtDNA variant frequency for filtering is not informative and would lead to

overfitting of the machine learning algorithm. Instead, we developed a novel solution as fol-

lows. We observe that due to the high linkage disequilibrium (LD) among mtDNA variants,

many mtDNA variants are inherited as a haplotype or haplogroup [3]. Therefore, we com-

puted LD r2 scores for all mtDNA variants from 45,494 GenBank hand-curated mtDNA

sequences from MITOMAP, using Plink version 1.9 (atgu.mgh.harvard.edu/plinkseq/). These

LD scores were used to compute the probability of two variants on a paired-end read appear-

ing together on the same mtDNA sequence. A low probability suggests that the read is from a

NUMT rather than mtDNA. To obtain an initial set of variants in each read, we developed a

basic variant caller in MitoScape, which called variants based on the mismatching positions

(MD) tags in the sequence alignment/map format (SAM) fields of an aligned paired-end read.

The composition of NUMTs in a genome is highly variable and depends on population, dis-

ease, tissue, and even individual. Consequently, providing an exhaustive list of NUMTs is

counter-productive and will lead to over-fitting of the classifier. In MitoScape, we allow the

user to select a list of known NUMTs as a parameter to the software. We provide a generic list

of common, experimentally validated NUMTs [17] based on the most common tissue used in

NGS studies: blood. Using an input list of NUMTs, MitoScape calculates the fraction that an

ambiguous paired-end read overlaps with a known NUMT region. This score, referred to as

NUMT overlap (Table 1), is used as a feature. Based on variable or feature importance and

model accuracy (S1 Fig), the final model used mtDNA edit distance, nuclear edit distance,

mtDNA LD scores and NUMT overlap, using 128 trees in the random classifier to obtain the

probability that an NGS read is from mtDNA.

The following is a summary of the workflow for calling mtDNA variants using MitoScape:

1. Align the WGS sample to the mtDNA reference sequence.

2. Re-align the aligned sequences from step 1 to the non-mtDNA reference sequence.

3. Call MitoScape with the outputs from steps 1 and 2 to classify ambiguous mtDNA reads.

4. Call variants on the output mtDNA sequences from step 3.

Several design choices were made to ensure that MitoScape employed a flexible and decou-

pled architecture. Every major software component can be replaced without changing any

code. For example, gsnap [27] has the unique ability to align circular DNA such as the rCRS;

however, another short-read sequence aligner could be used. For calling variants we utilized

Mutect2, which was originally designed for calling cancer variants. All of the software devel-

oped was designed using Scala, a modern, scalable, functional and object-oriented program-

ming language which runs on the Java Virtual Machine (JVM). For processing of the aligned

reads, we used ADAM version 0.32.0 [28,29], a library designed for big-data, genomic analysis

using Apache Spark. For machine learning paradigms, Apache Spark version 3.0.0, a fast, uni-

fied analytics engine for big-data processing was chosen. Apache Spark also improves on many

of the shortcomings of Apache Hadoop, including improved performance and flexibility.

Customization of MitoScape

The performance of a machine learning classifier is dependent on the quality of the training

data. MitoScape was designed to be scalable and flexible, and so it is a trivial matter to add

more or different training data to the model—a feature that is unique to MitoScape and not

present in other tools. For instance, if studying cancer, a training data comprised of cancer

samples would be more appropriate. The majority of NGS studies contain lymphocyte DNA

and hence, the lymphoblastoid cell lines are a suitable model. Similarly, both the list of NUMT
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scores and the linkage disequilibrium scores could be customized by adding more data samples

or, for example, restricting samples based on population or tissue. The performance of MitoS-

cape will improve as more data is generated and analyzed, and the system is designed to

accommodate more data. The ability to select mtDNA variants based on sensitivity and speci-

ficity via the prediction probability parameter of MitoScape is another useful enhancement

that is unavailable in other software.

Results

Benchmark dataset

The current gold standard used in clinical genetic labs for obtaining mtDNA variants is long-

range PCR amplification of mtDNA sequencing followed by NGS and variant calling [30].

Furthermore, since the vast majority of existing NGS is from Illumina paired-end reads, and

MitoScape was designed to obtain mtDNA sequences from NGS, we tested MitoScape using

this approach in the context of a complex disease: schizophrenia. We obtained nine blood sam-

ples from the 22q11IBBC study, which comprised subjects having 22q11.2 deletion syndrome

(22q11DS) and schizophrenia [31]. These nine samples are completely different from the ten

used as in the positive training set, and hence are an appropriate and valid test set. To obtain

gold-standard mtDNA sequences, we amplified mtDNA from these samples in two long-range

overlapping PCR fragments (S1 Supplementary Methods). The purity of amplified sequence

varies with different PCR primers. Hence, we designed, developed and tested novel PCR prim-

ers for human blood cells (S1 Supplementary Methods and S2 and S3 Figs). We then

sequenced the amplicons on an Illumina MiSeq sequencer using twice as long 2x300bp paired-

end reads than the common 2x150bp reads to produce more accurate alignments. The reads

were then aligned to the human genome reference sequence (GRCh38). To maximize accuracy

of alignments, we adopted a stringent, conservative approach in which only reads having at

least 270bp (>90% of the maximum read length) aligning to the rCRS were retained. At least

90% of all sequenced reads (median = 92%) from all nine samples aligned to the GRCh38. Of

all the aligned reads, at least 87% (median = 90%) aligned to the rCRS (S2 and S3 Figs) from

each sample. These resulting sequences represent pure mtDNA sequences, free of NUMTs,

and comprises our “Benchmark” mtDNA sequences (Fig 2). Our benchmark mtDNA

sequences offer many improvements compared to validation samples used in previously pub-

lished software for NGS analysis of human mtDNA, such as mtDNA-Server [21] (S1 Supple-

mentary Methods). Following standard practice for machine learning training, the Benchmark

dataset is a completely different set of samples from the training datasets to reduce bias.

Model testing and evaluation

MitoScape distills mtDNA sequences from NGS data. Our goal is to compare the mtDNA

sequences from MitoScape to the Benchmark mtDNA. We measured the performance of

MitoScape by comparing the heteroplasmy levels of variants from MitoScape mtDNA to the

heteroplasmy levels of the same variants from the Benchmark mtDNA. To obtain variants

from the aligned mtDNA sequences, we selected a cancer variant caller with the ability to han-

dle the polyploid genome of mitochondria: Mutect2 v4.1.9.0 [32], with mitochondrial-mode

set to true, followed by FilterMutectCalls with default options. Only variants from the Bench-

mark mtDNA sequences that passed FilterMutectCalls filtering were considered as part of our

Benchmark mtDNA variant set. Note that this test dataset is completely independent of the

training data, and hence is a legitimate test for performance. We refer to the mtDNA variants

called from the Benchmark mtDNA sequences as the Benchmark variants.
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For the same nine 22q11DS samples used in the Benchmark mtDNA sequences, we per-

formed WGS sequencing. WGS data are not enriched for mtDNA and hence also contain

NUMTs. Therefore, MitoScape is required to discriminate mtDNA from NUMTs (Fig 2). We

obtained mtDNA sequences from the WGS data using MitoScape with a prediction probability

of 0.5 followed by Mutect2 to call variants. It is important to note that we do not use FilterMu-

tectCalls in our tests of MitoScape, so we are not using Mutect2’s filters. We then computed

the difference in heteroplasmy levels between the Benchmark variants and the MitoScape

mtDNA variants at each mtDNA variant locus for each sample. We defined heteroplasmy error
of MitoScape in a given sample and specific mtDNA locus as the heteroplasmy in the Bench-

mark mtDNA variants minus the heteroplasmy computed using MitoScape i.e., heteroplasmy

error = Benchmark heteroplasmy–MitoScape heteroplasmy. Hence, the closer the hetero-

plasmy error is to zero, the more the heteroplasmy results of MitoScape match the Benchmark

heteroplasmy values. Positive heteroplasmy error indicates that the heteroplasmy estimate of a

given variant was higher in the Benchmark variant set than that of the same variant in the

MitoScape variant set. Therefore, increased positive heteroplasmy error suggests an increased

chance of being a false negative. Any variants that were not called in a variant set are regarded

as having heteroplasmy equal to 0.

Overall performance of MitoScape

The Benchmark variants consisted of low-level heteroplasmy variants at almost every locus in

the mtDNA, and thus, was a comprehensive test dataset (Figs 3 and S4). The nine test samples

used here are substantially more than the two samples used for testing in mtDNA-server.

Based on our variant calls we have captured low heteroplasmy variants across the entire

mtDNA genome, thus adding substantially more samples is unlikely to add significantly more

information. Since each test sample requires both mtDNA-enriched and (2x300 Illumina)

WGS data, adding significantly more samples was also cost-prohibitive. MitoScape had hetero-

plasmy error of approximately zero for most variants except for two mtDNA regions at m.303

and m.16184 (Fig 3). Closer inspection reveals that these loci are within low-complexity

regions consisting of homopolymer runs of almost exclusively cytosines. The low read depth

of the variants in these two regions (Fig 3) and the high GC content render these two regions

difficult to sequence and emphasizes that care should be taken when analyzing variants in

these two regions. Due to sampling error, higher levels of heteroplasmy are likely to have

higher variances than lower levels of heteroplasmy. Therefore, to account for differences in

variances, we also scaled the heteroplasmy by p(1-p), where p is the benchmark heteroplasmy

level. We have defined this measure as the scaled heteroplasmy level. The trends in hetero-

plasmy levels are similar between the raw heteroplasmy errors (Fig 3A) and the scaled hetero-

plasmy levels (Fig 3B).

The mean estimated heteroplasmy of variants from MitoScape was within 1% of that com-

puted from the Benchmark. The standard deviation of heteroplasmy error approached zero as

the read depth of the variant increased (Fig 4), emphasizing the importance of read depth in

Fig 2. Outline of testing scheme for MitoScape. Nine different 22q11.2 deletion syndrome (DS) samples were chosen

for performance testing. For each sample, we performed both 1) PCR amplification to enrich mtDNA, and 2) whole

genome sequencing (WGS). MitoScape was applied to the WGS samples to obtain accurate mtDNA alignments.

Variants were then called from both the resulting mtDNA from both mtDNA enrichment (Benchmark mtDNA) and

WGS (test mtDNA) to obtain mtDNA variants. The Benchmark mtDNA variants represent the gold-standard variants

from the nine samples. The test mtDNA variants were then compared to the Benchmark set for evaluation of the

performance of MitoScape. Heteroplasmy values of the test mtDNA variants similar to those of the Benchmark

variants, indicates that MitoScape is doing well, and vice-versa.

https://doi.org/10.1371/journal.pcbi.1009594.g002
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Fig 3. Plot of heteroplasmy error between Benchmark variants and MitoScape variants, for each variant in each sample. The x-axis represents

the position in the rCRS. Benchmark read depth represents the read depth of the variant from the Benchmark dataset. Heteroplasmy error in a

given sample and mtDNA locus is defined as the heteroplasmy value from the Benchmark variant set minus the heteroplasmy computed using

MitoScape. Note that heteroplasmy error is a difference in fractions or percentages, not the percentage error. A. Raw Heteroplasmy Error. B.

Scaled Heteroplasmy Error: Heteroplasmy error is scaled by p(1-p) where p is the benchmark heteroplasmy.

https://doi.org/10.1371/journal.pcbi.1009594.g003
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obtaining accurate heteroplasmy. Moreover, as the read depth of the WGS data increased, the

standard deviation in heteroplasmy error decreased (Fig 4).

Mitochondrial DNA (mtDNA) copy number—defined as the ratio of mtDNA copies to

nDNA copies—potentially impacts the effect of NUMTs on heteroplasmy detection. It is con-

ceivable that the samples with lower mtDNA copy numbers would have greater error in

mtDNA heteroplasmy levels. Hence, we examined the relationship between mtDNA copy

number and MitoScape heteroplasmy error. We computed mtDNA copy number as the ratio

of number of mtDNA reads to nDNA reads in chromosomes 1–22 for each of the nine test

samples. We found no obvious correlation between mtDNA copy number and MitoScape het-

eroplasmy error (S5 Fig). These results are inconclusive, however, likely given the small N—

nine samples—and the low amount of variation in the mtDNA copy number (mean = 90, stan-

dard deviation = 25).

Comparison of MitoScape with standard tools

We compared MitoScape to two common tools for obtaining mtDNA variants from NGS

data: MToolBox [18] and mtDNA-Server [21]. MToolBox is the standard tool used by the

MSeqDR consortium, a large, global consortium for mitochondrial disease research consisting

of a team of over 100 mitochondrial disease experts [33]. MtDNA-Server is a scalable NGS

analysis workflow based on Apache Hadoop, for obtaining variants from human mtDNA data.

Fig 4. Summary statistics of heteroplasmy error for MitoScape, MToolBox, and mtDNA-Server (Mutserve). Heteroplasmy error in each sample and mtDNA locus is

defined as the heteroplasmy value from the Benchmark variant set minus the heteroplasmy computed using MitoScape, MToolBox, or mtDNA-Server. A. Raw

Heteroplasmy Error. B. Scaled Heteroplasmy Error: heteroplasmy error is scaled by p(1-p) where p is the benchmark heteroplasmy.

https://doi.org/10.1371/journal.pcbi.1009594.g004
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MtDNA-Server achieved similar or superior performance to several other computational tools

for mtDNA analysis and ultra-sensitive variant detection [21]. To handle NUMTs, and low-

complexity regions, mtDNA-Server adopts a post-filtering approach of tagging and filtering

variants that are in these regions, or those variants that meet various thresholds. The schemes

used in both MToolBox and mtDNA-Server are representative of all computational methods

used to analyze mtDNA variants. We used MToolBox and the standalone version of mtDNA-

Server—Mutserve v2.0.0rc10—to determine mtDNA variants from the same 22q11.2DS sam-

ples as used in the Benchmark and MitoScape mtDNA variant sets. We then determined the

number of false negatives and false positive variants detected by both MitoScape, MToolBox,

and mtDNA-Server, using the Benchmark variant set as our gold standard. Hence, the hetero-

plasmy values from the Benchmark variant set represents the actual heteroplasmy.

We next compared misclassifications in MitoScape, MToolBox, and mtDNA-Server. We

defined any variant to be a false negative or missing if the heteroplasmy error is less than -0.2.

In other words, we allow for the computed heteroplasmy to be 0.2 less than the Benchmark

estimate of heteroplasmy but no more. For example, if the actual heteroplasmy is 0.5, then the

corresponding heteroplasmy from the tested software would have to be greater than 0.3 for a

match, and any heteroplasmy less than 0.3 is a false negative. We defined a false positive as any

variant having an estimated heteroplasmy level greater than 0.2 plus the actual heteroplasmy.

We used the same criteria for misclassifications to compare MitoScape, MToolBox, Mutect2,

and mtDNA-Server. MitoScape was the most accurate in making heteroplasmic variant calls,

having produced only one misclassification in the nine test samples as compared to 125 in

MToolBox, and 21 in mtDNA-Server (Table 2). MitoScape’s sole misclassification was a false

negative, whereas the other two tools produced significant numbers of both false negatives and

false positives, although mtDNA-Server was more accurate than MToolBox (Table 2 and S6

Fig). Surprisingly, both MToolBox produced errors in calling homoplasmic variants (defined

as having heteroplasmy greater than 50%), with MToolBox and mtDNA-Server having 118

and 14 homoplasmic variant miscalls, respectively. MitoScape produced zero homoplasmic

variant miscalls. The maximum absolute heteroplasmy error represents the maximum error in

a heteroplasmy call made by each software. The minimum value for this measure by definition

is zero in the best case, and one in the worst case. The maximum absolute heteroplasmy error

produced by MitoScape was just 0.36 as compared to 1.0 for both MToolBox and mtDNA-Ser-

ver (Table 2). Thus, MitoScape produced the most accurate heteroplasmy estimates in terms

of every statistical measure amongst the three tools.

We also investigated the relationship between read depth and heteroplasmy error in calling

heteroplasmic variants. We found that on average, the heteroplasmy error for MitoScape was

consistently lower than MToolBox: -0.5 to -1% versus -1 to -4% (Fig 4). Also, the standard

deviation of heteroplasmy error from both MToolBox and mtDNA-Server were greater than

Table 2. Comparison of errors in variant calling among MitoScape, MToolBox, and mtDNA-Server. False negatives are variants that are in the Benchmark mtDNA

variant set but not in the corresponding tool (MitoScape, MToolBox, or mtDNA-Server) mtDNA variant set. Conversely, false positives are not in the Benchmark mtDNA

variant set but were called by the corresponding tool (MitoScape, MToolBox, or mtDNA-Server). A variant is regarded as not detected if the heteroplasmy error exceeds

0.2. The maximum absolute heteroplasmy error ranges from 0.0 (best possible) to 1.0 (worst possible).

Statistic MitoScape MToolBox mtDNA-Server

Number of misclassifications 1 125 21

Number of false positives 0 5 1

Number of false negatives 1 120 20

Number of homoplasmic variant errors 0 118 14

Maximum absolute heteroplasmy error 0.36 1.0 1.0

https://doi.org/10.1371/journal.pcbi.1009594.t002
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that of MitoScape, indicating that MToolBox and mtDNA-Server had variants with much

larger errors in heteroplasmy levels than MitoScape. The differences in errors are most dra-

matic for low read depths, indicating that MitoScape is the best tool for calling variants with

low read depths. These results also suggest that on average, MitoScape can reliably detect

mtDNA variants as low as 0.005–0.01 heteroplasmy. The lower limit on average for

MToolBox is at least three-fold higher at 0.03–0.04. Furthermore, these results demonstrate,

however, that determining an absolute lower limit of detection of heteroplasmy is not possible,

as the detection limit depends on the variant and read depth.

These results remained consistent if we used the scaled heteroplasmy error as opposed to

the raw heteroplasmy error. MitoScape was the only tool for which the scaled heteroplasmy

error was zero regardless of read depth, and the standard deviation of scaled heteroplasmy

error was consistently lower than both MToolBox and Mutserve up to a read depth of approxi-

mately 1200. For read depths greater than 1200, the standard deviation of Mutserve was lower

than both MitoScape and MToolBox. For all tools, however, the standard deviation of the

scaled heteroplasmy error with read depths greater than 1200, is in (-0.001, 0.001) and is effec-

tively zero being below measurement error. Thus, at read depths greater than 1200 the differ-

ence in performance of all tools is negligible. At read depths lower than 1200, MitoScape

performs best in terms of heteroplasmy error, both raw and scaled.

While accurate heteroplasmy level measurement is critical in diagnosing mitochondrial dis-

ease [34], there are other important metrics for evaluating the performance of MitoScape and

related tools. Accordingly, we sought to determine the detection error of benchmark mtDNA

variants. We define detection error as the fraction of mtDNA variants from the benchmark

dataset that can be detected by MitoScape and related software tools at different heteroplasmy

thresholds. We found that MitoScape consistently detected a large fraction of mtDNA variants

than either MToolBox or Mutserve for all minor allele frequency thresholds (Fig 5). Moreover,

MitoScape detected almost 100% of the benchmark mtDNA variants that were above 0.1 het-

eroplasmy. In contrast, MToolBox detected at most half of the mtDNA variants regardless of

heteroplasmy threshold, and Mutserve detected a maximum of 94% of the mtDNA variants.

Application to complex human disease: Hypertrophic cardiomyopathy

We provide an example of applications of MitoScape to complex human disease where variants

from both nuclear DNA and mtDNA are required. Our results have shown that both

MToolBox and Mutserve can lead to erroneous homplasmic mtDNA variant calls (Table 2),

which in turn potentially leads to erroneous mtDNA haplogroup calls. Thus, even for haplogroup

calls, Mitoscape adds value and improved performance. Hypertrophic cardiomyopathy (HCM) is

the most common genetic disorder of the heart, and is characterized by left ventricular hypertro-

phy [35]. HCM is thought to be associated primarily with mutations in 11 or more genes, but

genotype-phenotype associations have been inconsistent suggesting that other genetic or environ-

mental factors are at play. In particular, studies have shown an association between HCM and

mitochondrial haplogroups in European populations [36,37]. We tested the association between

HCM and mitochondrial haplogroups in an American population, using 7,184 whole exome

sequences from the Penn Medicine Biobank (S1 and S2 Tables). These haplogroup calls were

made based on the homoplasmic mtDNA variants calls generated from the MitoScape workflow.

We found that men but not women in haplogroup T were at 3.52 times higher risk for HCM than

those in the most common European haplogroup, R0 (S3 Table, adjusted p-value = 0.003), thus

corroborating reported associations [36]. In contrast to the Castro et al study [36], MitoScape pro-

duces the complete mtDNA sequence as opposed to a small subset of single nucleotide changes,

and hence more precise mitochondrial haplogroup information.
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Summary

We have presented MitoScape, a novel, machine learning-based software to align mtDNA

from NGS data. We have also demonstrated the superior performance of MitoScape compared

to two common tools for obtaining mtDNA variants from NGS. MToolBox and mtDNA-Ser-

ver produce 125- and 21-fold more misclassifications than MitoScape. Importantly, MitoScape

has several additional advantages over post-filtering approaches as described in the Introduc-

tion. First, alignment tools, variant callers and sequencing technology are all likely to improve

over time. Unlike other tools, the design of MitoScape allows for these components to be

changed without modification to the software. For instance, different sequence aligners and

variant callers can be readily used in the MitoScape framework depending on the research

problem. Second, MitoScape has the ability to attenuate the prediction probability to allow for

varying the percentage of false positives and negatives based on the user’s needs—a powerful

feature that is unique to MitoScape. Third, with MitoScape the resulting classified sequence

alignments can be used to determine mtDNA copy number. MtDNA copy number is an

important source of mitochondrial variation and plays an important role in the pathophysiol-

ogy of certain human diseases, especially mtDNA depletion syndromes [38]. Computing

mtDNA copy number is not possible in post-filtering approaches such as mtDNA-Server.

Obviously, an important goal of mitochondrial genomics is to identify mtDNA variation,

including mtDNA copy number, which alter mitochondrial function. MitoScape goes beyond

other software by not only accurately identifying mtDNA sequences, but also modeling

Fig 5. Comparison of the fraction of benchmark variants detected (y-axis) versus the heteroplasmy threshold for detection (x-axis), for the

MitoScape, MToolBox, and Mutserve. The number of heteroplasmic mtDNA variants is shown in parentheses.

https://doi.org/10.1371/journal.pcbi.1009594.g005
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mitochondrial genetics through machine learning. Unique alignment and post-filtering

approaches do not and cannot model salient aspects of mitochondrial biology. MitoScape

takes a novel departure in identifying mtDNA sequence by adopting for the first time, rho-

zero cells modeling NGS sequencing of NUMTs. MitoScape also incorporates a highly flexible

framework allowing for different NUMTs and even training sets to be modified to account for

mtDNA variation in different tissues, diseases and populations. For instance, if we are studying

cancer, using both rho-zero cells and mtDNA-enriched data from cancer cells will provide

more accurate estimates of heteroplasmy that general approaches. This flexible approach

guards against over-fitting and permits analysis in a context-specific manner which is critical

for studying mitochondrial genetics. No other software offers this flexibility. Another advan-

tage of our novel approach is that once new variants are discovered and more training data is

produced, these data can be used to continually update and improve classification. These

design choices allow for obtaining high precision and accurate mtDNA variants from NGS

data, which will be vital in the diagnosis of both primary mitochondrial and complex human

disease.

Availability and future directions

Project name: MitoScape.

Project home page: https://cavatica.sbgenomics.com/public/apps#d3b-bixu/app-

publisher/mitoscape-wf/ including full instructions on how to run MitoScape on the Seven

Bridges Cavatica platform.

Source home page: https://github.com/larryns/MitoScape.

Operating System: Platform independent.

Programming Language: Scala.

Data specific to HCM analysis are available from the Penn Medicine Biobank (https://

pmbb.med.upenn.edu/). All other data, including Benchmark data, are available via authorized

access from https://cavatica.sbgenomics.com/u/cavatica/22q11-deletion-syndrome-project/.

A strength of MitoScape is the availability to add more data including positive (mtDNA-

enriched) data and negative (rho-zero) data. Additional data in the form of NUMT locations

can also be added to improve, adapt or extend MitoScape to specific datasets, including non-

human data.

Supporting information

S1 Supplementary Methods. Details of supplementary methods not covered in main text.

(DOCX)

S1 Fig. Plot of relative feature (variable) importance scores (y-axis) after training of random

forest classifier in MitoScape. Each feature is displayed on the x-axis. Feature importance

scores of all variables sums to one, and the higher the relative variable importance score, the

more important this feature was in the classification procedure.

(TIF)

S2 Fig. Summary of unaligned sequencing reads from nine 22QDS samples to both rCRS

and RSRS.

(TIF)

S3 Fig. Summary of reads aligning to mitochondrial DNA reference (rCRS or RSRS) from

nine 22QDS samples.

(TIF)
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S4 Fig. Summary statistics of number and frequency of heteroplasmic mtDNA variants

identified in the 9 benchmark test data samples.

(TIF)

S5 Fig. Relationship between mitochondrial DNA copy number and heteroplasmy error

from MitoScape. The red diamonds represent the mean heteroplasmy error for a given

mitochondrial copy number. Each blue circle represents the heteroplasmy error and mito-

chondrial copy number for a single variant.

(TIF)

S6 Fig. Summary of false negative misclassifications for MitoScape, MToolBox, and Mut-

serve (mtDNA-Server). The y-axis represents the cumulative number of false negatives where

the corresponding actual heteroplasmy is less than the value on the x-axis. The x-axis repre-

sents minor allele frequency, and therefore, is between 0 and 0.5. Minor allele frequency is

equal to actual heteroplasmy if actual heteroplasmy is< 0.5, and equal to 1-actual hetero-

plasmy, otherwise.

(TIF)

S1 Table. Penn Medicine Biobank Participant Characteristics.

(DOCX)

S2 Table. Haplogroup demographics of subjects used in hypertrophic cardiomyopathy-

mitochondrial haplogroup association from Penn Biobank data.

(DOCX)

S3 Table. Logistic regression analysis with HCM as dependent variable and mitochondrial

haplogroups, age, and the first five principal components of the nuclear genetic variants

PCA analysis as covariates, for men only. Reference haplogroup is R0. Adjustment for multi-

ple testing was done by Bonferroni correction. Logistic regression was performed using R.

(DOCX)
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