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Abstract: As obligatory parasites, plant viruses alter host cellular metabolism. There is a lack of
information on the variability of virus-induced metabolic responses among genetically diverse
plants in a natural context with daily changing conditions. To decipher the metabolic landscape of
plant-virus interactions in a natural setting, twenty-six and ten accessions of Arabidopsis thaliana were
inoculated with Turnip mosaic virus (TuMV), in two field experiments over 2 years. The accessions were
measured for viral accumulation, above-ground biomass, targeted and untargeted metabolic profiles.
The phenotypes of the accessions ranged from susceptibility to resistance. Susceptible and resistant
accessions were shown to have different metabolic routes after inoculation. Susceptible genotypes
accumulate primary and secondary metabolites upon infection, at the cost of hindered growth.
Twenty-one metabolic signatures significantly accumulated in resistant accessions whereas they
maintained their growth as mock-inoculated plants without biomass penalty. Metabolic content was
demonstrated to discriminate and be highly predictive of the susceptibility of inoculated Arabidopsis.
This study is the first to describe the metabolic landscape of plant-virus interactions in a natural
setting and its predictive link to susceptibility. It provides new insights on plant-virus interactions.
In this undomesticated species and in ecologically realistic conditions, growth and resistance are in a
permanent conversation.

Keywords: Arabidopsis thaliana; field conditions; growth; central metabolism; specialized metabolism;
trade-off; Turnip mosaic virus

1. Introduction

Plant health is of primary importance to improve and secure food supply for an
increasing human population. Plant viruses represent the major taxonomic group of
emergent pathogens of plants [1], and viral infection is one of the most alarming biotic
threats due to the impact of climate change on the spatial and temporal distribution of
vectors and viruses [2,3]. Compared to other plant pathogens, viruses are particularly
unpredictable and difficult to combat. In this context, an understanding of the response of
plants to viral infection has great importance in sustainable agricultural solutions.

The genus Potyvirus, to which the turnip mosaic virus (TuMV) belongs, is one of the
largest genera among plant viruses, causing considerable economic damage in vegetable
and fruit crops worldwide [4]. The completion of the viral multiplication and movement
cycle results from a complex interplay between virus- and host-encoded factors that can
have profound impacts on plant fitness. To invade plants, those obligatory parasites
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have developed tactics to reroute host cellular functions and components for their own
benefits. Whatever the outcome of the interaction—compatibility, leading to disease, or
incompatibility, leading to resistance—massive reprogramming of metabolism is observed.
Indeed, as viruses perturb and exploit the host’s carbon [5] and nitrogen [6] metabolism to
make their own compounds, demand for energy within the plant increases to sustain viral
multiplication, systemic spread and defense responses [7].

To date, viral impacts on plant metabolism have been mainly studied in experiments
conducted in controlled conditions and on a limited diversity of host genotypes. In these
conditions, respiration [8], photosynthetic efficiency [9] and carbon partitioning [6] were
shown to be modified. For example, in a susceptible interaction between tobacco and potato
virus Y (PVY), both an increase of soluble carbohydrates and a decrease of photosynthesis
were observed 4 days after inoculation (dai) [10]. These observations were confirmed
by the demonstration that potato leaves exhibit a decrease in sugar levels one day after
PVY infection, with a subsequent increase in both inoculated and systemic leaves a few
days later ([5,11]). Similarly, inoculation of susceptible hosts with cucumber mosaic virus
(CMV) results in a localized reduction in starch accumulation as a consequence of altered
carbohydrate metabolism at viral infection sites [12], although starch accumulates to high
levels in systemically infected leaves [10]. Increases in amino acid content have also been
demonstrated in terms of total or individual amino acids, as well as in polyamines, in
a variety of systems (reviewed in [6,13,14]). Viruses interfere with fatty acids, structural
components of intracellular membranes in which replication can take place [15]. They
also exploit transport systems in order to invade cells in systemic tissues away from the
initial site of infection. This is achieved through an interaction between viral proteins
and components of the long distance transport machinery like phloem proteins [16]. Like
primary metabolism, specialized metabolism is strongly impacted due to its participation
in multiple defense signaling cascades [17]. Numerous compounds, including hormones,
are involved in defense ([18,19]). Among them, glucosinolates and phytoalexins play
significant roles in defense against a range of pathogens [20].

In a compatible interaction, the outcome of viral colonization can include symptoms
such as stunting, chlorosis or necrosis depending on the pathosystem. Incompatible interac-
tions trigger plant resistance and defense signaling that involve the action of antimicrobial
components and specific defense proteins [17]. These defense responses are now widely
acknowledged to involve a trade-off in model plants, with the cost of resistance generating
a negative impact on plant fitness [21–27]. Similarly, in crop plants, high levels of resistance
are often associated with yield penalties [28,29].

While extremely informative, these studies performed under controlled optimal con-
ditions reduce environmental effects and increase the likelihood of finding strong relation-
ships between metabolite levels variations [30]. Thereby, it obscures the complexity and
the variability of metabolic responses among genetically diverse plants in a natural context
where they have to face multiple stresses. Even in main crop species, large-scale metabolic
profiling of field-grown populations of genetically diverse accessions remains rare [31–33].

In Arabidopsis thaliana, metabolite profiling of large populations of natural accessions
or inbred lines has allowed the identification of descriptor sets of metabolites that are
predictive of biomass [32,34,35] and physiological traits such as freezing tolerance [36] and
herbivore resistance [37]. But, none of these studies addressed the growth and metabolic
response to biotic stress in a changing environment.

Here, following the modern standards of ecological genomics [38], we aimed at
improving our understanding of the virus-induced reprogramming of metabolism through
deciphering variation in the metabolic landscape of the natural Arabidopsis thaliana/turnip
mosaic virus (TuMV) pathosystem in growth conditions close to environmental reality.
To do so, we set up two experiments in the field and explored targeted and untargeted
metabolic profiles on 26 accessions and 10 accessions, in 2015 and 2017 respectively. These
accessions spanned responses ranging from high susceptibility to full resistance. This work
aimed to (i) decipher the trade-offs among responses to TuMV, metabolism and growth
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in field conditions in contrasted Arabidopsis accessions, (ii) characterize the metabolic
disturbances and its kinetics for a contrasted set of accessions, and (iii) identify discriminant
metabolic biomarkers of susceptibility/resistance to viruses in A. thaliana.

2. Results
2.1. In the Field, Susceptible Accessions Accumulate PRIMARY METABolites upon Infection, at
the Cost of Hindered Growth, Whereas Resistant Accessions Grow with Limited Changes

To analyze the relationship between infection, growth and central metabolism, a set of
26 accessions [39] were mock and TuMV-inoculated in a field experiment in 2015. Thirteen
days after inoculation (dai), the viral load of the samples, their above-ground dry biomass
and their composition for 10 metabolites features were evaluated.

The quantification of the viral load by ELISA confirmed that eight genotypes out
of twenty-six TuMV-inoculated were considered fully resistant as no virus was detected
(Table 1). The remaining eighteen accessions fell within a range of susceptibility, OD from
0.258 to 0.66 (Table 1).

Table 1. List of the A. thaliana accessions with their geographic position and their susceptible status to TuMV infection at
13 dai confirmed by OD values and its SD in the 2015 field experiment.

Genotype ID 1 Latitude Longitude Country OD
Means

OD-
Standard

Deviations

Susceptibility
Groups 2

Bay-0 6899 49 11 GER 0.004 0.0155 R
Mar2-3 159 47.35 3.93333 FRA 0.005 0.0087 R
MIB-39 190 47.3833 5.31667 FRA 0.007 0.0155 R
Petergof 7296 59 29 RUS 0.011 0.0252 R

Ra-0 6958 46 3.3 FRA 0.003 0.0072 R
Rak-2 8365 49 16 CZE 0.006 0.00204 R

TOU-A1-69 335 46.6667 4.11667 FRA 0.015 0.0224 R
TOU-A1-84 348 46.6667 4.11667 FRA 0.007 0.0204 R

Edi-0 6914 56 −3 UK 0.258 0.169 S
Bg-2 6709 47.6479 −122.305 USA 0.324 0.211 S

MIB-62 206 47.3833 5.31667 FRA 0.346 0.2084 S
Gu-0 6922 50.3 8 GER 0.389 0.272 S
Col-0 6909 38.3 −92.3 USA 0.391 0.215 S
Bu-0 8271 50.5 9.5 GER 0.4 0.203 S

TOU-A1-125 291 46.6667 4.11667 FRA 0.403 0.147 S
TOU-L-5 389 46.6667 4.11667 FRA 0.407 0.19 S
MIB-60 204 47.3833 5.31667 FRA 0.425 0.145 S
MIB-28 178 47.3833 5.31667 FRA 0.428 0.242 S

Hs-0 8310 52.24 9.44 GER 0.46 0.212 S
Mt-0 6939 32.34 22.46 LIB 0.467 0.2 S

MIB-20 171 47.3833 5.31667 FRA 0.525 0.294 S
MIB-67 210 47.3833 5.31667 FRA 0.549 0.249 S

TOU-A1-73 338 46.6667 4.11667 FRA 0.55 0.261 S
CUR-10 79 45 1.75 FRA 0.576 0.147 S

Mz-0 6940 50.3 8.3 GER 0.59 0.263 S
Bs-1 8270 47.5 7.5 SUI 0.66 0.339 S

1 ID according to [40]. 2 In 2015, categories have been defined according to the healthy control Col-0 which mean OD value was 0.088
(SD 0.01063). Infected genotypes with mean OD ≤ 0.088 were defined as resistant (R). Infected genotypes with mean OD > 2.5*0.088 were
defined as susceptible [41].

Aboveground dry biomass was measured on mock-inoculated and TuMV-inoculated
plants. Aboveground dry biomass was significantly lower for the 18 inoculated susceptible
accessions compared to those susceptible accessions when treated only with a mock solu-
tion, indicating that infection led to a decrease in the growth of susceptible plants. There
was no significant difference between the aboveground dry biomass of the eight resistant
inoculated accessions compared to their mock-inoculated counterparts (Kruskal-Wallis test;
Figure 1).
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Figure 1. Above ground Dry biomass for mock-inoculated and TuMV-inoculated susceptible and
resistant accessions measured at 13 days after inoculation (dai) on 26 accessions in the ‘2015′ field
experiment. Statistical comparisons (Kruskal-Wallis test) on dry biomass were performed between all
categories of accessions (N = 21 for Mock and inoculated susceptible categories; N = 8 for mock and
inoculated resistant categories). Plots with the same letter are not significantly different at p = 0.05.

Ten key metabolic features, amino acids, proteins, glutamate, malate, fumarate,
starch, glucose, fructose, sucrose and chlorophyll a, were measured in 2015 for each
accession. Thirteen days after inoculation, analysis of the Spearman correlation pattern
between dry biomass, OD and the content in the different metabolites features (Table S1
in Supplementary Materials) showed that that viral accumulation was negatively corre-
lated with dry aboveground biomass. In mock-inoculated samples, a significant positive
correlation was found between malate, fumarate, starch, glucose, fructose, sucrose and
aboveground dry biomass whereas a negative significant correlation was found with amino
acids, proteins, glutamate (Table S1). Compared to mock-inoculated plants, the remod-
elling of metabolic contents in TuMV-inoculated plants was shown as biomass appeared
negatively correlated with nine out of 10 of the measured metabolites features (all except
chlorophyll a). Whereas, on the contrary, the viral load appears positively correlated to
these same nine metabolites’ (amino acids, proteins, glutamate, malate, fumarate, starch,
glucose, fructose and sucrose) features (Table S1).

A detailed analysis showed that the 18 TuMV-inoculated susceptible accessions exhib-
ited a significant accumulation of eight out of 10 central metabolites (i.e., amino acids, glu-
tamate, malate, fumarate, starch, glucose, fructose and sucrose), when compared to either
the eight resistant inoculated accessions or the set of mock inoculated controls (Figure 2).
The chlorophyll content in TuMV-inoculated susceptible and resistant accessions was not
significantly reduced, confirming that sampling occurred prior to macroscopic symptoms
of chlorosis.

TuMV inoculated susceptible accessions are represented by pink boxplot (light pink
for Mock-inoculated and dark pink for TuMV inoculated) and resistant accessions by green
boxplots (light green for Mock-inoculated and dark green for TuMV inoculated). Statistical
analyzes were performed on each of the 10 metabolites features (according to the normality
of the data, ANOVA or Kruskall-Wallis test was performed). For each metabolite, plots
with the same letter are not significantly different at p = 0.05.
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The TuMV-inoculated susceptible genotypes therefore accumulate the majority of the
measured metabolites features without being used for their growth, whereas, in addition
to maintaining their growth, the inoculated resistant accessions exhibited similar amounts
of metabolites features relative to those observed for mock-inoculated controls.

2.2. Metabolic Content Discriminates Inoculated A. thaliana Susceptible and Resistant Accessions

Principal component analysis (PCA) performed with the 10 primary metabolic traits
measured at 13 days after inoculation on mock-inoculated and TuMV-inoculated accessions
showed that targeted metabolism does not distinguish between susceptible and resistant
genotypes when mock- inoculated (Figure 3a).
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Score plots of susceptible accessions are in pink, light pink for mock-inoculated, dark pink for TuMV-inoculated. The
confidence ellipses around the centroid of individuals are represented. (b) Variable correlation graph. Dry biomass was
considered as explanatory traits (in blue on the variable factor map). Chla = Chlorophyll a.
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While metabolic change lead to a clear differentiation between susceptible and resistant
accessions that have been inoculated with TuMV (Figure 3a), the first axe of the PCA discrimi-
nating between susceptible and resistant accessions (46.67% of the explained variance).

The contribution of primary metabolites also differed between mock-inoculated plants
and TuMV-inoculated plants with clear contribution of most of the primary metabolites to
response in susceptible genotypes (Figure 3b).

2.3. Metabolic Differentiation between Mock-Inoculated and Tumv-Inoculated Genotypes Appears
as Early as 5 Days after Inoculation

In order to specify the kinetics of setting up the metabolic differentiation between
susceptible and resistant genotypes, TuMV-inoculated and mock, a field experiment was
conducted in 2017. Five resistant genotypes and five susceptible genotypes from the 2015
set were mock-inoculated or inoculated with TuMV. The plants were collected on the day
of inoculation (T0) and at 5, 7, 9 and 13 days after inoculation. The viral load was measured
at each sampling time. The optical density data taken at 13 dai (Table S2) confirm the
classification between susceptible and resistant observed in 2015 for these genotypes.

The PCA carried out using the measurement data of the 10 central metabolites show
that at T0, in a non-inoculated situation, the metabolic composition does not allow to dis-
tinguish between susceptible and resistant genotypes (Figure 4 T0a). Sugars, fumarate and
malate appear positively correlated and clearly participate in the biomass (Figure 4 T0b).

Five days after inoculation, a clear differentiation appears between TuMV-inoculated
genotypes and mock-inoculated genotypes, independently of the resistance or susceptibility
status (Figure 4 T5a). At 7 and 9 days after inoculation, the pattern appears less clear but
the mock-inoculated genotypes, resistant or susceptible, still remain grouped (Figure 4 T7
and T9a) whereas susceptible and resistant genotypes TuMV-inoculated have a different
metabolic time course. Thirteen days after inoculation, and as already observed in 2015,
the clear differentiation, in terms of metabolic composition, between inoculated resistant
genotypes and inoculated susceptible genotypes is in place (Figure 4 T13a).

2.4. The Identification of Metabolic Predictors Reveals 21 Metabolic Signatures Significantly
Accumulated in Resistant Accessions

To analyze the pattern of infection and its relationship to a larger set of metabolites,
including specialized metabolites, we conducted an untargeted metabolic analysis by
UHPLC-LTQ Orbitrap on the set of 26 accessions showing a contrasting response to TuMV
in the 2015 field experiment. This analysis captured a total of 505 workable metabolic
signatures (m/z), corresponding primarily to non-polar specialized metabolites.

As previously observed with targeted central metabolism, there was no difference
between susceptible and resistant accessions when mock-inoculated (Figure S1a). In
contrast, when inoculated with TuMV, principal component analysis on the metabolic
variables clearly separated two groups of accessions according to their susceptibility to the
TuMV (Figure S1b).

An orthogonal partial least squares-discriminant analysis (OPLS-DA) was then per-
formed to maximize the variation between the two groups of accessions, mock and TuMV-
inoculated, and determine the most significant variables contributing to this variation, i.e.,
variable importance in the projection (VIPs). OPLS-DA analysis was carried out using the
central and specialized metabolite data. The quality of the model was validated by the Q2

parameter (goodness-of-prediction parameter) with a value of 0.846, thereby showing high
predictive capabilities (Figure S2).
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The OPLS-DA analysis performed between the mock- and TuMV-inoculated samples
revealed 63 common discriminant metabolic variables (Table S3), most of which (58/63)
accumulated in TuMV-inoculated samples and particularly in susceptible accessions (54/58;
Table S3). It is worth noting that four VIPs (433;700, 361;491, 512;491 and 64;395) are
significantly found in resistant accessions.

To examine which metabolic variables strongly contribute to the OPLS-DA model in
TuMV-inoculated susceptible and resistant accessions, variables were ranked according to
their VIP values (Table 2).
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Table 2. List of the variable importance in the projection (VIPs) identify by OPLS-DA analysis
performed on TuMV-inoculated resistant and susceptible twenty-six accessions in 2015. For each VIP,
comparisons between resistant (R) and susceptible (S) accessions were done. The fold change was
calculated for each VIP. Primary metabolites are light-grey highlighted. Metabolites that accumulate
significantly more in resistant accessions are at the bottom of the table.

VIP
OPLS-DA 1 VIP Values m/z 2 rt 3

Resistant vs.
Susceptible

Metabolic Contents
Fold Change

Sucrose 2.213 NA NA S > R *** 4 2.89

303;463 1.973 303.133 463.27 S > R *** 3.69

356;452 1.958 356.12 452.352 S > R *** 2.17

219;311 1.94 219.101 311.134 S > R *** 4.81

533;392 1.926 533.155 391.765 S > R *** 4.98

332;430 1.898 332.132 430.481 S > R *** 3.78

116;100 1.867 116.07 100.163 S > R *** 6.05

205;242 1.837 205.097 242.121 S > R *** 2.51

103;242 1.799 103.041 242.089 S > R *** 2.86

302;506 1.796 302.102 506.314 S > R *** 5.76

255;544 1.769 255.112 543.799 S > R *** 9.96

221;216 1.748 221.092 215.744 S > R *** 3.13

385;210 1.738 385.106 210.083 S > R *** 45.77

Glucose 1.734 NA NA S > R *** 2.49

175;402 1.713 175.148 401.831 S > R *** 3.77

903;319 1.71 903.277 318.889 S > R *** 8.48

503;391 1.695 503.19 391.457 S > R *** 2.51

343;345 1.693 343.117 345.319 S > R *** 2.08

Fructose 1.683 NA NA S > R *** 2.49

474;107 1.675 474.218 107.298 S > R *** 2.68

315;448 1.674 315.133 447.821 S > R *** 2.39

209;488 1.669 209.153 488.35 S > R *** 2.7

209;414 1.663 209.153 413.756 S > R *** 2.14

212;284 1.657 211.559 283.891 S > R *** 1.56

543;99 1.645 543.132 98.5221 S > R *** 5.84

124;346 1.638 124.075 346.354 S > R *** 1.92

370;302 1.61 370.149 301.519 S > R *** 28.49

203;204 1.591 203.084 203.918 S > R *** 8.24

Glutamate 1.59 NA NA S > R *** 1.47

430;333 1.581 430.17 332.878 S > R *** 3.3

331;329 1.578 331.117 328.817 S > R *** 1.58

226;406 1.554 226.107 406.369 S > R *** 7.97

151;359 1.549 151.075 359.377 S > R *** 1.78

449;319 1.545 449.106 318.949 S > R *** 1.75

757;319 1.537 757.217 319.13 S > R *** 1.69

270;587 1.534 270.133 587.091 S > R *** 43.68

315;370 1.524 315.133 370.476 S > R *** 3.93
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Table 2. Cont.

VIP
OPLS-DA 1 VIP Values m/z 2 rt 3

Resistant vs.
Susceptible

Metabolic Contents
Fold Change

162;402 1.511 162.055 402.281 S > R *** 1.9

221;230 1.503 221.121 230.244 S > R *** 1.74

394;517 1.49 394.204 517.072 S > R *** 17.28

302;407 1.486 302.101 406.697 S > R *** 7.16

482;101 1.475 482.107 101.274 S > R *** 1.79

Amino Acids 1.462 NA NA S > R *** 1.88

355;306 1.451 355.102 306.288 S > R *** 3.29

191;416 1.448 191.143 416.467 S > R *** 2.49

193;324 1.445 193.125 323.817 S > R *** 1.46

149;360 1.437 149.096 360.18 S > R *** 1.66

642;445 1.435 642.254 445.078 S > R *** 2

321;760 1.419 321.114 760.442 S > R *** 3.7

182;466 1.415 182.081 465.796 S > R *** 4.21

305;210 1.408 305.086 210.166 S > R *** 2.24

348;319 1.396 348.274 318.945 S > R *** 3.61

164;496 1.375 164.07 496.307 S > R *** 2.22

165;424 1.372 165.127 424.14 S > R *** 1.54

317;464 1.37 317.101 463.65 S > R *** 1.25

191;363 1.36 191.07 362.643 S > R *** 2.76

219;486 1.34 219.101 486.477 S > R *** 2.7

105;700 1.33 105.069 700.287 S > R *** 1.59

367;358 1.323 367.101 358.491 S > R *** 1.69

201;344 1.319 201.054 343.832 S > R *** 1.71

189;325 1.312 189.127 324.754 S > R *** 1.74

146;242 1.311 146.06 241.843 S > R *** 2.31

133;296 1.307 133.064 295.68 S > R *** 2.65

179;604 1.306 179.106 603.961 S > R *** 1.64

374;322 1.305 374.144 321.703 S > R *** 1.77

373;453 1.29 373.127 452.6 S > R *** 1.81

302;382 1.282 302.041 381.707 S > R *** 1.54

161;442 1.274 161.096 441.797 S > R *** 1.79

164;375 1.269 164.07 375.012 S > R *** 2.95

109;359 1.267 109.064 359.34 S > R *** 1.92

386;278 1.256 386.22 277.549 S > R *** 3.48

391;774 1.255 391.245 774.477 S > R *** 2.29

409;491 1.251 409.169 490.545 S > R *** 27.12

291;259 1.241 291.181 259.063 S > R *** 4.78

192;462 1.227 192.041 462.37 S > R *** 1.27

107;370 1.219 107.085 370.001 S > R *** 1.39

420;276 1.217 419.695 275.797 S > R *** 1.77

193;373 1.189 193.086 373.266 S > R *** 2.04
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Table 2. Cont.

VIP
OPLS-DA 1 VIP Values m/z 2 rt 3

Resistant vs.
Susceptible

Metabolic Contents
Fold Change

379;402 1.179 379.095 402.311 S > R *** 2.88

181;464 1.176 181.086 463.916 S > R *** 1.42

181;328 1.17 181.086 327.894 S > R *** 1.68

80;395 1.168 80.049 395.289 S > R *** 1.57

373;344 1.16 373.127 343.531 S > R *** 1.54

627;299 1.156 627.155 299.369 S > R *** 2.8

96;389 1.155 96.08 389.004 S > R *** 1.74

195;453 1.154 195.065 452.614 S > R *** 1.55

79;396 1.152 79.041 395.754 S > R *** 1.52

105;327 1.15 105.069 326.898 S > R *** 1.72

210;465 1.147 210.112 464.799 S > R *** 2.44

335;506 1.143 335.127 506.441 S > R *** 3.71

86;126 1.114 86.096 126.246 S > R *** 2.09

396;257 1.106 396.185 256.51 S > R *** 1.43

611;354 1.102 611.158 353.603 S > R *** 1.34

178;191 1.102 178.089 191.013 S > R *** 3.43

169;496 1.101 169.049 495.5 S > R *** 3.67

162;249 1.098 162.055 249.101 S > R *** 1.5

396;348 1.092 396.115 347.739 S > R *** 4.14

103;389 1.086 103.054 389.444 S > R *** 2

521;325 1.084 521.201 325.328 S > R *** 2.52

133;126 1.072 133.105 126.347 S > R ** 2.32

209;426 1.071 209.153 425.939 S > R *** 1.98

162;357 1.069 162.055 356.879 S > R *** 1.74

201;451 1.063 201.054 451.123 S > R *** 1.75

527;460 1.056 527.103 460.095 S > R *** 2.02

Fumarate 1.054 NA NA S > R *** 1.38

393;416 1.052 393.188 415.816 S > R *** 1.71

212;774 1.052 212.094 774.047 S > R *** 2.76

402;420 1.048 402.162 419.597 S > R ** 1.87

404;388 1.038 404.227 388.155 S > R ** 1.31

464;367 1.035 464.248 366.989 S > R *** 1.97

225;371 1.034 225.148 370.798 S > R *** 1.57

103;284 1.033 103.054 283.823 S > R *** 3.26

227;789 1.023 227.163 788.506 S > R *** 1.61

222;216 1.016 221.602 215.822 S > R ** 1.33

367;342 1.011 367.153 341.908 S > R *** 1.96

302;463 1.006 302.102 463.078 S > R *** 1.49

309;325 1.003 309.116 324.659 S > R ** 1.44

244;325 1.001 244.096 324.677 S > R ** 1.41



Metabolites 2021, 11, 230 11 of 20

Table 2. Cont.

VIP
OPLS-DA 1 VIP Values m/z 2 rt 3

Resistant vs.
Susceptible

Metabolic Contents
Fold Change

351;184 2.047 351.006 184.222 R > S *** 2.88

432;184 1.831 431.971 183.776 R > S *** 3.44

137;131 1.618 136.931 131.31 R > S *** 1.39

512;491 1.563 512.127 491.367 R > S *** 2.54

394;108 1.548 394.2 108.419 R > S *** 1.93

337;573 1.51 337.292 572.917 R > S *** 1.64

299;181 1.396 299.098 181.363 R > S *** 22.3

181;139 1.293 181.053 138.934 R > S *** 1.94

324;184 1.263 323.989 183.797 R > S *** 106.8

280;184 1.229 280.084 183.768 R > S *** 5.9

361;491 1.218 361.092 490.564 R > S *** 2.07

155;132 1.141 154.941 131.541 R > S *** 1.33

433;482 1.114 433.112 481.588 R > S *** 244

433;700 1.109 433.241 700.261 R > S *** 1.82

64;395 1.091 63.934 395.047 R > S *** 3.6

256;668 1.089 256.08 667.874 R > S *** 2.12

460;740 1.076 460.269 740.005 R > S ** 1.42

449;442 1.069 449.107 442.311 R > S *** 6.17

244;130 1.049 243.942 130.167 R > S *** 1.35

347;240 1.039 347.159 239.659 R > S ** 1.48

86;184 1.015 86.059 184.278 R > S *** 1.87
1 When undetermined, VIP are identified through mz/rt values. VIP values are classified in decreasing order,
2 mass to charge ratio, 3 retention time. 4 The significance was assessed through a Wilcoxon test at *** p < 0.001,
** 0.001 < p < 0.01.

This ranking confirmed the major role of some metabolites features, including sucrose,
glucose, fructose, glutamate, amino acids and fumarate, in the response of susceptible
accessions. Of the 140 VIP values identified by OPLS-DA, 119 accumulated to higher levels
in susceptible accessions and 21, among which the four VIPs (VIP 433;700, VIP 361;491,
VIP 512;491 and VIP 64;395) are found, accumulated to higher levels in resistant accessions
(Table 2). The fold change susceptible/resistant reached up to 45 times whereas the fold
change resistant/susceptible reached up to 244 times. It is very interesting to highlight
two VIPs, VIP 324;184 and VIP 433;482 that are significantly accumulated in resistant
accessions when inoculated with a fold-change of 106.8 and 244, respectively, compared to
the susceptible accessions.

A complementary analysis, Partial Least Square (PLS), on the dataset obtained with
the 26 accessions was performed to test whether viral accumulation can be predicted from
metabolic data. Analysis was performed on the optical density values corresponding to
the viral accumulation measured by DAS ELISA for each accession (Figure 5). The PLS
coefficient estimated in the training data set revealed, after cross-validation, a correlation of
0.61 between predicted and true viral accumulation, confirming the high predictive power
of metabolic composition for TuMV susceptibility.
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The metabolite matrix is composed by 10 primary metabolic traits and 505 metabolic
signatures (m/z). The replicates of the 26 A. thaliana accessions are represented by the blue
dots (total data point = 98). The dashed linear red line represents the exact prediction.

Among the best 50 VIP-PLS values, 44 were found common to the VIP values obtained
with the OPLS-DA analysis (Table S4). In both analyses, the central metabolites sucrose,
glucose and glutamate were found to discriminate susceptible and resistant accessions,
ranking among the best VIP values (Table S4). Six common VIPs (VIP 394;108, VIP 351;184,
VIP 324;184, VIP 280;184, VIP 432;184 and VIP 86;184) detected by the two analyses are
found accumulated more significantly in resistant accessions.

3. Discussion

In this study, we characterized the metabolic response of A. thaliana to its natural viral
pathogen, turnip mosaic virus (TuMV). This study is unusual in studying the metabolic re-
sponse of a variety of accessions to an important naturally occurring virus on A. thaliana [42]
and its close relative, A. halleri [43], in natural settings.

In neither year of the study, from time 0 to 13 days after inoculation, could we
distinguish the metabolic profile of TuMV-susceptible and TuMV-resistant accessions grown
in the absence of TuMV. This suggests that there are no constitutive metabolic patterns
associated with resistance or susceptibility. Nevertheless, these mock-inoculated samples
provided an opportunity to describe elements of central metabolism in A. thaliana under
common garden field conditions. We found that dry biomass was significantly correlated
with fumarate concentrations. Fumarate can accumulate to high levels in A. thaliana relative
to other plant species, suggesting that it likely constitutes a significant fraction of the fixed
carbon in A. thaliana rosette leaves [44]. Indeed, the amount of carbon stored in fumarate
is similar to that accumulated in starch [44]. This is perhaps not surprising because fast-
growing plant species such as A. thaliana contain significantly higher concentrations of
organic acids, such as fumarate, compared to slow-growing plants [44,45], especially under
high light intensity conditions such as in our field experiments [45]. We also found that dry
biomass was correlated to glucose. Both fumarate and glucose reached high levels in fast
growing accessions, 23 and 19 mM, respectively, suggesting that they might be involved in
turgor dynamics and thus growth by cellular expansion [46]. In contrast, we detected a
negative correlation between dry biomass and protein. Although speculative, this might
follow from the fact that lower protein synthesis contributes to increased efficiency of
carbon use, because protein synthesis is a costly process [47,48]. This negative relationship
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is in agreement with previous observations among a collection of A. thaliana accessions
grown under greenhouse/growth chamber and in controlled conditions [49].

Upon viral infection, in the field, the effect of TuMV inoculation could be observed as
early as 5 days after inoculation. At 13 dai, susceptible accessions were clearly distinguished
from the resistant ones by the accumulation of central metabolites. Eight out of ten
metabolic features (amino acids, glutamate, malate, fumarate, starch, glucose, fructose and
sucrose), were strongly associated with viral accumulation. Previous efforts to describe the
massive reprogramming of the plant central metabolism that takes place in response to
pathogens has focused on fungi and bacteria [50]. Here, we add to the limited literature on
plant responses to viral infection, which is restricted to controlled laboratory conditions.
For example, in a study of the central metabolic response of Arabidopsis to tobacco rattle
virus (TRV), Fernandez-Calvino and collaborators [6] showed that the susceptible Col-0
accession significantly accumulated sucrose at 8 days’ post inoculation. Amino acids were
also globally accumulated in infected plants compared to mock plants whereas neither
starch nor fumarate were accumulated in infected plants. Differences in the virus species,
the number of accessions observed and the fact that theirs was a laboratory experiment
could explain these different results. Second, in a controlled multi-stress experiment
(including TuMV, drought and heat), accumulation of soluble sugars was again observed
in Col-0 plants [51]. The strong metabolic disturbances generated in susceptible plants
by TuMV infection suggests that the viral infection stimulated the accumulation of major
central metabolites, probably as a result of an imbalance between photosynthesis and
growth, which is known to favor oxidative stress [52]. Susceptible accessions were also
found to accumulate a large number of specialized compounds. In addition to the fact that
such an accumulation was apparently ineffective, the synthesis of specialized compounds
is expensive in energy and, even if somewhat controlled [53], accumulation could have
toxic effects.

Under the field conditions used in our experiments, inoculated resistant accessions
were able to grow at the same rate as controls. As biomass is considered as appropriate
proxy for fitness under many circumstances [54], it seems to indicate that resistance was
achieved with no penalties on measured traits. Unlike susceptible accessions, resistant
accessions accumulate a limited number of specialized metabolites in response to the virus,
but in much higher quantities than can be observed in susceptible accessions. This contrasts
with a study conducted under controlled conditions on the metabolic response of tomato to
tomato yellow leaf curl virus (TYLCV) which found that the defense response of resistant
lines is effective through the accumulation of many specialized metabolites [55]. The high
predictive power of metabolic composition for TuMV susceptibility when infected might
enable this composition to serve as a biomarker [30], as has been done for resistance to
Fusarium graminearum in wheat [56] and for susceptibility to esca disease in grape [57].

The complex molecular network underlying the balance between growth and immu-
nity has been described [24,25,58] mainly in terms of opposition. Recent reviews [26,59]
have emphasized, however, that in a natural context, growth and immunity are in a con-
stant conversation. Our study supports this alternative model and highlights new results
on Arabidopsis/virus interaction. In particular, we have highlighted the very different
metabolic paths between susceptible and resistant genotypes. We found that susceptible
accessions experience a large accumulation of central and specialized metabolites with
a reduction of growth whereas resistant accessions appear capable of continued growth
with a targeted metabolic response. Some compounds as VIP 324;184 and VIP 433;482,
that presented high fold-change in resistant accessions compared to susceptible ones are
of particular interest. Preliminary putative annotation of major metabolic markers was
performed using RT, accurate m/z detected by high-resolution MS and MS2 fragments as
described previously [60,61]. The resulting predicted molecular formula were screened
through chemical databases (HMDB, METLIN, MassBank) to match putative metabolite
identification. The first results show that some of them are phenolic compounds including
flavonoids and coumarins. The anti-viral properties of some of these compounds such as



Metabolites 2021, 11, 230 14 of 20

quercetagetin or other flavonoids have been demonstrated against Tomato bushy stunt
virus [62] and Tobacco mosaic virus [63].

It would be of great interest completing and refining the characterization of these
specialized compounds and their biosynthetic pathways, and then to test their involvement
in resistance by using pharmacological and/or genetic approaches. It is worth mentioning
that anti-phage specialized metabolites molecules, able to block phage replication, have
recently been found in Streptomyces [64]. This would allow for better understanding the
complexity of the underlying mechanisms involved in plants’ responses to viruses in the
field and to propose new ideotypes.

4. Materials and Methods
4.1. Plant Material

Genotypes from a worldwide collection of natural accessions of Arabidopsis thaliana
were used in our experiments [40]. Twenty-six accessions were challenged with TuMV
during the first field experiment in 2015 and then a subset of 10 accessions were selected for
a second field experiment in 2017. This subset was selected based on their OD value follow-
ing TuMV inoculation (listed in Table 1 and Table S2) to represent extreme phenotypes from
highly susceptible (S) to resistant (R). To prevent misidentifying accessions as resistant due
to inefficient mechanical inoculation, only accessions presenting a resistance phenotype in
all our common garden experiments (see [39]) were selected as resistant accessions.

4.2. Virus Material

Turnip mosaic virus isolate UK1 [65] was routinely propagated by mechanical inocu-
lations on turnip plants Brassica rapa L. ssp rapa NA FR 490,001 provided by the BraCySol
germplasm center (Ploudaniel, France). To prepare the inoculum, three-week old turnip
plants were mechanically inoculated. Symptoms appeared two weeks later. Young symp-
tomatic leaves of five-week-old turnip were then collected to produce the inoculum.

4.3. Experimental Design and Growth Conditions

Two common garden experiments were conducted in 2015 (N = 26 A. thaliana acces-
sions) and 2017 (N = 10). Experiments realized in 2015 were organized in a randomized
complete block design (RCBD). The experiment performed in 2015 contained four blocks
with four replicates per accession per block. In 2017, a kinetic analysis was carried out.
Thus, five sampling were performed. The first sampling was done the day of inoculation
(named thereafter 0 days after inoculation (dai)), and at 5, 7, 9 and 13 (dai). The accessions
were arranged in a randomly complete block design of three blocks with three replicates
per accession per sampling date.

As described in [39], seedling trays of 40 wells were used. Seeds were sown on
23 March 2015 and on 20 March 2017 in professional horticultural soil (106Scope, PletrA-
com, Arles, France) under a cold-frame glasshouse without additional light or heating to
ensure homogeneity of germination. At three weeks of age, plants were acclimatized under
an opened tunnel before their transfer to the common garden. Plants were inoculated
during the acclimation step just before their transfer. Soil of the common garden had
been tilled so that seedling trays could be slightly buried. Because the bottoms of the
wells were pierced, roots were able to reach the soil. Climate data were recorded over
the duration of each experiment (Figure S3a,b). The analysis of climatic data across the
three growing environments (cold frame greenhouse, then tunnel, then field) revealed no
significant difference between 2015 and 2017 in the two first steps (cold frame greenhouse
and tunnel) but a significant difference between 2015 and 2017 for temperatures, rainfall
and PAR (photosynthetically active radiation) in common garden (Figure S3c–e).

4.4. TuMV Inoculation Procedure and Harvest

One gram of fresh turnip leaves was ground in three volumes of disodium phosphate
(Na2HPO4·12H2O) 30 mM and 0.2% diethyldithiocarbamic acid (DIECA). The inoculum
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was clarified through 10 min centrifugation at 13,000× g. Supernatant was recovered
and maintained at 4 ◦C until Arabidopsis’ inoculation, which was performed when plants
were 4 weeks old and at a 8–10 leaf stage, corresponding to 1.09, 1.10 Boyes stage [66].
Four young expanded leaves of each plant were mechanically inoculated with 20 µL of
inoculum with carborundum added on each leaf. Ten minutes after inoculation, plants were
rinsed with water. Mock treatments, in which plants were treated exactly as inoculated
plants except for the absence of the virus, were also included. The viral concentration
of the TuMV inoculum was quantified after inoculation by quantitative PCR [39]. The
viral concentrations of the inocula used was 0.049 g/µL in 2015 and 0.269 ng/µL in 2017
common garden experiments (significantly different through a Wilcoxon-Mann Whitney
test p = 0.029).

According to previous experiments [39], samples were collected 13 days after inocula-
tion (dpi) in the 2015 experiment at the very beginning of the onset of the first symptoms.
In 2017, the first sampling was done the day of inoculation (named thereafter 0 days after
inoculation (dai)), and at 5, 7, 9 and 13 (dai). The harvest was done in the morning, at
the same time for each year of experiment. All rosette leaves above the inoculated leaves
(systemic leaves) were collected in vials from Zinsser Analytic® (Eschborn, Germany).
Samples were deep-frozen, ground and stored at −80 ◦C.

4.5. Quantification of Viral Accumulation

Viral accumulation was estimated for each individual plant using 100 mg of A. thaliana
powder in a semi-quantitative double antibody sandwich assay (DAS-ELISA) with a
commercial anti-potyvirus monoclonal antibody kit (Agdia-Biofords, Evry, France). The
reaction of the substrate (p-nitrophenyl phosphate) was followed at 405 nm. Optical
densities (OD) were calculated by removing the mean OD value from the healthy A. thaliana
Col-0 control and normalized using a Col-0 positive control deposited on each ELISA plate.
As determined from the ODs of the A. thaliana Col-0 positive controls, and in order to
avoid overflow, the 15 min measurements were retained. For each accession, we classified
its degree of resistance or susceptibility based on the average of the ODs obtained across
replicates (Table 1; [39]). Resistant accessions do not accumulate virus and present an OD
equal or lower than the mean of the OD of the healthy A. thaliana Col-0 control. Susceptible
accessions have an OD value that exceeds the healthy A. thaliana Col-0 control. The category
to which each accession belongs is listed in Table 1 and Table S2, along with its OD values.
Mock-inoculated plants were confirmed to be potyvirus-free.

4.6. Sample Processing

A biological replicate was composed by pooling up to four (2015) or three (2017)
plants after a successful infection as measured by DAS ELISA. Aliquots of about 17 mg of
fresh powder were weighted in 1.1-mL Micronic tubes and used in the targeted metabolite
analysis. Samples were then lyophilized and aboveground dry mass determined with an
analysis balance. Aliquots of about 10 mg were weighed in 1.1-mL Micronic tubes and
used in the untargeted metabolite analysis.

4.7. Targeted Metabolite Analysis

Metabolites were extracted in a final volume of 650µL, twice with 80% (v/v) ethanol—
HEPES/KOH 10mM (pH6) and once with 50% (v/v) ethanol—HEPES/KOH 10mM
(ph6) [67]. Chlorophyll content was determined immediately after the extraction [68].
Glucose, fructose, sucrose [69] malate, fumarate ([70], glutamate [71] and amino acids [72]
were determined in the supernatant. Starch [73] and protein [74] contents were determined
on the pellet resuspended in 100 mM NaOH. Analyses were performed in 96-well mi-
croplates using Starlet pipetting robots (Hamilton), and absorbance was read in MP96
microplate readers (SAFAS).
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4.7.1. Data Treatments

Metabolite data were normalized by dividing each measure by the value of a biological
standard sample corresponding to a non-inoculated A. thaliana Col-0 sample harvested
at the same time as the other samples. The final concentration of each metabolite is the
average of the replicates of each accession.

4.7.2. Statistical Analysis

All principal component analysis (PCA), parametric and nonparametric statistical
tests were performed using R version 3.4.0. Statistical significance was set at p < 0.05.
Partial least squares regression (PLS) and orthogonal partial least-squares regression and
discriminant analysis (OPLS-DA) were performed using the R packages mixOmics [75]
and PLS [76].

4.8. Untargeted Metabolic Analysis

Untargeted metabolite measurements were conducted on the 26 accessions in the
common garden experiment in 2015. Extraction was realized using a Starlet pipetting robot
(Hamilton, Lancaster, PA, USA) with an extraction buffer composed of 80% (v/v) ethanol
and 0.1% (v/v) formic acid, using methyl vanillate as an internal standard (50 µg/mL). All
samples extracted were filtrated through a Multiscreen Solvinert 96-well filter plate (Merck
Millipore, Burlington, MA, USA).

4.8.1. Quality Control (QC)

Twenty five µL of each sample were mixed together to generate a pooled quality
control sample (QC). QC samples were analyzed every 10 injections to monitor and correct
changes in the instrument response. Solvent blank samples (80% ethanol in water—0.1%
formic acid) were also analyzed in-between the other samples.

4.8.2. Liquid Chromatography

Liquid chromatography was performed on a Dionex UHPLC Ultimate 3000 (Thermo
Scientific, Waltham, MA, USA). Chromatographic separation was carried out in reverse-
phase mode on a Gemini C18 column (2× 150 mm; 3 µm, Phenomenex, Torrance, CA, USA)
equipped with a Gemini C18 guard column (2 × 4 mm, Phenomenex). The mobile phase
was composed of milliQ water with 0.1% formic acid (solvent A) and 100% Acetonitrile
(solvent B) for a total run time of 18 min. The flow rate was 0.3 mL·min−1 and the column
was heated to 30 ◦C. The autosampler temperature was maintained at 4 ◦C and the injection
volume was 5 µL.

4.8.3. Mass Spectrometry

The UHPLC system was coupled with a LTQ-Orbitrap Elite mass spectrometer
(Thermo Scientific). A heated electrospray interface was used and analyses were per-
formed in positive mode. Acquisition was performed in full scan mode with a resolution
of 240,000 FWHM in the scan range of m/z 50–1000. Data were recorded using the Xcalibur
software (Thermo Scientific) and extracted with XCMS.

4.8.4. Data Processing and Statistical Analysis

Data were converted to mzXML file format. Peak picking and alignment were per-
formed using XCMS in R [77]. XCMS-parameters were optimized as described by Patti
and collaborators [78]. XCMS-data processing results in a data matrix which contains
peak intensities that are a unique combination of retention-time and median m/z ratio. To
exclude system-peaks (impurities in the measurement-system, visible in blanks) as well as
poorly detected metabolic features, filter steps were performed based on QCs and blanks as
described in TextS1. Statistical analysis was done in R version 3.4.0 and also using the web
application BioStatFlow version 2.7.7 (http://biostatflow.org/ (accessed on 1 April 2021))
Thus, OPLS-DA (parameters: Kernel type linear, cross validation K-fold with K = 10,

http://biostatflow.org/
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permutations for testing 100) were performed using the 505 features of the untargeted
metabolic analysis combined with the 10 metabolites features assayed by targeted methods.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/metabo11040230/s1, Figure S1: Principal component analysis performed on the 505 metabolic
signatures (m/z) measured on 26 A. thaliana accessions in the ‘2015’ field experiment, Figure S2:
OPLS-DA analysis and its parameters of validation for the TuMV-inoculated resistant and susceptible
26 A. thaliana accessions of the ‘2015’ field experiment, Figure S3: Climate raw data and comparison
between the 2015 and 2017 field experiment, Table S1: Spearman correlations between dry biomass
(DB), viral accumulation (OD) and 10 primary metabolites content measured on the 26 A. thaliana
accessions of the ‘2015’ field experiment , Table S2: List of the A. thaliana accessions with their
geographic position and their susceptible status to TuMV infection confirmed by OD values and SD in
the ‘2017’ field experiment, Table S3: Common Variable Importance in the Projection (VIPs) obtained
with the OPLS-DA performed on mock and TuMV-inoculated and on resistant and susceptible
accessions of twenty-six accessions in 2015, Table S4: Comparisons between the Variable Importance
in the Projection (VIPs) identify by OPLS-DA analysis and those identify by PLS analysis performed
with resistant and susceptible twenty-six accessions in 2015.
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