
fnins-13-01113 October 21, 2019 Time: 15:31 # 1

ORIGINAL RESEARCH
published: 23 October 2019

doi: 10.3389/fnins.2019.01113

Edited by:
Federico Giove,

Centro Fermi – Museo Storico Della
Fisica e Centro Studie Ricerche

Enrico Fermi, Italy

Reviewed by:
Salem Hannoun,

American University of Beirut,
Lebanon

Yunyan Zhang,
University of Calgary, Canada

*Correspondence:
Jianguo Xu

drjianguoxu@gmail.com

†These authors have contributed
equally to this work

Specialty section:
This article was submitted to

Brain Imaging Methods,
a section of the journal

Frontiers in Neuroscience

Received: 03 May 2019
Accepted: 02 October 2019
Published: 23 October 2019

Citation:
Zhang Y, Chen C, Tian Z, Feng R,

Cheng Y and Xu J (2019) The
Diagnostic Value of MRI-Based

Texture Analysis in Discrimination
of Tumors Located in Posterior Fossa:

A Preliminary Study.
Front. Neurosci. 13:1113.

doi: 10.3389/fnins.2019.01113

The Diagnostic Value of MRI-Based
Texture Analysis in Discrimination of
Tumors Located in Posterior Fossa:
A Preliminary Study
Yang Zhang1,2†, Chaoyue Chen1,2†, Zerong Tian1,2, Ridong Feng1,2, Yangfan Cheng2 and
Jianguo Xu1,2*

1 Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China, 2 West China School of Medicine,
West China Hospital, Sichuan University, Chengdu, China

Objectives: To investigate the diagnostic value of MRI-based texture analysis in
discriminating common posterior fossa tumors, including medulloblastoma, brain
metastatic tumor, and hemangioblastoma.

Methods: A total number of 185 patients were enrolled in the current study: 63 of them
were diagnosed with medulloblastoma, 56 were diagnosed with brain metastatic tumor,
and 66 were diagnosed with hemangioblastoma. Texture features were extracted from
contrast-enhanced T1-weighted (T1C) images and fluid-attenuation inversion recovery
(FLAIR) images within two matrixes. Mann–Whitney U test was conducted to identify
whether texture features were significantly different among subtypes of tumors. Logistic
regression analysis was performed to assess if they could be taken as independent
predictors and to establish the integrated models. Receiver operating characteristic
analysis was conducted to evaluate their performances in discrimination.

Results: There were texture features from both T1C images and FLAIR images found
to be significantly different among the three types of tumors. The integrated model
represented that the promising diagnostic performance of texture analysis depended
on a series of features rather than a single feature. Moreover, the predictive model that
combined texture features and clinical feature implied feasible performance in prediction
with an accuracy of 0.80.

Conclusion: MRI-based texture analysis could potentially be served as a radiological
method in discrimination of common tumors located in posterior fossa.

Keywords: magnetic resonance imaging, texture analysis, posterior fossa tumors, medulloblastoma, brain
metastatic tumor, hemangioblastoma

INTRODUCTION

Medulloblastoma, brain metastatic tumor, and hemangioblastoma are the three types of tumors
with highest incidents located in posterior fossa; among these, medulloblastoma mostly occurs
in pediatric population (Brandao and Young Poussaint, 2017; D’Arco et al., 2018), while
hemangioblastoma and brain metastatic tumor are two of the most common posterior fossa tumors
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in adult population (Shih and Smirniotopoulos, 2016). Magnetic
resonance (MR) scan has been considered as the most practical
examination in diagnosis of intracranial tumors for clinicians
(Poretti et al., 2012; Plaza et al., 2013). Typically, the image of
medulloblastoma in enhanced pattern appears as a heterogeneous
mass with different degrees of enhancement; brain metastatic
tumor appears as peritumoral edema and avid enhancement; and
hemangioblastoma appears as a cystic mass with the enhancing
mural nodule (Plaza et al., 2013; Shih and Smirniotopoulos,
2016). However, the radiological diagnostic accuracy largely
depends on the judgment and expertise of radiologists. Besides,
brain metastatic tumor may present various MR image features
based on their primary origins, and the various appearances
of medulloblastoma and hemangioblastoma could potentially
lead to misleading conclusions in some cases (Poretti et al.,
2012; Millard and De Braganca, 2016; Payabvash et al., 2018).
However, it is important to make preoperative diagnosis
accurately and early as the treatment strategies and prognoses
of patients are dramatically different (Grossman and Ram, 2016;
Kang et al., 2017).

Texture analysis is the radiomic method that could extract
mathematically defined features from diverse medical images and
provide quantitative information beyond human eye assessment.
In previous studies, texture analysis has been applied as
a radiological tool in differentiation, treatment monitoring,
and prognosis prediction of various types of tumors (Ion-
Margineanu et al., 2016; Jalil et al., 2017; Kim et al., 2017;
Chaddad et al., 2018; Lisson et al., 2018; Giannini et al., 2019).
However, there has been few researches to explore its value
in discrimination of posterior fossa tumors. In the present
study, we performed analyses to investigate the ability of
texture analysis on conventional magnetic resonance imaging
(MRI) in discriminating the three most common posterior
fossa tumors: medulloblastoma, brain metastatic tumor, and
hemangioblastoma. The diagnostic performances were evaluated
with establishment of radiomic parameters and integrated model
to evaluate their diagnostic values.

MATERIALS AND METHODS

Patient Selection
All patients involved in this retrospective study were diagnosed
and treated at the neurosurgery department of our institution
from March 2015 to July 2018. We initially screened the database
of our institution to select the potentially eligible patients who
were (1) with pathological confirmation (on medulloblastoma
or brain metastatic tumor or hemangioblastoma), (2) with
available preoperative high-quality MR images, and (3) with
complete and elaborate electronical medical records. Then, the
patients were excluded if they had the history of any other
cerebral diseases. Clinical characteristics of qualified patients
were recorded, and written informed consent was obtained from
all participants included in the study. For patients under the age
of 16, written informed consent was obtained from their parents
or guardians. This study was approved by the Ethics Committee
of Sichuan University.

MRI Acquisition
Magnetic resonance scans were performed in the MR Research
Center of our institution using 3.0 T Siemens Trio Scanner. The
sequences included conventional T1-weighted images, contrast-
enhanced T1-weighted (T1C) images, T2-weighted images, and
fluid-attenuation inversion recovery (FLAIR) images, acquiring
axial, coronal, and sagittal data. The scanning of T1C images
was performed within 180 s after injection of gadopentetate
dimeglumine (0.1 mmol/kg) as the contrast agent. The
parameters were as follows: time repetition = 2000 ms, time
echo = 30 ms, voxel size = 3.75 mm3

× 3.75 mm3
× 5 mm3, flip

angle = 90◦, slice thickness = 5 mm, matrix = 64 × 64, and field
of view = 240 mm2

× 240 mm2. The preoperative MR images of
all participants and their radiological reports were collected from
our institutional radiology department.

Texture Features Extraction
The extraction of texture features was performed by two
neurosurgeons together using LifeX package1 with the assistance
of senior radiologists (Nioche et al., 2018). T1C images and
FLAIR images were selected to conduct texture analysis,
considering their rather clear depictions on the border of
tumors compared with other sequences like conventional T1-
weighted images and T2-weighted images (Figures 1, 2). Two
neurosurgeons manually drew along the border of tumors to
obtain regions of interest (ROI) on the axial image since
it was relatively accurate for ROI delineation on this view.
After continuously contouring the tumor on each layer, three-
dimensional texture features could be automatically calculated
by the software with default setting. Disagreements on the

1http://www.lifexsoft.org

FIGURE 1 | Comparison of MRI among medulloblastoma,
hemangioblastoma, and brain metastatic tumor. (A) Medulloblastoma on T1C
images. (B) Medulloblastoma on FLAIR images. (C) Hemangioblastoma on
T1C images. (D) Hemangioblastoma on FLAIR images. (E) Brain metastatic
tumor on T1C images. (F) Brain metastatic tumor on FLAIR images.
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FIGURE 2 | Examples of ROI delineation in the three types of tumors.
(A) Medulloblastoma on T1C images. (B) Medulloblastoma on FLAIR images.
(C) Hemangioblastoma on T1C images. (D) Hemangioblastoma on FLAIR
images. (E) Brain metastatic tumor on T1C images. (F) Brain metastatic tumor
on FLAIR images.

boundary of the tumor were recorded and addressed by
consulting the senior radiologists or senior neurosurgeons.
Based on previous studies, a total of 10 texture features
from two representative matrixes were selected, including
Energy, Entropy, Kurtosis, Skewness derived from histogram-
based matrix (HISTO), and Correlation, Contrast, Dissimilarity,
Energy, Entropy, Homogeneity derived from gray-level co-
occurrence matrix (GLCM) (Rodriguez Gutierrez et al., 2014;
Lakhman et al., 2017; Fujima et al., 2019; Yin et al., 2019).
The definitions of these features were as follows: HISTO-Energy
measures the uniformity of the distribution; HISTO-Entropy
measures the randomness of the distribution; HISTO-Kurtosis
measures whether the gray-level distribution is peaked or flat
relative to a normal distribution; HISTO-Skewness measures
the asymmetry of the gray-level distribution in the histogram;
GLCM-Correlation reflects linear dependency of gray levels in
GLCM; GLCM-Contrast reflects local variations in the GLCM;
GLCM-Dissimilarity reflects variation of gray-level voxel pairs;
GLCM-Energy reflects uniformity of gray-level voxel pairs;
GLCM-Entropy reflects randomness of gray-level voxel pairs;
and GLCM-Homogeneity reflects homogeneity of gray-level
voxel pairs (Nardone et al., 2018).

Statistical Analysis
Pairwise comparisons were firstly performed to evaluate
the statistical differences with the Mann–Whitney U test
among the three types of tumors: part one (medulloblastoma
vs. hemangioblastoma), part two (medulloblastoma vs. brain
metastatic tumor), and part three (brain metastatic tumor
vs. hemangioblastoma). Binary logistic regression analysis was
performed with the standardized features to evaluate if they
could be taken as independent predictors, while variance inflation
factor (VIF) among different texture features was assessed

first to avoid the interference of collinearity. Moreover, the
independent predictors were integrated as Z score based on the
following formula:

Z =
n∑

i=1

(
Bi
∗Xi
)

(Xi indicated each independent texture feature, and Bi
was the regression coefficient of each feature). Receiver
operating characteristic (ROC) analysis was performed on both
independent predictors and integrated Z score to evaluate their
practical values in discrimination. Area under the curve (AUC),
95% confidence interval (CI), optimal cutoff values (at the
maximal Youden’s index), sensitivity, specificity, and standard
error were recorded. Then, texture features were assessed
together using Kruskal–Wallis H test and multinomial logistic
regression. Significant texture features, as well as age (recognized
clinical discriminative parameter), were included in multinomial
logistic regression to build the predictive model for the three
types of tumors.

In order to compare the discriminative performance between
radiomics-based models and radiologists, we recorded the
primary diagnosis of preoperative MRI on radiological reports
as the judgment of radiologists and compared its accuracy with
our predictive models. The statistics were considered significant
if the p value < 0.05. All statistical analyses were performed
with IBM SPSS Statistics for Windows (Version 22.0, IBM Corp.,
Armonk, NY, United States) and MedCalc statistics (MedCalc
Software, Belgium).

RESULTS

Characteristics of Patients
A total number of 185 eligible patients were selected from
our institutional database. Sixty-six of them were diagnosed
with hemangioblastoma, 63 patients were diagnosed with
medulloblastoma, and 56 patients were diagnosed with brain
metastatic tumor. Among the brain metastatic tumors, 32
originated from lung cancer, 16 originated from breast
cancer, while 8 originated from other types of tumors,
including melanoma, renal cell carcinoma, colon cancer,
and Wilm’s tumor. The gender ratio was 1.52 (male: 112,
female: 73). Mean age of patients with medulloblastoma was
9.06± 7.61 years, brain metastatic tumor was 57.61± 12.57 years,
and hemangioblastoma was 45.12 ± 17.47 years. T1C images
were available for all patients, while FLAIR images were available
for 156 patients. The detailed characteristics of the patients were
summarized in Table 1.

Part 1 (Medulloblastoma vs.
Hemangioblastoma)
In the comparison between medulloblastoma and
hemangioblastoma, the results of Mann–Whitney U tests
suggested that GLCM-Energy (p = 0.022), GLCM-Homogeneity
(p = 0.008) from T1C images, and HISTO-Skewness (p = 0.039),
GLCM-Energy (p = 0.001), and GLCM-Entropy (p = 0.005) from
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TABLE 1 | Characteristics of patients.

Characteristics Medulloblastoma Brain
metastatic

tumor

Hemangioblastoma

Number 63 56 66

Gender

Male 42 36 34

Female 21 20 32

Age (year)

Mean ± SD 9.06 ± 7.61 57.61 ± 12.57 45.12 ± 17.47

Range 1–37 12–85 11–79

SD, standard deviation.

FLAIR images were significantly different. There was no collinear
interference observed based on the results of VIF; therefore, the
above significant texture features were all introduced in binary
logistic regression. The results suggested that GLCM-Energy
and GLCM-Homogeneity from T1C images could be taken as
independent predictors (Tables 2, 3). ROC analyses showed
that the AUC of two independent predictors were 0.618 and
0.637, respectively. Standard error, 95% CI, optimal cutoff point,
sensitivity, and specificity were listed in Table 4.

Moreover, the integrated model named Z score was built to
combine the two independent predictors:

T1Cimages : Z1 = 5.37∗GLCM − Energy− 1.468∗

GLCM −Homogeneity.

Receiver operating characteristic analyses suggested that
the AUC of Z score was 0.808, which showed much better
discriminatory power than single feature and implied practical
value (Figure 3).

Part 2 (Medulloblastoma vs. Brain
Metastatic Tumor)
In the comparison between medulloblastoma and brain
metastatic tumor, Mann–Whitney U tests indicated that five
texture features on T1C images [HISTO-Entropy (p = 0.042),
HISTO-Kurtosis (p = 0.003), GLCM-Correlation (p = 0.01),
GLCM-Contrast (p < 0.001), and GLCM-Dissimilarity
(p < 0.001)] and six texture features on FLAIR images
[HISTO-Energy (p < 0.001), HISTO-Entropy (p < 0.001),
HISTO-Kurtosis (p = 0.002), GLCM-Energy (p < 0.001),
GLCM-Entropy (p < 0.001), and GLCM-Homogeneity
(p < 0.001)] showed significant differences. Six texture features
were introduced in binary logistic regression, including
HISTO-Entropy, HISTO-Kurtosis, GLCM-Correlation, and
GLCM-Dissimilarity from T1C images and HISTO-Kurtosis and
GLCM-Energy from FLAIR images. Binary logistic regression
suggested that the above six texture features could be taken
as independent predictors except for HISTO-Kurtosis on T1C
images (Tables 2, 3). Detailed results of ROC analyses, including
AUC, standard error, 95% CI, optimal cutoff point, sensitivity,
and specificity, were summarized in Tables 4, 5. TA
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Meanwhile, Z scores of two sequences were established to
integrate the above independent predictors, respectively:

T1Cimages : Z2 = − 3.17∗HISTO− Entropy + 0.714∗

GLCM− Correlation + 5.013∗GLCM− Dissimilarity.

FLAIRimages : Z2 = 1.149∗HISTO− Kurtosis−

176.466∗ GLCM− Energy.

Receiver operating characteristic analyses demonstrated that
Z scores on both T1C images and FLAIR images could make
practical value, with the AUC of 0.825 and 0.871, respectively,
indicating higher diagnostic values than any single texture
feature (Figure 3).

Part 3 (Hemangioblastoma vs. Brain
Metastatic Tumor)
In the comparison between hemangioblastoma and brain
metastatic tumor, a total of 13 texture features were found
significantly different through Mann–Whitney U tests: HISTO-
Entropy (p = 0.004), HISTO-Skewness (p = 0.033), GLCM-
Correlation (p = 0.008), GLCM-Contrast (p < 0.001), GLCM-
Dissimilarity (p < 0.001), and GLCM-Homogeneity (p = 0.003)
from T1C images, and HISTO-Energy (p = 0.008), HISTO-
Entropy (p = 0.002), HISTO-Kurtosis (p < 0.001), HISTO-
Skewness (p = 0.001), GLCM-Energy (p < 0.001), GLCM-
Entropy (p < 0.001), and GLCM-Homogeneity (p < 0.001)
from FLAIR images. After evaluating the VIF among them,
HISTO-Entropy, HISTO-Skewness, GLCM-Correlation, GLCM-
Dissimilarity, and GLCM-Homogeneity from T1C images, and
HISTO-Kurtosis, HISTO-Skewness, and GLCM-Energy from
FLAIR images were introduced in binary logistic regression, and
independent predictors included HISTO-Skewness and GLCM-
Dissimilarity from T1C images, and HISTO-Kurtosis, HISTO-
Skewness, and GLCM-Energy from FLAIR images (Tables 2, 3).
The detailed results of ROC analyses are listed in Tables 4, 5,
including AUC, standard error, 95% CI, optimal cutoff point,
sensitivity, and specificity.

The integrated models of two sequences were also built:

T1Cimages : Z3 = − 1.151∗HISTO− Skewness + 2.127∗

GLCM− Dissimilarity.

FLAIRimages : Z3 = 2.407∗HISTO− Kurtosis + 0.646∗

HISTO− Skewness− 75.742∗ GLCM− Energy.

In receiver operating characteristic analyses, integrated
models on both T1C images and FLAIR images represented
higher diagnostic values, with the AUC of 0.761 and 0.880,
respectively (Figure 3).

Prediction for Three Tumors
Considering the relatively limited number of FLAIR
images, multinomial logistic regression was only conducted
on texture features extracted from T1C sequence. In
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TABLE 4 | The diagnostic ability of independent predictors and integrated models (Z score) on contrast-enhanced T1-weighted images in discrimination.

Texture parameters AUC Standard error 95% CI Optimal cutoff point Sensitivity (%) Specificity (%)

Medulloblastoma vs. Hemangioblastoma

GLCM-Energy 0.618 0.0547 0.528–0.702 0.005 49.23 98.41

GLCM-Homogeneity 0.637 0.0526 0.547–0.720 0.331 50.77 96.83

Z score 0.808 0.0380 0.729–0.872 -1.256 62.12 87.30

Medulloblastoma vs. Brain metastatic tumor

HISTO-Entropy 0.607 0.0584 0.514–0.695 1.708 43.10 100.00

GLCM-Correlation 0.637 0.0506 0.544–0.722 0.382 58.62 66.67

GLCM-Dissimilarity 0.731 0.0505 0.643–0.808 13.428 50.00 98.41

Z score 0.825 0.0407 0.745–0.888 -1.208 67.24 95.24

Brain metastatic tumor vs. Hemangioblastoma

HISTO-Skewness 0.611 0.0534 0.520–0.697 1.161 50.00 98.28

GLCM-Dissimilarity 0.723 0.0475 0.635–0.800 13.329 96.92 50.00

Z score 0.761 0.0424 0.676–0.833 1.018 93.94 50.00

HISTO, histogram-based matrix; GLCM, gray-level co-occurrence matrix; AUC, area under the curve; CI, confidence interval.

FIGURE 3 | ROC curves of integrated Z scores in discrimination. (A) Z score from T1C images in differentiating medulloblastoma from hemangioblastoma. (B) Z
score from T1C images in differentiating medulloblastoma from brain metastatic tumor. (C) Z score from FLAIR images in differentiating medulloblastoma from brain
metastatic tumor. (D) Z score from T1C images in differentiating brain metastatic tumor from hemangioblastoma. (E) Z score from FLAIR images in differentiating
brain metastatic tumor from hemangioblastoma.

accordance with the results of above pairwise comparisons,
HISTO-Entropy (p = 0.011), HISTO-Kurtosis (p = 0.026),
GLCM-Correlation (p = 0.011), GLCM-Contrast (p < 0.001),
GLCM-Dissimilarity (p < 0.001), GLCM-Energy (p = 0.048),
and GLCM-Homogeneity (p = 0.002) from T1C images
showed significant difference based on Kruskal–Wallis H test

(Supplementary Table S1). With brain metastatic tumor as the
referent category, two multinomial logistic regression models
were established: radiomic predictive model included the seven
significant texture features; comprehensive predictive model
added the age of patient (Table 6). The regression equation of the
two models was listed as follows:
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TABLE 5 | The diagnostic ability of independent predictors and integrated models (Z score) on fluid-attenuation inversion recovery images in discrimination.

Texture parameters AUC Standard error 95% CI Optimal cutoff point Sensitivity (%) Specificity (%)

Medulloblastoma vs. Brain metastatic tumor

HISTO-Kurtosis 0.685 0.0539 0.582–0.776 2.847 85.00 50.00

GLCM-Energy 0.808 0.0461 0.714–0.881 0.005 97.50 58.93

Z score 0.871 0.0402 0.788–0.931 76.248 100.00 76.79

Brain metastatic tumor vs. Hemangioblastoma

HISTO-Kurtosis 0.757 0.0443 0.668–0.831 3.960 58.33 85.71

HISTO-Skewness 0.681 0.0511 0.588–0.764 0.445 55.00 89.29

GLCM-Energy 0.690 0.0504 0.598–0.773 0.005 73.33 58.93

Z score 0.880 0.0315 0.807–0.933 28.501 90.00 76.79

HISTO, histogram-based matrix; GLCM, gray-level co-occurrence matrix; AUC, area under the curve; CI, confidence interval.

Radiomic predictive model:

Logit(p1/p3) = 0.617 + 0.583∗HISTO− Entropy + 0.250∗

HISTO− Kurtosis− 0.374∗GLCM− Correlation− 0.016∗

GLCM− Contrast + 0.187∗GLCM− Dissimilarity− 232.413∗

GLCM− Energy + 0.214∗GLCM−Homogeneity.

Logit(p2/p3) = − 0.157− 3.715∗HISTO− Entropy + 0.252∗

HISTO− Kurtosis + 2.353∗GLCM− Correlation− 0.017∗

TABLE 6 | Regression coefficients and significance levels for each variable in two
multinomial logistic regression models with brain metastatic tumor as the
referent category.

Parameters Medulloblastoma
vs. Brain
metastatic tumor

Hemangioblastoma
vs. Brain
metastatic tumor

B p value B p value

Radiomic predictive model

HISTO-Entropy 0.583 0.893 −3.715 0.106

HISTO-Kurtosis 0.250 0.076 0.252 0.058

GLCM-Correlation −0.374 0.853 2.353 0.092

GLCM-Contrast −0.016 0.282 −0.017 0.020

GLCM-Dissimilarity 0.187 0.805 0.808 0.041

GLCM-Energy −232.413 0.084 −10.365 0.385

GLCM-Homogeneity 0.214 0.984 2.000 0.654

Intercept 0.617 0.787 −0.157 0.952

Comprehensive predictive model

Age −0.302 < 0.001 −0.046 0.006

HISTO-Entropy −6.429 0.237 −4.797 0.044

HISTO-Kurtosis −0.175 0.614 0.161 0.128

GLCM-Correlation 0.273 0.933 2.469 0.071

GLCM-Contrast −0.057 0.027 −0.023 0.011

GLCM-Dissimilarity 2.326 0.047 1.079 0.018

GLCM-Energy 8.213 0.773 −12.517 0.386

GLCM-Homogeneity −5.871 0.590 3.677 0.428

Intercept 10.967 0.025 2.406 0.267

HISTO, histogram-based matrix; GLCM, gray-level co-occurrence matrix. B,
regression coefficient for each variable.

GLCM− Contrast + 0.808∗GLCM− Dissimilarity− 10.365∗

GLCM− Energy + 2.000∗GLCM−Homogeneity.

Comprehensive predictive model:

Logit(p1/p3) = 10.967− 0.302∗Age− 6.429∗

HISTO− Entropy− 0.175∗HISTO− Kurtosis + 0.273∗

GLCM− Correlation− 0.057∗GLCM− Contrast + 2.326∗

GLCM− Dissimilarity + 8.213∗GLCM− Energy

−5.871∗GLCM−Homogeneity.

Logit(p2/p3) = 2.406− 0.046∗Age− 4.797∗HISTO− Entropy

+ 0.161∗HISTO− Kurtosis + 2.469∗GLCM− Correlation

−0.023∗GLCM− Contrast + 1.079∗GLCM− Dissimilarity

−12.517∗GLCM− Energy + 3.677∗GLCM−Homogeneity.

(p1, p2, and p3 were the predictive possibility of
medulloblastoma, hemangioblastoma, and brain metastatic
tumor, respectively.) Compared with the radiologist
(accuracy = 0.72), both models represented feasible ability
in differentiation, with an accuracy of 0.69 in radiomic predictive
model and 0.80 in comprehensive predictive model (Table 7).

DISCUSSION

In the current study, we investigated the diagnostic value of
texture analysis on MRI in differentiating the three most common

TABLE 7 | Comparison of accuracy in predicting the three types of posterior fossa
tumors among radiomic predictive model, comprehensive predictive model
and radiologist.

Radiomic
predictive model

Comprehensive
predictive model

Radiologist

Accuracy 0.69 0.80 0.72
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posterior fossa tumors. Texture features from T1C images and
FLAIR images were found to be significantly different, and
the integrated models represented promising discriminatory
performance. Moreover, we combined radiomics and clinical
parameters to establish the diagnostic model that showed feasible
ability in prediction and could potentially be served as an
ancillary tool to aid radiological diagnosis.

It is important to discriminate among medulloblastoma,
hemangioblastoma, and brain metastatic tumor due to
their dramatically different clinical management. For
hemangioblastoma, the standard therapy is complete surgical
resection; for medulloblastoma, the first-line therapy is maximal
safe resection followed by postoperative radiotherapy and
possibly adjuvant chemotherapy; for brain metastatic tumor,
the treatment strategy could be surgical resection, radiosurgery,
radiotherapy, chemotherapy, or a combination of these, based
on the size, location, and primary origin of the tumor. Thus,
a non-invasive and practical diagnostic method is necessary
and could be beneficial for treatment planning and discussion
with the patient.

Texture analysis, the mathematical method for the
quantitative analysis of the variation in image patterns, had
been proven to show promising diagnostic potential in various
brain tumors, like glioma, meningioma, brain metastatic
tumor, primary central nervous system lymphoma, and
medulloblastoma (Mouthuy et al., 2012; Rodriguez Gutierrez
et al., 2014; Suh et al., 2018; Xiao et al., 2018; Lu et al., 2019).
One study demonstrated that three-dimensional texture
analysis on MRI could be used in discriminating glioblastoma
from primary central nervous system lymphoma (Xiao et al.,
2018). Another study investigated the value of various texture
features in distinguishing brain metastatic tumor from high-
grade glioma (Mouthuy et al., 2012). Similar to our results,
they reported that GLCM-Energy, a parameter that reflected
uniformity of gray-level voxel pairs, was statistically significant
in discrimination. Besides, one study applied texture analysis
in distinguishing medulloblastoma from pilocytic astrocytoma
and ependymoma, suggesting that several texture features
from diffusion-weighted imaging in HISTO matrix potentially
represented promising diagnostics (Rodriguez Gutierrez et al.,
2014). However, the value of texture analysis in differentiation
among posterior fossa tumors was still unclear. Thus, we applied
texture analysis in three of the most common tumors in this
region, including medulloblastoma, hemangioblastoma, and
brain metastatic tumor. Encouragingly, several texture features
from T1C images and FLAIR images represented significant
differences among the three types of tumors. Although the
diagnostic value of single texture feature was relatively limited,
the integration of independent texture features displayed
practical discriminatory ability with an AUC of more than
0.800 in all pairwise comparisons. Therefore, texture analysis on
conventional MRI could be potentially recognized as a valuable
method to aid diagnosis of these tumors by providing additional
quantitative information.

To our best knowledge, texture analysis had never been
performed in the discrimination among the three common
posterior fossa tumors, and the integration of texture features

was rarely seen in previous studies. As mentioned above, the
texture feature could reflect the characteristics of MR images
from various aspects, such as asymmetry of the gray-level
distribution, variation of gray-level voxel pairs, or uniformity of
gray-level voxel pairs. Therefore, by combining single texture
feature through established formula, the integrated Z score
could depict the radiological characteristics of the tumor more
systematically. This might explain the reason why the integrated
model represented the higher diagnostic value than any single
texture feature. Moreover, considering the age of the patient was
an important clinical factor in differentiating the three types of
tumors, we combined the clinical and radiomics parameters to
build the comprehensive predictive models with higher accuracy
than radiomic predictive model that only included texture
features. More importantly, compared with radiologists, the
comprehensive model represented comparable or even better
performance in prediction.

The relationship between texture features and characteristics
of the tumor was complicated. A previous study had implied
that texture features derived from GLCM might be associated
with the heterogeneity of tumors, which could be reflected
in the MR images (Lakhman et al., 2017). Brain metastatic
tumor has usually been observed to be heterogeneous in MR
images arisen from the necrosis, cyst formation, or hemorrhage
within the tumor. Medulloblastoma typically appears as a
heterogeneous mass due to intratumoral cystic components
or calcification. Hemangioblastoma with cystic cavity could
also show heterogeneous signal intensity. Such differences of
heterogeneity among the three types of tumors could be
quantitatively observed in the GLCM-derived texture features
(Tables 2, 3). Another study on head and neck tumor indicated
that texture features could also reflect the tissue density within
the tumor (Fujima et al., 2019). Besides, GLCM-Correlation,
which measures linear dependency of gray levels, was found to
be linked to the vascularity of lesion (Nardone et al., 2018).
However, unanimous conclusions were not reached since texture
features were derived from different matrixes on various types
of MR images, and the relationship between texture features was
complicated. More researches are required to explore the specific
connection between the tumor biology and texture parameters.

There were several limitations in the present study. First, it
was a retrospective study, and only patients with preoperative
MR scan were enrolled, bringing the selection bias inevitably.
Second, we only assessed the value of texture analysis on
T1C images and FLAIR images. Third, considering the limited
number of patients, we did not conduct texture analysis among
the subtypes of tumors as inadequate sample size made logistic
regression unfeasible. The diagnostic value of texture analysis in
discriminating molecular subtypes of medulloblastoma and brain
metastatic tumor originated from different organs required more
research in the future. Fourth, we only analyzed texture features
derived from HISTO and GLCM since they were two of the most
common matrixes in previous studies and were reported to be
associated with the underlying histopathological characteristics
of the tumor. Future studies with larger sample size were required
to validate our results and explore the value of texture features
from other matrixes.
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CONCLUSION

Magnetic resonance imaging -based texture analysis had
the potential to be served as a feasible method in
discriminating the three most common posterior fossa tumors
including medulloblastoma, brain metastatic tumor, and
hemangioblastoma. Several texture features from T1C images
and FLAIR images showed significant difference, and the
integration of them displayed better discriminative performance.
Moreover, a comprehensive predictive model that integrated
texture features and the age of patient could potentially be applied
to predict the three types of tumors with practical value.
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