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Abstract
Land- use change is one of the most important drivers of widespread declines in pol-
linator populations. Comprehensive quantitative methods for land classification are 
critical to understanding these effects, but co- option of existing human- focussed 
land classifications is often inappropriate for pollinator research. Here, we present a 
flexible GIS- based land classification protocol for pollinator research using a bottom-
 up approach driven by reference to pollinator ecology, with urbanization as a case 
study. Our multistep method involves manually generating land cover maps at multi-
ple biologically relevant radii surrounding study sites using GIS, with a focus on iden-
tifying land cover types that have a specific relevance to pollinators. This is followed 
by a three- step refinement process using statistical tools: (i) definition of land- use 
categories, (ii) principal components analysis on the categories, and (iii) cluster analy-
sis to generate a categorical land- use variable for use in subsequent analysis. Model 
selection is then used to determine the appropriate spatial scale for analysis. We 
demonstrate an application of our protocol using a case study of 38 sites across a 
gradient of urbanization in South- East England. In our case study, the land classifica-
tion generated a categorical land- use variable at each of four radii based on the clus-
tering of sites with different degrees of urbanization, open land, and flower- rich 
habitat. Studies of land- use effects on pollinators have historically employed a wide 
array of land classification techniques from descriptive and qualitative to complex 
and quantitative. We suggest that land- use studies in pollinator ecology should 
broadly adopt GIS- based multistep land classification techniques to enable robust 
analysis and aid comparative research. Our protocol offers a customizable approach 
that combines specific relevance to pollinator research with the potential for applica-
tion to a wide range of ecological questions, including agroecological studies of pest 
control.
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1  | INTRODUC TION

A large body of evidence suggests that insect pollinators, including 
bees, are under threat (Biesmeijer et al., 2006; Potts et al., 2010). 
Multiple anthropogenic drivers have been identified (Goulson, 
Nicholls, Botías, & Rotheray, 2015), with land- use change and the as-
sociated loss of habitat proposed as one of the most critical threats 
(Potts et al., 2015). Strong negative effects of landscape alteration 
on bee and wasp species richness and composition have been doc-
umented (Senapathi et al., 2015), with habitat-  and food- specialist 
pollinator taxa particularly vulnerable (González- Varo et al., 2013). 
However, the impacts of land- use on different aspects of pollinator 
ecology and on different pollinator taxa can be complex, with ef-
fects varying depending on pollinators’ dietary and dispersal strat-
egies (Steffan- Dewenter, Münzenberg, Bürger, Thies, & Tscharntke, 
2002; Winfree, Aguilar, Vázquez, Lebuhn, & Aizen, 2009) and the 
type and magnitude of the land- use change in question (Cariveau & 
Winfree, 2015; Senapathi, Goddard, Kunin, & Baldock, 2017). As a 
result, the impact of land- use change on pollinator populations re-
mains a considerable knowledge gap.

Comprehensive quantitative methods for classifying the land sur-
rounding study sites are critical to producing a robust analysis of the 
effects of land use (Owen et al., 2006). The more rigorous the land clas-
sification, the greater the flexibility of the questions that can be asked 
about its effects, and the less subjective the interpretation of land- use 
types. In the pollinator literature, methods used vary widely, and there 
has historically been no single commonly adopted land classification 
approach. Broadly, the approaches used can be grouped into three 
categories: (i) simple visual classification; (ii) geographical information 
system (GIS)- based single- step classification; and (iii) GIS- based re-
fined classification. The former typically involves locating study sites 
in extreme and/or representative examples of land- use types (e.g., 
nature reserve, agricultural land, city) and using these qualitatively 
defined types as a categorical land- use variable, often associated with 
qualitative descriptions of features of the land- use types but with 
no further analysis (e.g., Banaszak- Cibicka, Fliszkiewicz, Langowska, 
& Żmihorski, 2017; Goulson, Hughes, Derwent, & Stout, 2002). 
GIS- based single- step classification typically employs a more quan-
titative approach, using unmanipulated variables directly extracted 
from existing data layers or remote- sensing data such as “proportion 
impervious surface” or “proportion agricultural land” as defined by 
the classification system of the data layer in question (e.g., Williams, 
Regetz, & Kremen, 2012; Youngsteadt, Appler, López- Uribe, Tarpy, & 
Frank, 2015) or a combination of a number of these variables (e.g., 
Baldock et al., 2015; Donkersley, Rhodes, Pickup, Jones, & Wilson, 
2014; Senapathi et al., 2015). These variables may be categorized 
by nonstatistically defining criteria, for example, “Agricultural = More 
than 50% of the surrounding designated landscape composed of ag-
ricultural areas” (Lecocq, Kryger, Vejsnæs, & Jensen, 2015). Finally, 
GIS- based refined classification involves an additional step or steps 
to manipulate combinations of relevant land variables into a smaller 
number of variables containing the same information using statistical 
tools (e.g., Sponsler & Johnson, 2015; Verboven, Uyttenbroeck, Brys, 

& Hermy, 2014). This type of approach typically affords more capabil-
ity to generate a land classification tailored to the study question, as 
we will argue below.

As land classification methods have advanced, there has been a 
slow shift within the field of pollinator ecology toward adopting the 
latter approach. However, uptake has been far from universal and 
land classification protocols are typically less powerful than those 
currently in common use in geographical disciplines. A reasonable 
criticism of land classification in pollinator studies is that using land- 
use variables that have been developed from a human perspective, 
such as proportion urban land as defined by a topographic mapping 
data layer, can be an ill fit for the aspects of the landscape that are 
relevant to pollinators (Senapathi et al., 2017). For example, urban 
land consisting of residential houses and gardens may represent 
a considerably richer habitat for bees than an industrial estate or 
central business district (Foster, Bennett, & Sparks, 2017), or ag-
ricultural areas growing flowering crops may be richer than those 
growing cereals (Riedinger, Mitesser, Hovestadt, Steffan- Dewenter, 
& Holzschuh, 2015). This information may be lost in extracting data 
from existing classifications, particularly if demographic variables 
such as human population density are used (Matteson, Grace, & 
Minor, 2013). In essence, it can be argued that adopting human- 
focussed land classification for pollinator research is at best a proxy 
for land classification from the pollinator’s perspective.

Techniques for generating a land classification from raw data as 
a bottom- up approach can draw on existing methods used in geo-
graphical disciplines (Hahs & McDonnell, 2006; Owen et al., 2006) 
and allow flexibility in adapting the land classification to the spe-
cific research question. For example, in studies where transient land 
cover information is required, such as crops grown and bloom stage, 
data from ground surveys may be incorporated into the land clas-
sification. The resolution of the land classification can also be tai-
lored to the space use of the taxon in question; available land cover 
data layers are often at resolutions too low to be appropriate for the 
resolution at which pollinators interact with the land (Büttner et al., 
2004). A bottom- up approach also allows extraction of multiple 
land- use variables at different levels of categorization. For example, 
the question “how does agricultural land- use affect pollinator abun-
dance?” may be followed up by investigating whether any effect 
found is driven by the extent of wildflower strips in the surround-
ing area. The spatial scale at which a pollinator responds to the sur-
rounding land depends on its space use (e.g., foraging range) and the 
response variable in question (e.g., relating to nesting, foraging, or 
mating behavior) (Steffan- Dewenter et al., 2002; Westphal, Steffan- 
Dewenter, & Tscharntke, 2006); a pollinator- focussed land classifi-
cation protocol can include data- driven methods for assessing this.

In this study, we develop a flexible approach to land classifica-
tion that is appropriate for research into the effects of land use on 
pollinators, using urbanization as an example. The advantages of a 
bottom- up approach are particularly apparent for urban land classi-
fication, as its high level of heterogeneity at a fine resolution is often 
missed with coarser classification methods, and its typically intran-
sient land cover patches are well suited to visual classification from 
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satellite imagery. Urban ecology is a growing field (Adams, 2005), and 
in recent years, attention has begun to focus on the effects of ur-
banization on pollinators (Baldock et al., 2015; Harrison & Winfree, 
2015). The wide array of land classification techniques that have been 
employed in this growing body of literature can make comparisons 
between studies difficult, generating a call for wider adoption of geo-
graphical approaches (Winfree, Bartomeus, & Cariveau, 2011).

The protocol that we present combines primary land cover clas-
sification using GIS with a focus on identifying land cover types that 
have a specific relevance to bees and other pollinators, followed by 
information refinement using statistical tools (Figure 1). Refinement 
consists of a three- step process: (i) definition of land- use catego-
ries, (ii) principal components analysis (PCA) on the categories, 
and (iii) cluster analysis to generate a categorical land- use variable 
for use in subsequent analysis. We present a case study for land 
classification of 38 sites in South- East England across a gradient of 
urbanization, within which bumblebee colonies were placed for a 
study investigating the effects of urban land use on colony success.

2  | METHODS

2.1 | Study area

Thirty- eight sites were located across a c. 5,000 km2 area in SE 
England (Figure 2) spanning an urbanization gradient from dense 
continuous urban development in central London (most easterly 
site: 51°32′59.5644″N, 0°2′25.3284″W) to agricultural land in the 
counties of Hampshire, Surrey, and Berkshire (most westerly site: 
51°20′17.1096″N, 1°12′24.9469″W). This represents a typical ur-
banization gradient in western Europe, with dense urban land tran-
sitioning into a wide suburban belt before giving way to agriculture.

2.2 | Creating a land cover map

For the purposes of this study, we use the term land cover to refer 
to surface cover and land use to refer to data generated from land 
classification containing information about various aspects of the 
land. Our protocol involves manual generation of a land cover map 
based on visual inspection rather than using existing data layers 
to increase flexibility in selecting resolution, allow later combina-
tion with ground survey data, and increase relevance to pollinator- 
specific use of landscape through discrimination of relevant habitats 
(e.g., gardens or wildflower strips). Sites were located using Google 
Earth (version 7.1.5.1557) by navigating to the nearest postcode and 
visually adding a Placemark at the exact location of colony place-
ment at an “eye altitude” of 500 m. The site locations were imported 
as a.kml file into QGIS version 2.16 and saved as a.shp file for ma-
nipulation as a data layer in QGIS. The sites data layer was overlaid 
onto the Web- based satellite imagery layer Bing Aerial from the 
OpenLayers plugin (http://www.openlayers.org). A 750- m circular 
buffer [the largest spatial scale of four selected for the land clas-
sification (see below), based on B. terrestris typical foraging range 
(Darvill, Knight, & Goulson, 2004; Knight et al., 2005; Osborne 
et al., 1999)] was generated around each site with a separate data 
layer for each site.

Land cover patches were classified within the buffers sur-
rounding each site. At a scale of 1:5,000 m in agricultural areas, or 
1:2,500 m in built- up areas, polygons were drawn around each land 
cover patch using the QGIS “Split Features” and “Fill Ring” tools, sep-
arating the buffer layer into a series of features representing indi-
vidual patches of a single land cover type, at a resolution separating 
individual buildings (or joined sets of buildings), fields, and gardens 
(Figure 3a). The resolution at which patches are separated may be 
adapted to the focus of the study; for example, it may be more ap-
propriate to group areas of similar density of urban development 
rather than separating individual buildings for a honeybee study, 
due to the greater foraging range of honeybees. Each polygon was 
visually assigned to one of 34 initial land cover classes (e.g., house, 
residential garden, arable field, hedgerow; for full list, see Appendix 
S1) by entering a two- letter code in the “Description” field of the at-
tribute table. For visualization purposes, a layer style was generated 
with a color assigned to each land cover class (Figure 3b).

F IGURE  1 Overview of the multistep protocol presented for 
land classification in pollinator ecology research

http://www.openlayers.org
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2.3 | Maps at multiple radii

The spatial scale at which pollinators respond to the surrounding 
landscape varies depending on aspects of behavior and ecology such 

as foraging range and the response variable in question (Steffan- 
Dewenter et al., 2002; Westphal et al., 2006). Land cover maps at 
multiple biologically relevant radii may therefore be generated for 
later comparison using model selection techniques (see below). In 

F IGURE  2 Location of 38 sites in SE England for which land classification was carried out using the protocol presented here

F IGURE  3  Illustration of the steps involved in manually generating a land cover map for a 750 m radius around a study site in QGIS, using 
an example site in the suburban region to the southwest of London, UK. (a) The first step involves drawing polygons around each land cover 
patch at a set scale (1:5,000 m in agricultural areas or 1:2,500 m in built- up areas) to split the data layer into a series of features representing 
each patch. (b) Each patch is visually classified to one of 80 land cover classes; for color legend, see Appendix S1. (c) The buffer is clipped to 
multiple radii representing different spatial scales at which the study taxon may interact with the surrounding land based on ecology of the 
organism

(a) (b) (c)
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addition to the 750- m buffer, buffers of 500, 250, and 100 m [rep-
resenting steps of spatial scales at which bees may interact with the 
surrounding land (Carvell et al., 2017; Moreira, Boscolo, & Viana, 
2015)] were added by clipping the initial buffer layer to generate 
new data layers at the specified radii. Each site thus had four associ-
ated land cover map layers (Figure 3c).

2.4 | Ground surveys

Visually classifying land cover using satellite imagery is suitable 
for intransient land cover types such as urban or water body land 
classes, but not for transient land cover classes such as crops be-
cause readily available satellite imagery is typically not updated an-
nually. In addition, crops may not be imaged during their flowering 
period, making them unidentifiable from satellite imagery. It is there-
fore recommended to supplement GIS classification with ground 
surveys to produce an up- to- date picture of the land use at the time 
of the study. This is particularly important for bee research, as bees 
may forage on floral resources such as oilseed rape, which are highly 
transient between seasons (Riedinger et al., 2015).

Ground surveys were carried out in May 2016, while bumblebee 
colonies were in the field, at all sites which contained agricultural 
land within a 750 m radius (n = 19). For each site, agricultural fields 
were visited by car or on foot, and the crop grown, bloom stage, and 
presence of wildflower strips and other floral resources recorded. 
This information was incorporated into the existing GIS, splitting 
polygons where necessary to add wildflower strips. This resulted in 
a total of 80 land cover classes.

2.5 | Defining land- use variables from the 
pollinator’s perspective

Eight land- use categories were defined: impervious surface (in-
cluding buildings), flower- rich habitat, domestic infrastructure 
(including parks), gardens, tree cover, agricultural land, open land, 
and road (excluding vegetated verges). These groupings were de-
veloped by considering land- use factors that bees are likely to re-
spond to based on foraging and nesting ecology. Each of the 80 
land cover classes was coded according to whether it belonged to 
each category (see Appendix S2); for example, flower- rich habi-
tat contained gardens, flowering crops, and urban parks, and tree 
cover contained woodland, hedgerow, and free- standing trees. 
The proportion of each of the eight categories at each radius was 
calculated by summing the total area of all land cover classes con-
tained within a category and dividing by the total area of the circle.

2.6 | Principal components analysis

The resulting eight land- use variables are too numerous to use for 
statistical analysis and are likely to be highly collinear; for example, 
proportion open land is likely to be correlated with proportion ag-
ricultural land. Principal components analysis (PCA) is a statistical 
tool that reduces dimensionality in a set of correlated variables by 

identifying a primary set of independent axes (or “principal compo-
nents”) that explain the majority of the variation in the explanatory 
variables (Ringnér, 2008). It is particularly well suited to land- use 
data and is often used as a step to refine multiple correlated land- use 
variables in land classification protocols (Hahs & McDonnell, 2006; 
Owen et al., 2006).

A separate PCA was performed for each of the four radii using 
the prcomp function in R version 3.2.1 (R Development Core Team, 
2015). The principal components that together captured 85% of the 
variation were selected as the land- use variables for further analysis. 
The eigenvector scores [the weighting of a variable on a principal 
component; scores that depart from zero indicate increasing impor-
tance of that variable to the component (Hahs & McDonnell, 2006)] 
for each of the eight initial land- use categories were extracted. 
Variables with scores greater than 0.4 or less than −0.4 were consid-
ered to show a strong association with the principal component. The 
types of variables strongly associated with a principal component 
were used to interpret the axis likely to be represented by the com-
ponent (see Table 1).

2.7 | Cluster analysis

It is possible to use the principal components themselves as a final 
land- use variable for subsequent analysis of the effect of land use 
on the response variables. This is appropriate if continuous vari-
ables are desired, and if the data suggest an evenly distributed, lin-
ear land- use gradient. However, if a clustered land- use structure is 
suspected, as in the present data (see Figure 5), an additional step of 
cluster analysis is recommended (Owen et al., 2006). This also has 
the advantage of combining all of the principal components into a 
single categorical land- use variable, which can simplify analyses in-
volving several covariates.

We performed a separate cluster analysis on the principal 
components for each radius [hclust function; R package clus-
ter (Maechler, Rousseeuw, Struyf, Hubert, & Hornik, 2015)]. 
Hierarchical agglomerative clustering is a technique that examines 
distances between observations in the n- dimensional space occu-
pied by the principal components and sequentially pairs together 
the two closest observations (and later clusters) to form a new 
cluster (Zepeda- Mendoza & Resendis- Antonio, 2013). The exact 
outcome of the clustering depends on the method used to deter-
mine the distance between an observation and an existing cluster 
(e.g., taking the mean of the distance of all observations within 
a cluster as opposed to the minimum or maximum); here, we use 
Ward’s method, which tends to produce clusters with more equal 
size (Ward, 1963). Similar land classification methods typically se-
lect optimum numbers of clusters using an ad hoc minimum group 
size based on practicality and geographical relevance (Bunce, 
Barr, Clarke, Howard, & Lane, 1996; Hall & Arnberg, 2002; Owen 
et al., 2006); following this approach, we split clusters so that each 
group contained a minimum of five sites. This produced a single 
categorical land- use variable at each of the four radii (hereafter 
called R750, R500, R250, and R100).
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2.8 | Radius selection

As previously mentioned, the spatial scale at which an animal re-
sponds to the surrounding land use depends on numerous factors 
and cannot necessarily be determined a priori (Steffan- Dewenter 
et al., 2002). A more data- driven approach to determining spatial 
scale consists of conducting an initial analysis using the primary 
response variable or all response variables and using model selec-
tion to determine to which spatial scale the response variable(s) 
respond most strongly, and hence which land- use radius to use for 
subsequent analysis.

We employed a model selection approach using Akaike’s in-
formation criterion corrected (AICc) for small sample sizes. We 
built a full model for each of the four radii containing all covari-
ates (in this case, weather and time covariates) and the relevant 
land- use variable (R750, R500, R250, or R100) against the pri-
mary dependent variable (in this case, peak colony size). The land- 
use variable contained in the model with the lowest AICc value 
(Johnson & Omland, 2004) was selected as the spatial scale to 
which the response variable responds most strongly and thus 
used for subsequent full analysis. If the best two or more mod-
els are within <2ΔAICc of each other, biological relevance (e.g., 
known foraging range) may be used to select the final radius from 
the best set. Alternative approaches for datasets with more than 

TABLE  1 Results of principal components analyses on 
proportion land- use categories at each of four radii

Radius PC1 PC2 PC3

750 m Standard deviation 2.154 1.467 —

Proportion of variance 0.580 0.269 —

Cumulative proportion 0.580 0.849 —

Eigenvector scores —

Proportion impervious 
surface

0.440 0.000 —

Proportion flower- rich 
habitat

0.147 0.512 —

Proportion domestic 
infrastructure

0.458 0.037 —

Proportion open land −0.247 0.560 —

Proportion tree cover −0.156 −0.578 —

Proportion agricultural 
land

−0.415 0.258 —

Proportion gardens 0.349 0.142 —

Proportion road 0.441 0.032 —

500 m Standard deviation 2.133 1.463 —

Proportion of variance 0.569 0.268 —

Cumulative proportion 0.569 0.836 —

Eigenvector scores —

Proportion impervious 
surface

0.442 −0.054 —

Proportion flower- rich 
habitat

0.066 −0.515 —

Proportion domestic 
infrastructure

0.461 −0.085 —

Proportion open land −0.289 −0.515 —

Proportion tree cover −0.085 0.610 —

Proportion agricultural 
land

−0.433 −0.222 —

Proportion gardens 0.338 −0.176 —

Proportion road 0.443 −0.082 —

250 m Standard deviation 2.141 1.440 —

Proportion of variance 0.573 0.259 —

Cumulative proportion 0.573 0.832 —

Eigenvector scores —

Proportion impervious 
surface

0.440 −0.011 —

Proportion flower- rich 
habitat

0.157 0.426 —

Proportion domestic 
infrastructure

0.462 0.033 —

Proportion open land −0.226 0.583 —

Proportion tree cover −0.139 −0.599 —

Proportion agricultural 
land

−0.418 0.284 —

Proportion gardens 0.373 0.188 —

Proportion road 0.429 0.047 —

(Continues)

Radius PC1 PC2 PC3

100 m Standard deviation 2.019 1.407 1.007

Proportion of variance 0.509 0.248 0.127

Cumulative proportion 0.509 0.757 0.884

Eigenvector scores

Proportion impervious 
surface

0.424 −0.115 −0.428

Proportion flower- rich 
habitat

0.174 0.411 0.614

Proportion domestic 
infrastructure

0.484 −0.041 −0.151

Proportion open land −0.016 0.673 −0.165

Proportion tree cover −0.314 −0.454 0.416

Proportion agricultural 
land

−0.411 0.367 −0.118

Proportion gardens 0.406 0.121 0.420

Proportion road 0.352 −0.093 0.163

Interpretation Urban to 
rural

Open to 
covered

Flower- 
rich to 
flower- 
poor

The principal components (PCs) that together capture approximately 
85% of the variation were selected for subsequent analysis. Eigenvector 
scores for each of the land- use variables at each PC are shown and 
scores greater than 0.4 or less than −0.4 highlighted in bold and inter-
preted as having a strong relationship to that PC. The axes of each PC 
were interpreted based on these associated variables.

TABLE  1  (Continued)
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one dependent variable include performing this initial analysis for 
all dependent variables and selecting the spatial scale most com-
monly supported, or selecting the relevant spatial scale for each 
dependent variable.

The final categorical land- use variable at the appropriate spatial 
scale may now be included in a full analysis using standard statistical 
methods.

3  | RESULTS

3.1 | Land cover map

The manual land cover classification step using satellite imagery in 
QGIS produced land cover maps for the area surrounding each of 
the 38 sites at a 750 m radius (Figure 4). The most common land 
cover class was woodland, making up 21.2% of the total land area in 
the landscape surrounding the sites at a 750 m radius, followed by 
roads at 14.4% and housing at 12.1%. Site maps consisted of 36 to 
845 (mean: 368) land cover patches.

3.2 | Principal components analysis

The results of PCAs carried out on the proportion of eight land- 
use categories at each of the four radii are shown in Table 1. 
Approximately 85% of the variance was captured by two principal 
components (PCs) at the 750, 500, and 250 m radii and three PCs 
at the 100 m radius. By examining the eigenvalues of the land- use 
categories in each of the PCs, the PCs were interpreted for all 
radii as PC1: urban to rural axis; PC2: covered to open axis and 
(at the 100 m radius only); PC3: flower- rich to flower- poor axis.

The sites varied considerably in scores for each of the PCs at 
each radius (Figure 5), and the grouping of scores when all PCs 
were considered indicated clustering of the sites. For example, at 
the 500 m radius, a group with positive scores in PC1 and near- 
zero scores in PC2, a group with negative in PC1 and positive in 
PC2, and a group with negative scores in both PCs were indicated 
(Figure 5b). As PC1 was interpreted as “urbanness” and PC2 as 
“openness,” this suggested a group that was built- up and moder-
ately open, a less built- up and less open group, and a less built- up 
but open group. This supported the employment of a formal cluster 
analysis.

3.3 | Cluster analysis

Hierarchical cluster analysis using Ward’s method on the princi-
pal components, with a minimum cluster size set to five, produced 
one categorical land- use variable for each site, with two clusters 
at R750, three at R500, two at R250, and four at R100 (Figure 6). 
These were given descriptive names based on dominant land cover 
features of the sites in each cluster, ranging from the landscape to 
the local scale as follows: R750: urban, rural; R500: city, village, 
agricultural; R250: built- up, open; R100: dense housing, sparse 
housing, wooded, fields.

3.4 | Radius selection

Model selection of full models for each radius containing all co-
variates and the relevant categorical land- use variable (R750, R500, 
R250 or R100) against the primary dependent variable peak colony 
size showed the model containing R500 to have the lowest AICc 
(ΔAICc to next best model: 2.7; Table 2). This suggests that peak 
colony size responds most strongly to land use at a 500 m radius sur-
rounding the sites, and thus, that land use at the 500 m radius should 
be used in subsequent analysis.

4  | DISCUSSION

We describe a protocol for comprehensive classification of land use 
surrounding study sites suitable for pollinator ecology research. 
Our method employs a multistage approach that allows flexibility in 
adapting the specific steps to the data or research question involved. 
We start by manually mapping land cover using visual identification 
of land cover patches from satellite imagery at a resolution appropri-
ate to the taxon studied. This is supplemented by ground surveys 
for land cover patches where habitats or resources are transient. 
Land- use classes are then defined with specific reference to how the 
taxon interacts with the landscape based on knowledge of pollinator 
ecology, and the dimensionality of these variables is reduced using 
PCA. If the data suggest clustering of land- use types, cluster analy-
sis is performed to incorporate the principal components into a cat-
egorical variable. Finally, model selection is carried out to determine 
the appropriate spatial scale for further analysis. The final land- use 
variable is a simple categorical variable at a single spatial scale, which 
contains information from multiple steps of refinement to generate a 
robust land classification from the pollinator’s perspective.

In the case study presented here, the sites were selected to rep-
resent a gradient of urbanization. Interestingly, the land classification 
elucidated that, rather than forming a linear gradient, land- use types 
clustered into relatively discrete categories that were not apparent 
from initial qualitative inspection. For example, at the 500 m radius, 
sites were clustered into three distinct groups: agricultural, village, 
and city. Land surrounding agricultural sites was dominated by fields, 
while village sites were characterized by housing in the immediate 
vicinity of the colony within a rural landscape, typically with exten-
sive tree cover, and city sites consisted of dense innercity urban land. 
Without this approach, village sites may have not been distinguished 
from agricultural sites as both groups are predominantly surrounded 
by rural land. Our analysis identified the importance of the covered 
to open axis (PC2) in addition to the urban to rural axis and showed 
that agricultural and village sites differed sufficiently in how open 
they were to group separately following cluster analysis. Incidentally, 
analysis of the primary dependent variable in the dataset used in 
this case study, peak colony size, showed that colonies in the two 
land- use types containing built- up areas—village and city—grouped 
together, performing differently to agricultural colonies (Samuelson 
et al., submitted), supporting the land- use clustering generated by 
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our land classification protocol. To compare our classification with a 
commonly used variable in single- step classification, we calculated 
percentage impervious surface for our sites: City sites contained 
mean 56.2% (±SE: 4.0%) impervious surface cover, while village and 
agricultural sites contained 13.8 (±3.7)% and 8.6 (±4.5)% impervious 
surface, respectively. This suggests our classification broadly agrees 
with the gradient described by this variable.

The primary value of our approach is in its flexibility to adapt 
to the focal study system and research question, due to the nature 
of building a land classification from the bottom- up rather than 
co- opting existing classifications (Owen et al., 2006). The ability to 
differentiate land cover patches at relatively fine resolution (up to 
1:2,300 scale using the Bing Aerial QGIS layer) is more appropriate 
to pollinator spatial scales than many existing land cover maps [e.g., 
CORINE in Europe; scale: 1:100,000; minimum width of linear ele-
ments: 100 m (Büttner et al., 2004)]. Finer resolution data layers are 
available only for certain geographical areas (Troy & Wilson, 2006) 
and are often expensive, so our protocol may represent a good op-
tion for lower budget studies as the software used is open source. 
Existing land classifications that do contain data at a resolution rele-
vant to pollinators such as the CEH Countryside Survey Land Cover 
Maps (e.g., LCM2015; Rowland et al., 2017) for the UK often com-
bine land cover types that are extremely different from a pollinator 
perspective [e.g., “built- up areas and gardens” in LCM2015 covers as 
varied land types as industrial estates, urban parkland, and domestic 
gardens (Rowland et al., 2017)], which can be separated using our 
approach. An additional advantage comprises the accommodation 
of transient habitats and resources through combining satellite im-
agery with ground survey, with initial land classification allowing tar-
geted ground surveys of only the necessary land- use patches. This 
may also be used to track seasonal differences in foraging resources, 
by supplementing a base map with regular ground surveys. There 
may also be value in further manipulation of the data generated from 
the land classification presented here. Many pollinator ecology stud-
ies are interested in landscape metrics such as landscape diversity 

(Boscolo, Tokumoto, Ferreira, Ribeiro, & dos Santos, 2017), which 
can be calculated from these data (Yeh & Huang, 2009), or individ-
ual land- use elements such as the proportion area of a specific crop 
can be extracted for follow- up questions. The method also allows 
qualitative uses of the land cover map, such as identifying foraging 
hot spots in honeybee waggle dance studies (Couvillon, Schürch, 
& Ratnieks, 2014). Finally, refining the classification using statisti-
cal tools rather than directly using individual land cover variables in 
subsequent analysis allows the incorporation of an extensive set of 
land- use information within a single variable.

The most obvious limitation of our protocol is that it is time- 
consuming. The most labor- intensive step is generation of the land 
cover map. The time required depends on the complexity of the 
landscape and the resolution and upper radius selected; for exam-
ple, it took an experienced researcher c. 4 hr to generate a map 
and classify the land cover patches for each site in our case study, 
which was at relatively high resolution in complex urban landscapes. 
Radius and resolution should therefore be selected at the minimum 
required for ecological relevance. Although the advantages of this 
step have been outlined above, where necessary, existing data layers 
may be used if they are available and relevant to pollinator ecology, 
and the later land- use category definition, PCA, and cluster analy-
sis steps applied to these data. These latter steps remain important 
because land- use categories from existing data layers present the 
same problems with collinearity as study- specific maps generated 
using the protocol described here. Ground truthing can also be time- 
consuming, depending on landscape complexity and patch accessi-
bility (here 2–3 hr per site). Ground truthing time can be minimized 
by targeting only relevant patches (e.g., arable fields) or using UAV 
(drone) surveys if the crop of interest is identifiable from a distance 
(e.g., oilseed rape).

Another limitation relates to errors introduced in classifying land 
cover patches from satellite imagery, particularly in cases where similar 
land cover types are hard to distinguish. This can be mitigated by ver-
ification with ground surveys and/or reanalysis of a subset of the data 

F IGURE  4 Land cover maps at a 750 m 
radius (inset circles) were generated 
for 38 sites in South- East England; four 
representative sites across a gradient 
of urbanization are shown (large inset 
circles). Yellow circles indicate locations 
of sites
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F IGURE  5 Eigenvector scores on principal components that captured approximately 85% of the variation in a principal component 
analysis (PCA) performed on land- use variables classified at each of four radii around each study site (two- letter codes). The clustering of 
the land- use types generated from subsequent cluster analysis (Figure 6) is illustrated in the grouping of PC scores, shown here separated 
by shaded boxes (determined by the later cluster analysis). For example, at the 500 m radius (b), the “City” cluster (far left) is typified by 
a positive score on PC1 and neutral score on PC2, “Village” by positive to neutral PC1 and negative PC2, and “Agricultural” (far right) by 
negative PC1 and PC2. Inset circles show land cover maps at the relevant radius for representative sites for each group
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by an additional researcher to quantify error. Finally, manually drawing 
polygons to separate land cover patches can be subjective in terms of 
whether to separate or combine a patch. This highlights the importance 

of selecting a scale at which to view the satellite imagery at the start of 
the work, and it is important to note that “number of patches” is not an 
accurate measure of landscape heterogeneity for this reason.

F IGURE  6 Cluster dendrograms of land use of 38 sites at a 750, 500, 250 and 100 m radii. Cluster analyses using Ward’s method were 
performed on a set of principal components describing land use to group sites into categorical land- use types (red boxes), which were given 
descriptive names from the landscape to the local scale. At the terminus of each branch, the two- letter site name is given with an image of 
the GIS land cover map (see Appendix S1 for color legend)
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The technique described here has potential applications in both 
pollinator ecology and other fields. While our case study is based 
upon B. terrestris, land use has been shown to impact numerous 
other pollinator taxa (Baldock et al., 2015; Senapathi et al., 2015), 
to which our approach may be applied. In pollinator ecology, our 
protocol may be combined with existing models to assess effects 
of resource availability with reference to land use (Kennedy et al., 
2013; Lonsdorf et al., 2009; Williams et al., 2012) or with methods 
designed to evaluate landscape quality for pollinators (Couvillon 
& Ratnieks, 2015). Our method can also be applied to the studies 
of the interactions between land- use and agricultural pest control, 
for which (as in pollinator ecology) land classification at a finer res-
olution than available data layers or with separation of specific land 
types (e.g., fallows, field margins) is often required (Bianchi, Booij, 
& Tscharntke, 2006), and varied responses of pest species and nat-
ural enemies to land use necessitate flexibility in the spatial scales 
of analysis (Thies, Roschewitz, & Tscharntke, 2005). Calculations 
of secondary landscape metrics that are known to affect natural 
pest control (Thies & Tscharntke, 1999), including landscape het-
erogeneity, may also be relevant to this field. Our protocol may be 
extended to other systems for which human- focussed land classi-
fications are not a suitable fit, as the spatial scale, land- use catego-
ries, and resolution at which the land is classified may be adapted 
to the study system and research aims in question.

5  | CONCLUSIONS

The aim of this study was to develop a land classification protocol for use 
in pollinator ecology research, from a pollinator rather than human per-
spective. Our protocol builds on the existing array of land classification 
techniques used in studies of land- use effects on pollinators, expand-
ing on methods employed in the pollinator literature (Banaszak- Cibicka 
& Żmihorski, 2012; Sponsler & Johnson, 2015; Verboven et al., 2014) 
and adapting techniques developed in geographical research (Hahs & 
McDonnell, 2006; Owen et al., 2006). We have shown that bottom- up 
land classification is feasible for studies such as that described in our 

case study and that useful land- use data may be generated from doing 
so. Future research should expand on and refine this approach, and 
we suggest that land- use studies in pollinator ecology should broadly 
adopt GIS- based multistep land classification techniques.
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