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Abstract: The use of electronic devices for canopy characterization has recently been 

widely discussed. Among such devices, LiDAR sensors appear to be the most accurate and 

precise. Information obtained with LiDAR sensors during reading while driving a tractor 

along a crop row can be managed and transformed into canopy density maps by evaluating 

the frequency of LiDAR returns. This paper describes a proposed methodology to obtain a 

georeferenced canopy map by combining the information obtained with LiDAR with that 

generated using a GPS receiver installed on top of a tractor. Data regarding the velocity of 

LiDAR measurements and UTM coordinates of each measured point on the canopy were 

obtained by applying the proposed transformation process. The process allows overlap of 

the canopy density map generated with the image of the intended measured area using 

Google Earth
®

, providing accurate information about the canopy distribution and/or 

location of damage along the rows. This methodology was applied and tested on different 

vine varieties and crop stages in two important vine production areas in Spain. The results 

indicate that the georeferenced information obtained with LiDAR sensors appears to be an 

interesting tool with the potential to improve crop management processes. 
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1. Introduction 

Electronic measurements of canopy characteristics appear to be the most accurate method of 

providing reliable and objective information regarding the intended target during pesticide application. 

The variable rate application concept [1-3] requires that the sprayer be updated with electronic 

equipment able to measure, save and manage a large amount of information relative to the canopy 

geometry. This information will then be used either in real time to instantaneously modify the working 

parameters of the sprayer [2,4,5] or in a post process way to develop canopy maps to be used as a 

decision making tool in further agronomic applications [6-9]. In the last few years, different electronic 

canopy measurement procedures have been developed. Some researchers have proposed comparative 

measurements of canopy structure using ultrasonic or LiDAR (Light Detection and Ranging)  

sensors [10-13]. In all cases, LiDAR appears to be the most accurate procedure for canopy 

measurements. Specific problems in the use of ultrasonic sensors have been noted [14-16], mainly due 

to the influence of weather conditions or the interference produced by multiple sensor operations. 

According Lee et al. [17] the retrieval of tree and forest structural attributes from LiDAR data has 

focused largely on utilising canopy height models, but these have proved only partially useful for 

mapping and attributing stems in complex, multi-layered forests. For that reason this research group 

developed a new index, termed the Height-Scaled Crown Openness Index (HSCOI), which provides a 

quantitative measure of the relative penetration of LiDAR pulses into the canopy. Lee et al. [17] 

concluded that the HSCOI was developed to maximize the amount of information that can be retrieved 

from scanning LiDAR and its use facilitated the location, density and height of tree stems associated 

with both the upper and sub-canopy strata. Goodwin et al. [18] used a LiDAR for the assessment of 

(eucalyptus tree) forest structures in Australia. In their conclusions the authors demonstrate that 

LiDAR data can be used to map the structural variation in eucalyptus forests with different proportions 

of tree development stages. Estimated crown volume as derived from ground measurements and 

LiDAR data were shown to be highly correlated with an R
2
 of 0.79 at the plot scale. 

Van der Zande et al. [19] used a commercially available and inexpensive LiDAR (a SICK LMS 200) 

for canopy characterization on artificial trees and concluded that the sideway lateral measurement 

pattern was the most appropriate measuring method to describe the structural aspects of the artificial 

tree. Moorthy et al. [20] proposed a methodology for olive tree crown characterization using an 

Intelligent Laser Ranging and Imaging System (ILRIS-3D). From the observed 3D laser pulse returns, 

quantitative retrievals of tree crown structure and foliage assemblage were obtained. Robust 

methodologies were developed to characterize diagnostic architectural parameters, such as tree height, 

crown width, crown height, crown volume and Plant Area Index (PAI) which are not easily obtained 

parameters with traditional in situ methods. 

Palacín et al. [21] proposed a method to estimate leaf surface and canopy volume after LiDAR 

measurements that used the diameter and position of each laser spot in the canopy. In their study, the 

relationship between canopy volume and leaf surface was generated using the total canopy 

measurements, not individually for each crop slice, defined as the vertical outline of the vine for the 

current position of the LiDAR. The mathematic relationship obtained is interesting and can be used in 

further LiDAR measurements in other circumstances. 
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Canopy characterization using LiDAR has been also proposed in studies of orchards and vine 

plantations [5,22,23]. In these studies, one of the greatest challenges was identifying the correct and 

precise procedure to join measurements from the left and right side of the crop. Different tedious and 

difficult methodologies have been proposed to enable the correct synchronization between left and 

right measurements. These methods include placing reference elements on exact points in the row, 

allowing one to obtain a spot cloud representing the canopy resulting in complicated data management. 

Further developments have improved this process. For example, an automated system has been 

developed [24]. In this automated system, the spot cloud was processed using specific software that 

automatically overlapped the data. This software was developed in VBA (Visual Basic for 

Applications) using AUTOCAD (Autodesk, Inc.). 

The use of GPS has been implemented in other studies together with electronic devices for canopy 

characterization. For example, Zaman et al. [14] added a GPS receiver to their sprayer to control and 

monitor the tractor speed during canopy scanning using ultrasonic sensors in citrus plantations. 

Schumann et al. [25] used a Trimble AgGPS 132 with differential correction in an attempt to 

georeference the measurements obtained from ten ultrasonic sensors in citrus plantations. 

Synchronized information obtained using ultrasonic sensors and DGPS allowed georeferenced maps of 

canopy volume or tree height maps to be obtained. Further development of this research [26] allowed 

the elaboration of maps containing tree dimensions measured using LiDAR sensors. The generated 

maps were subsequently used to define a differential fertilizer program. 

Generation of canopy maps and their further use in the improvement of different agronomy 

procedures in fruit and vine plantations has been the objective of several research groups, who have 

had varied success. Shimborsky [6] proposed a canopy characterization method that employed the 

configuration of canopy maps using satellite images together with detailed digital information 

regarding the land. The final product of their method provides a level line curves map on which the 

geometrical shape of the trees can be observed. However, this method is difficult, expensive and not 

directly applicable to current fruit or vine plantations. 

This study was conducted to generate a georeferenced canopy map of measured vine plantations 

using measurements collected generated by a combined GPS and LiDAR system. The main objective 

of this study can be summarized in the following partial objectives: 

(a) Configuration of a LiDAR and GPS system for canopy scanning. 

(b) Development of a proper methodology to georeference the frequency of LiDAR returns and its 

relation with canopy characteristics 

(c) Validation of the methodology in different vine plantations and situations. 

2. Materials and Methods 

2.1. LiDAR Sensor 

A LMS-200 LiDAR (Sick, Düsseldorf, Germany) was used in this study. This LiDAR is a  

fully-automatic divergent laser scanner based on measurement of the time-of-flight (TOF) with an 

accuracy of ±15 mm in a single shot measurement and a 5 mm standard deviation in a range of up  

to 8 m [21]. The time between the transmission and reception of the pulsed near-infrared laser beam is 
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used to measure the distance between the scanner and the reflecting object surface. The laser beam is 

deflected by a rotating mirror turning at 4,500 rpm (75 rps), which results in a fan shaped scan pattern 

in which the maximum scanning angle is 180°. The angular resolution can be set to l°, 0.5°, or 0.25°, 

making 181, 361 and 400 measurements, respectively, at full scanning range with a response time  

of 13, 26 and 53 ms, respectively. The LMS-200 has a standard RS232 serial port for data transfer, 

which can be set to 9.6, 19.2 or 38.4 Kbaud. The selected configuration during the field tests 

conducted for this study was: angular resolution 1° range of 180° and data transfer 38.4 Kbaud. These 

characteristics enabled the best resolution to be obtained during the scanning process. 

2.2. Definition of Grid Resolution for LiDAR Measurements 

Before any scan for canopy characterization, the grid resolution of the sensor must be defined. This 

aspect will allow further comparisons among results obtained under different conditions and/or with 

different sensors. In this study, the grid resolution was established according to Figure 1. 

Figure 1. Definition of the reference grid for LiDAR measurements. 

 

 

The dimensions of a single cell of the grid depend on the forward speed, distance from the LiDAR 

sensor to the measured point on the canopy and the measuring frequency of the sensor, which are 

defined in Equations (1) and (2): 

    
                        

 
  (1)  

   
 

 
 (2)  

 

 

where dh is the vertical distance (height) between two consecutive laser returns (m); θ is the angle of 

each measurement (°); d is the distance from the LiDAR to the reference surface (m); dw is the 

horizontal distance (width) between two consecutive scans (m); V is the forward speed (m·s
−1

); and f is 

the frequency of scanning (Hz). 
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The reference grid established for any sensor will affect the final resolution [19,27] and the 

interpretation of the spots on the map obtained. For narrow reference grids, the spot cloud density will 

be increased and comparison with other measurements could be erroneous. Similar reference grids 

have been defined previously [13,28,29]. 

2.3. GPS Receiver 

A Trimble AgGPS-132 DGPS antenna (Trimble Navigation Limited, Sunnyvale, CA, USA) and a 

LiDAR sensor were mounted on an intended stainless-steel mast placed between the tractor and the 

sprayer according to a previously described procedure [1,4,13] (Figure 2). GPS was configured to 

receive information at the maximum precision level using the differential correction from the EGNOS 

satellite (European Geostationary Navigation Overlay Service), which provides much more accurate 

position data and enhanced accuracy of speed determination than non corrected units [30]. Data 

regarding the forward speed and specific position on the field were acquired via serial port RS 232, 

using the National Marine Electronics Association (NMEA) 0183 protocol. The frequency of the data 

acquisition was 1 Hz. 

Figure 2. The LiDAR sensor and GPS receiver installed on the tractor for canopy measurements. 

 

 

2.4. GPS and LiDAR Communication 

The LiDAR sensor and GPS were both connected to a computer for data management and storage. 

Serial port RS 232 was used to connect both the GPS receiver and the LiDAR sensor to the computer. 

A power source (12 V DC for GPS and 24 V DC for LiDAR sensor) was used to supply energy to the 

system (Figure 3). The specific developed software, LiDARScan v.1
®

, based on VBA (Visual Basic for 

Applications) was used for LiDAR data management. In addition, the HyperTerminal tool (Windows
®

) 

was used to store the NMEA data sent by GPS. Synchronization of GPS and LiDAR was obtained 

using the starting time (in Universal Time Coordinated (UTC) format)) as a reference for the 

measurement process.  
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Figure 3. LiDAR, GPS receiver and computer. Scheme of communication. 

 

2.5. Field Measurements 

The scanning process started when the tractor began the circulation between vine rows. On each 

track, vegetation on the left side of the tractor was scanned at 1.25 m·s
−1

 (4.5 km·h
−1

). The LiDAR 

position was checked and adjusted to place the sensor at 1.40–1.60 m over the ground so that the entire 

canopy could be scanned. Considering the measurement frequency of the LiDAR (10 Hz) assuming 

one single crop slice as individual measurement, and the tractor forward speed, the system was able to 

store and process 181 measurements every 0.1 s, which was equivalent to 0.125 m of displacement 

along the vine line. This scan process was repeated from the opposite side of the canopy to scan the 

other half of the vegetation. Figure 4 shows the measurement procedure with LiDAR.  

Figure 4. Measuring procedure: a LiDAR sensor placed on the mast reads the canopy on 

the left side of the tractor track. 

 



Sensors 2011, 11                            

 

 

6243 

Reference elements placed on exact points in the row can be observed as an example of the 

previous method used to assembly left and right measurements prior the use of the georeferencing 

process. The large curved object above the vines represents the laser beams that have not hit any 

object. Those lasers are represented, according the specifications of the sensor, as a curvy surface 8 m 

away from the LiDAR. Depending on the row line length, in some field tests it was necessary to restart 

the system at the end of the first track (left side) due to the large amount of data generated by the 

LiDAR sensor. During the whole process and due to the specific characteristics of the sensor, only 

single LiDAR returns were recorded for every measured point. 

Field tests were conducted during Spring and Summer of 2009 and 2010 in fields containing 

different vine varieties—Merlot and Cabernet Sauvignon—during several crop stages (65, 75 and 85 

according to the BBCH classification) [31]. Experiments were conducted in two different vine regions, 

Barcelona and Lleida (Spain).  

2.6. Data Georeferencing Procedure 

Once the two (*.txt) files were obtained (one from LiDAR and one from GPS), the georeferencing 

procedure started with data import from the GPS receiver (*.txt file) in NMEA format. This file was 

then transformed into UTM (Universal Transverse Mercator) coordinates using the $GPRMC 

(Recommended Minimum Specific GPS/TRANSIT Data) line. UTM is a coordinate system based on 

the cartographic projection that can be used to plot the entire mobile trajectory and the individual 

position of each data point obtained using LiDAR. Data transformation from NMEA to UTM was 

conducted according to the method proposed by Paggi et al. [32] using the WGS84 coordinate system.  

Figure 5. Procedure for determining the UTM coordinates of each LiDAR measurement point. 

 

 

The first step of the georeferencing procedure was to establish the position of the LiDAR sensor 

(Figure 5) on each scan slice (XP, YP) and its relative position between two consecutive points with 

GPS measurements. The flow chart of this complex process is shown in Figure 6. 
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Figure 6. Flow chart of the first part of the georeferencing method. 

 

 

Points (Xn, Yn) and (Xn+1, Yn+1) (Figure 5) represent two consecutive points with UTM coordinates 

obtained by GPS. For each point, the measurement time (tGPS) was associated and registered. From this 

information, the values of β, which is the trajectory azimuth of the tractor on the row, and dp, which is 

the distance from the last UTM identified point to the (Xp, Yp) position, were calculated according to 

Equations (3) and (4). The LiDAR measurement time (tL) was also calculated for each point: 

        
         

          
 (3) 
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After this process, the coordinates of each LiDAR measurement (XP,YP) were calculated according 

to Equations (5) and (6). Those expressions allow determination of the exact position of the LiDAR 

sensor during each scan. Once the LiDAR position was calculated, the individual UTM coordinates of 

each measured point on the canopy were obtained (Figure 7). Values of (Xi, Yi, Zi; θi) for each point 

measured in the canopy, i [0...180], were the obtained according to Equations (7), (8) and (9): 

                  (5)  

                  (6)  

                        (7) 

                        (8) 

             (9) 

Figure 7. Spot cloud of measurements obtained using the LiDAR sensor. For each point, 

the georeferencing method allows the UTM coordinates to be defined. Green points 

represent the total measurement data for the canopy. Grey points represent values obtained 

in one scan. 

 
  

               
           

             
 

                   
  (4)  
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2.7. Procedure of LiDAR returns Map Generation 

After calculation of the coordinates of each point, the process of LiDAR returns density mapping 

was conducted to delimit the corresponding scanned area in the field. This area was defined by the 

UTM coordinates of its centre point and the two main dimensions (length and width; Figure 8(a)).  

Figure 8. Graphical sequence of generation of the density map: (a) definition of mapping 

area characteristics; (b) grid definition; (c) mapped area divided according to the defined 

grid; (d) defined grid area with all measured points; (e) assignment of minimum and 

maximum height in each cell of the grid; (f) plot of map of density according to the 

established intervals. 
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The positioning of the centre point can be arranged using two different procedures: (a) automatically 

by calculating the average point of the UTM coordinates of all measured points obtained with LiDAR; 

or (b) by manual introduction of the centre point UTM coordinates. The process continues with the 

definition of the grid resolution that represents the real surface of a single data point. In this case, the 

map resolution was established in square units of 0.25 m
2
 (Figure 8(b,c)). Once the grid area was 

established, the system represented all of the measured points in a two dimensional layout  

(Figure 8(d)), and each square unit was linked to a defined range of measurements according to the 

maximum and minimum height (Zn) (Figure 8(e)). Finally, the map of the LiDAR returns densities was 

obtained and represented according to the selected levels of iso-density previously defined (Figure 8(f)). 

Figure 9 shows the flow chart of the entire canopy map generation process. 

Figure 9. Flow chart of the second part of the georeferencing method. 
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3. Results  

Owing to a previous detailed georeferencing process, the system employed in the present study 

generates a text file with the UTM coordinates of each of the points measured on the canopy area with 

the LiDAR sensor. This file can be managed using some specific software able to represent 3D points 

(Autocad
®

, Matlab
®

) for the 3D representation of the canopy. 

3.1. Georeferenced Density Map 

The georeferenced map could be associated with the canopy density map assuming a good 

correlation between laser returns and leaf area [13]. The georeferencing process developed in this 

research together with a five class density classification based on the number of LiDAR returns per 

surface unit allows representation of the measured row lines (Figure 10) with information regarding 

canopy presence and canopy distribution along the line. Gaps, zones with high leaf development, and 

zones with very low leaf area value can be precisely defined and placed into the exact position in  

the parcel. 

Figure 10. Georeferenced density map obtained after LiDAR measurement process on the 

field. Intervals have been defined according minimum and maximum LiDAR returns·cm
−2

 

obtained in the field. Left: Cabernet Sauvignon (2008); right: Merlot (2009). 

 

 

Furthermore, once all of the spots were classified in their corresponding boxes, the procedure 

detailed on the flow chart shown in Figure 9 was applied to obtain a georeferenced grid map. A 

graphical interpretation of this step is show in Figure 10, in which a grid map of the spots cloud is 

transformed in a georeferenced map representing the rows of crops in the parcel. 

Once the density map was obtained, the UTM coordinates of each pixel of the four corners (A, B, C 

and D from Figure 11) of the (*GIF) file were defined. Applying a conversion process to this (*GIF) 

led to production of a new (*KMZ) file that was saved as a Google Earth
®

 compatible file. The use of 

Virtual Globes such as Google Earth and NASA Word Wind, and the production of high-quality 

Keyhole Markup Language (KML or its equivalent zipped KMZ) representations of scientific data has 

been widely described by [33]. Launching the (*.KMZ) file on a computer in which Google Earth
®

 had 

previously been installed enables the proposed application of the obtained maps allows to draw the 
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generated density map exactly over the ortophotography of the measured parcel (Figure 11). 

Identification of gaps, leaf accumulation zones or other aspects related to of affecting canopy 

development can then be used in the crop management process. 

Figure 11. Procedure for the conversion of GIF files to KMZ files. This proposed method 

allows the density map over the image of measured field to be seen. 

 

Figure 12. LiDAR return density obtained after LiDAR measurements can be split into the 

different heights obtained separately.  
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Other proposed applications of this density map are shown in Figure 12. This figure shows the 

partial canopy density for each level defined in the entire canopy. Spot clouds can be classified into 

each individual grid box according to their Zn coordinates, after which specific information about the 

canopy distribution based on height can be obtained and plotted. This information appears to be useful 

in processes based on the variable application rate in pesticide application in vineyards [1,4], allowing 

selection of different working parameters (i.e., nozzle flow rate, air flow rate, air direction…) 

according to the non uniform canopy distribution. 

3.2. Estimation and Georeferencing of Specific Canopy parameters 

The interest of this new proposed method can be measured by its capability to estimate some 

canopy parameters and their geographical distribution along the field. A specific correlation between 

LiDAR return density and Leaf Area Index (LAI) was determined by [13], according Equation (10): 

                      (10)  

where LAIM is the value of leaf area index manually measured (m
2
·m

−2
); and IL the amount of LiDAR 

return (returns·m
−1

).  

This correlation (R
2
 = 0.409) was determined with values obtained only with one single LiDAR 

pass (one side of the crop). Then, following the same procedure all the data (LiDAR returns) obtained 

in this research was managed and classified in four different canopy heights, dividing the whole 

canopy in individual zones of 0.40 m height. For every single cell of 0.40 m × 1.0 m length on the row 

the value of 50% of impact LiDAR returns obtained was calculated and transformed into a value 

representing the leaf area estimated (LAIE) applying Equation (10). Values of LAIE were calculated for 

all varieties and crop stages previously described and compared with manually measurements of LAI 

obtained for every single crop height [13]. Figure 13 represents the obtained correlation between 

estimated values (LAIE) and measured values (LAIM). 

Figure 13. Relationship between estimated leaf area index (LAIE) obtained from LiDAR 

return density and leaf area manually measured (LAIM). Values represent all the varieties 

(Cabernet Sauvignon and Merlot) included in this research.  
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Once demonstrated the good correlation (R
2
 = 0.83) between the impact LiDAR return and values 

of measured LAI, the whole data package obtained with LiDAR can be managed and transformed into 

LAI values. In this sense, and just as an example of possibilities of the system, the total values of 

LiDAR returns corresponding to one specific crop line (row 70 var. Merlot) were arranged and 

classified into four different heights into the canopy (from 0 to 1.60 m every 0.40 m). Single boxes  

of 0.40 m × 1.0 m along the row crop were established and for every single one, the impact LiDAR 

return was converted into leaf area value applying the correlation obtained in Figure 13. This 

procedure leads to obtain the leaf area index variation along the row crop (general and individually 

represented for every single crop height). And this evolution can be identified on the georeferenced 

impact LiDAR return map generated by applying the proposed methodology (Figure 14). This figure 

allows clearly identify the single points in the crop row where leaf area decreases or increases 

substantially, according the representation of georeferenced map of density of LiDAR returns. 

Figure 14. Evolution of LAI estimated values along the row crop obtained after density 

LiDAR returns classified on a 1.0 m length grid. Values have been obtained for the whole 

vegetation and for every single crop height previously defined (row 70 var. Merlot).  

 

4. Discussion 

Even in uniform vineyards, important differences in canopy dimensions (crop width and canopy 

volume) can be observed along the lines. The proposed method for processing and georeferencing the 

data obtained with a sensor LiDAR allows generation of digital canopy maps that can improve the  

crop management. Incorporation of GPS into the system results in greater accuracy of the obtained 
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values. Even its use only for velocity recording has demonstrated its interest, in coincidence with [34]. 

GPS has also improved the procedure of assembling data from the two semi-canopy volumes obtained 

during the normal reading field process. This concept can avoid the need to assume the canopy 

structure based on a symmetric measurement of just one half of the canopy [25]. However, regardless 

of the sensor used, such canopy density maps must be defined according a reference grid to enable 

further comparisons.  

The georeferencing data process allows exact placement of the generated map on the field. Such 

obtained results and the use of specific extended software for mapping and land image capture are in 

accordance with the conclusions obtained by Schumann et al. [25]. The data management process is 

neither easy nor quick. As a result, extra time for management and processing information is required 

prior to obtaining the results. Accordingly, methods of enabling real time generation of a canopy map 

are currently being investigated. 

The combination of a LiDAR sensor and GPS receiver allows accurate information regarding 

canopy characteristics and its placement on the field to be obtained. However, further developments 

are needed to improve the accuracy of the results. Additionally, LiDAR height and LiDAR movements 

during field measurements can influence the precision of the created maps [29]. 

The proposed georeferencing method and density mapping is conducted in accordance with 

previous studies to characterize the canopy for further applications. Based on the spots cloud obtained 

with the LiDAR sensor, alternative methods proposed by different authors could be applied to 

determine the most important canopy parameters. By applying the procedure proposed by  

Walklate et al. [35], parameters such as the crop area index (CAI), tree area density (TAD) or tree area 

index (TAI) could be defined for each point in the map. The same procedure could be followed to 

determine the canopy area or canopy volume following the principle proposed by Schumann et al. [25], 

canopy volume or foliar surface according to Palacín et al. [21] or the total canopy volume by applying 

the procedure for assembling the two semi row measurements defined by Rosell et al. [24,29]. 

5. Further Implications 

As mentioned in the introduction, improvement of pesticide applications can be achieved with 

detailed information regarding the crop structure. The use of such density maps appears to be an 

adequate tool for determining the most suitable volume rate for spray applications. New tendencies as 

variable application rate principle, on which canopy characteristics represent a key factor in the 

procedure to determine the optimal volume rate [1,4], could be improved by this proposed 

methodology. A good georeferenced canopy map could substitute with success the expensive and 

sophisticated method of canopy measurements using ultrasonic sensors. Another further implication of 

this application could affect the new alternative methods for dose expression in fruit and vineyard 

crops. Alternatives as Tree Row Volume (TRV) or Leaf Wall Area (LWA) concepts have been 

proposed recently in some international forums [36]. For those alternative methods, all the new 

developed methodologies for canopy characterization represent an important interest and increase the 

probability of success of this new dose expression concept. 

Even more, the possibility to establish the georeferenced canopy map will derive in a complete 

development of the traceability concept. If pesticide dose is delivered according the canopy 
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characteristics, the system will allow one to record on every single point on the parcel, the exact 

amount of PPP delivered, and consequently the potential risk of contamination on every zone on the 

parcel. One of the most immediate applications of this proposed methodology is to link the 

georeferenced maps with Dosaviña, the software developed by this research group [37]. This fact will 

derived on an automatic canopy data introduction into the developed system. 

However, these maps are not only useful for pesticide applications. Indeed, the system generated 

herein could include real-time determination of vine canopy sizes as a tool to adapt different crop 

management processes (irrigation, fertilizer, pest control) or even to predict other information such as 

yield, labour needs, wood production, etc. Agreeing with the conclusions in [20], the use of those 

terrestrial laser scanning system offers a more rapid and systematic means of measuring tree crown 

structural properties, which are not easily obtained with traditional in situ methods, for agricultural 

monitoring and management. The development of such methodologies to describe canopy 

characteristics architecture proposes the idea that perhaps those systems should replace current 

laborious and time-consuming manual approaches, adapting the vine plantations for precision 

agriculture management. 
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