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A b s t r a c t

Background: Chronic inflammation is frequently noted in patients with chronic kidney
disease (CKD) and contributes to the development and progression of cardiovascular
diseases. Monocytes are heterogeneous populations of cells, and they can be divided
into subtypes with different phenotypes and functions based on CD14 and CD16
positivity. This study examined whether the proinflammatory CD14þCD16þ monocyte
subset expands in predialysis CKD patients, and also whether the expansion of these
cells is closely associated with systemic inflammation and cardiovascular risk factors.
Methods: The percentages of proinflammatory CD14þCD16þ monocytes were ana-
lyzed in 111 predialysis CKD patients using a flow cytometer, and they were compared
with brachial–ankle pulse wave velocity as well as the cytokine plasma levels and other
clinical parameters.
Results: The proportion of CD14þCD16þ monocytes was significantly higher in patients
with advanced stages of CKD than in patients with the early stages. Interleukin-6 levels
were also high in patients with advanced stages of CKD. The expansion of CD14þCD16þ

monocytes showed significant positive correlations with the high-sensitive C-reactive
protein levels, and negative correlations with the levels of serum albumin, hemoglobin,
and 25(OH)-vitamin D. In addition, the expansion of CD14þCD16þ monocytes was an
independent factor correlated with brachial–ankle pulse wave velocity in diabetic CKD
patients.
Conclusion: Expansion of the proinflammatory CD14þCD16þ monocyte subset par-
tially accounts for chronic inflammation, malnutrition, and atherosclerosis in CKD.

& 2013. The Korean Society of Nephrology. Published by Elsevier. This is an open
access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

Chronic low-grade inflammation is prevalent in chronic kidney
disease (CKD) patients and is known to play an important role in
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the development and progression of cardiovascular (CV) diseases
[1–3]. In particular, inflammation in CKD is frequently associated
with malnutrition, and atherosclerosis, which are known as MIA
syndrome [4].

As a predictor of CV mortality, vascular stiffness is also
increased in CKD patients. Indeed, the Framingham Heart
Study showed a positive correlation between arterial stiffness
and albuminuria, thereby suggesting that arterial stiffness in
CKD patients may be involved in the observed increased CV
morbidity and mortality [5].
shed by Elsevier. This is an open access article under the CC BY-NC-ND
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Monocytes are a heterogeneous population of cells that can
be divided into several subtypes with different phenotypes,
and they function based on the CD14 and CD16 positivity [6].
Some monocytes are Fc-receptor-positive, and these CD16þ

monocytes can be further grouped into CD14þCD16þ or
CD14þ þCD16þ cells. Among these cells, CD14þCD16þ cells
have been recently reported to be proinflammatory due to the
efficient production of proinflammatory cytokines [7]. Merino
et al [8] revealed that senescent CD14þCD16þ monocytes
exhibit proinflammatory and proatherosclerotic activity, and Kim
et al [9] recently demonstrated that the number of these cells was
significantly high in patients undergoing hemodialysis (HD).
However, little is known about the role of CD14þCD16þ cells in
CV disease (CVD) of predialysis CKD patients.

In this study, we examined whether this proinflammatory
monocyte subset expands in predialysis CKD patients, and also
whether the expansion of these cells was closely associated
with systemic inflammation and CV risk factors. In particular,
its correlation with pulse wave velocity (PWV), which is a
noninvasive and widely used method for measuring arterial
stiffness [10] was examined.
Methods

Study population

One hundred and eleven stable patients diagnosed to have
CKD stage 1–5 based on the National Kidney Foundation Kidney
Disease Outcomes Quality Initiative (K/DOQI) and not receiving
renal replacement therapy were enrolled in the study. We
recruited 11 healty volunteers for comparison of the levels of
proinflammatory cytokines with CKD patients. The comorbidity
and medication history of all the patients were determined by
standardized interviews and an assessment of their medical
records. None of the patients had symptomatic infections in
the past 3 months. Patients with a history of collagen vascular
disease, malignancy, or those using immunosuppressive agents
were excluded. The study protocol was approved by the Institu-
tional Review Board of the Korea University Anam hospital.
Informed consent was obtained from all patients.

Measurement of PWV

The brachial–ankle PWV (baPWV) was measured using a
Colin noninvasive vascular screening device (Colin, Co., Ltd.,
Courbevoie, France). The device simultaneously records the
bilateral arm and ankle blood pressure, the pulse volume of
the brachial and posterior tibial arteries, the heart sounds, and
an electrocardiogram.

Laboratory methods

Complete blood counts with differential counts of the white
blood cell, high-sensitive C-reactive protein (hs-CRP) were mea-
sured. In addition, the levels of albumin, calcium, phosphorus,
total cholesterol, triglyceride, high-density lipoprotein (HDL) cho-
lesterol, low-density lipoprotein (LDL) cholesterol, intact parathyr-
oid hormone (iPTH), and 25(OH)-vitamin D were also determined.
iPTH and 25(OH)-vitamin D were measured by immunochemilu-
minescence assay method and the estimated glomerular filtration
rate (eGFR) was assessed by creatinine clearance calculated by the
modification of diet in renal disease (MDRD) GFR equation.
Flow cytometric determination of the proinflammatory
monocyte subset

The heparinized blood samples (100 mL) were stained with an
anti-human CD14 antibody conjugated with allophycocyanin
(CD14-APC) and an anti-human CD16 antibody conjugated with
phycoerythrin (CD16-PE; BD Biosciences, San Diego, CA, USA) for
15 minutes at room temperature. Following lysis and washing, the
monocyte subsets were analyzed using flow cytometric detection
(FACSCaliber; BD Biosciences, San Diego, CA, USA). One million
cells were analyzed from each sample, and the percentage and
number of cells out of the total monocytes were compared.

Quantification of plasma cytokines

Whole blood samples (2.5 mL) were collected in a hepar-
inized tube, and the plasma was obtained to measure the cyto-
kine concentrations. Quantification of plasma cytokines was
performed using a cytometric bead array. A human inflamma-
tion kit (BD Biosciences) was used, according to the manufac-
turer's instructions, to simultaneously detect the levels of
human proinflammatory [tumor necrosis factor-α, interleukin
(IL)-1β, IL-6, and IL-8] and anti-inflammatory (IL-10) cytokines.

Statistical analysis

All the analyses and calculations were performed using SPSS
software, version 20.0 (IBM Corporation, Armonk, NY, USA). Data
are expressed as mean 7 standard deviation or median [inter-
quartile range] according to the distribution. Categorical variables
were compared with the Chi-square test or Fisher's exact test
and continuous variables were compared using Student t test or
Mann–Whitney test between two groups, and analysis of var-
iance (ANOVA) or Kruskal–Wallis test among three or four
groups. Pearson correlation or Spearman rank correlation analy-
sis were used to assess the correlations between CD14þCD16þ

monocytes and other variables. Multiple linear regression analy-
sis was used to identify factors associated with baPWV. A P
o0.05 was considered statistically significant.
Results

Baseline characteristics

The patients were divided into four groups according to the
CKD stages; 39 patients were assigned to the early stage CKD group
(CKD Stages 1–2) and 28 patients, 27 patients, and 17 patients to
the CKD Stage 3, Stage 4, and Stage 5 groups, respectively. The
baseline characteristics for each group are shown in Table 1. The
patients in the advanced stage CKD group had a higher prevalence
of diabetes mellitus, lower levels of serum calcium, albumin,
hemoglobin, and 25(OH)-vitamin D, and higher levels of serum
phosphorus, hs-CRP, and iPTH. However, there were no significant
differences in the lipid profiles and the percentage of statin users.

CD14þCD16þproinflammatory monocytes and cytokine
production in predialysis CKD patients

Three different monocyte subpopulations were readily iden-
tified according to the CD14 and CD16 positivity using flow
cytometry (Fig. 1). Whenwe regarded CKD stage 3 to 5 groups as
advanced stage group, the percent of CD14þCD16þ monocytes



Figure 1. Flow cytometric detection of CD14þCD16þ proinflammatory monocyte subsets. After gating the monocytes using the forward scatter
channel and side scatter channel, the monocytes were divided into three groups according to the CD14 and CD16 positivity. The proinflammatory
monocytes were determined by CD14þ and CD16þ . CKD, chronic kidney disease.

Table 2. Percentage of monocyte subsets and plasma cytokine levels

Healthy Control CKD Stages 1–2 CKD Stages 3–5 P

CD14þCD16þ/total monocytes (%) 7.9270.74 11.6070.86* 0.026
TNF-α (pg/mL) 0.3970.39 0.4370.17 0.3770.10 0.619
IL-6 (pg/mL) 19.47717.07 17.6479.72 24.0977.99* 0.029
IL-1 (pg/mL) 6.6175.83 8.6375.35 5.2671.62 0.693
IL-8 (pg/mL) 455.777379.89 522.077203.11 854.457193.81 0.362
IL-10 (pg/mL) 0.3570.15 0.2670.09 0.4070.10 0.578

n Po0.05 vs. CKD Stages 1–2.
Data are presented as mean7standard error of the mean.
CKD, chronic kidney disease; IL, interleukin; TNF, tumor necrosis factor.

Table 1. Baseline characteristics

CKD CKD CKD CKD P
Stages 1–2 Stage 3 Stage 4 Stage 5
(n¼39) (n¼28) (n¼27) (n¼17)

Age (y) 48.6716.3 62.4711.6n 62.6715.7n 57.3714.0 o0.001
Women 18 (46.2) 9 (32.1) 11 (40.7) 11 (64.7) 0.197
eGFR 80.2718.3 46.477.6n 22.373.7n 9.872.2n o0.001
BMI (kg/m2) 23.3 [21.7, 25.6] 27.3 [22.5, 29.7] 22.4 [20.4, 24.7] 24.7 [21.8, 26.7] 0.127
DM 1 (2.5) 8 (28.6)n 10 (37.0)n 8 (47.1)n o0.001
Statins 16 (41.0) 20 (71.4)n 10 (37.0) 5 (29.4) 0.019
baPWV (cm/s) 1331 [1252,1447] 1556 [1366,1621] 1302 [1113,1650] 1443 [1313,1561] 0.430
WBC (/μL) 661071570 635071470 657071520 722071930 0.367
Hb (g/dL) 14.171.4 13.371.8 11.271.7n 11.271.5n o0.001
hs-CRP (mg/L) 1.272.3 1.272.3 1.371.8 4.277.6n 0.042
Albumin (g/dL) 4.170.4 4.170.2 4.070.3 3.770.5n 0.003
Ca (mg/dL) 9.270.5 9.470.4 8.970.6 8.271.0n o0.001
P (mg/dL) 3.470.6 3.470.5 3.570.9 4.771.2n o0.001
T.chol (mg/dL) 158.7735.5 154.7732.7 149.6744.8 158.2731.2 0.803
TG (mg/dL) 102 [67,161] 143 [77,224] 103 [77,190] 150 [120,183] 0.396
iPTH (pg/mL) 28.2712.7 32.4716.9 89.1755.4n 196.77119.3n o0.001
25(OH)D (ng/mL) 15.5 [10.4, 24.7] 23.3 [14.3, 40.9] 11.8 [7.4, 15.6]n 10.8 [4.8, 13.3]n o0.001

n Po0.05 vs. CKD Stages 1–2.
Data are presented as mean7standard deviation, n (%) or median [25%, 75%].
25(OH)D, 25(OH)-vitamin D; BMI, body mass index; Ca, calcium; CKD, chronic kidney disease; DM, diabetes mellitus; eGFR, estimated glomerular
filtration rate; Hb, hemoglobin; hs-CRP, high-sensitive C-reactive protein; iPTH, intact parathyroid hormone; P, phosphorus; T.chol, total cholesterol;
TG, triglyceride; WBC, white blood cells.
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was significantly higher in the advanced CKD group than in the
early group (Table 2), whereas CD14þ þCD16þ monocyte popu-
lation was not significantly different between them (data not
shown). In addition, the percentage of CD14þCD16þ cells is
negatively correlated with the eGFR (Spearman's R¼�0.286,
P¼0.006, Fig. 2).

In CKD patients, malnutrition and vascular calcification
are known to comprise chronic inflammation driven by



Figure 2. Relationship between estimated glomerular filtration rate
and the percentage of CD14þCD16þ cells. eGFR, estimated glomerular
filtration rate.
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proinflammatory cytokines (IL-1, IL-6, tumor necrosis factor-α,
interferon-γ, and others). Therefore, we also examined the
plasma levels of the proinflammatory cytokines and found that
IL-6 was markedly increased in the advanced CKD patients
in addition to an increased percentage of proinflammatory
monocytes (Table 2).

Correlation between the percentage of
CD14þCD16þproinflammatory monocytes
and CV parameters

It is well known that a strong interaction exists between
CVD and inflammation as well as nutritional status in patients
with CKD (malnutrition, inflammation, and atherosclerosis
MIA syndrome). Therefore, to evaluate their association with
inflammatory monocytes, we examined hs-CRP, albumin,
hemoglobin, 25(OH)-vitamin D, and baPWV in CKD patients.

The percentage of CD14þCD16þ cells showed a significant
positive correlation with hs-CRP levels (Spearman's R¼0.270,
P¼0.011, Fig. 3A) and baPWV (Spearman's R¼0.280, P¼0.006,
Fig. 3B), whereas CD14þ þCD16þ cell population did not showed
significant association with them (data not shown). It also
negatively correlated with the level of serum albumin (Spear-
man's R¼�0.235, P¼0.027, Fig. 3C), hemoglobin (Spearman's
R¼�0.287, P¼0.004, Fig. 3D), and 25(OH)-vitamin D (Spear-
man's R¼�0.271, P¼0.028, Fig. 3E). In multivariate analysis, the
expansion of CD14þCD16þ monocytes showed an independent
positive correlation with baPWV in the diabetic CKD patients;
however, in the nondiabetic CKD patients, there was no sig-
nificant association (Table 3).
Discussion

We have previously reported that microinflammation in HD
patients is associated with the expansion of CD14þCD16þ proin-
flammatory monocytes and also possible modification by online
hemodiafiltration (HDF) [9]. We extended these previous
observations in HD patients to predialysis CKD patients and tested
the possible important contribution of this proinflammatory
monocyte subset to low-grade systemic inflammation and
increased CVD risk.

Monocyte heterogeneity is widely acknowledged. Cell-surface
expression of CD14 and CD16 defines functionally and phenoty-
pically distinct subsets of monocytes: classical (CD14þ þCD16–),
intermediate (CD14þ þCD16þ), and nonclassical (CD14þCD16þ)
monocytes [11]. The latter two are often denoted as proinflam-
matory CD16þ monocytes and these monocytes were first
reported in 2001 and are considered to be the main culprit in
patients suffering from chronic inflammation, such as rheuma-
toid arthritis, systemic lupus erythematosus, or HD [12]. Merino
et al [8] demonstrated that nonclassical CD14þCD16þ cells are
senescent monocytes with shortened telomere lengths that
express increased levels of chemokine receptors and subse-
quently more readily adhere to the endothelial cells. In addition,
a growing body of evidence suggests that these proinflammatory
monocytes contribute to the development of atherosclerosis
[13,14]. Although several studies show the significant correlation
between CD14þ þCD16þ monocytes and CVD in CKD patients
[15,16], little is known about the nonclassical proinflammatory
CD14þCD16þ monocyte subset especially in nondialysis CKD
patients; moreover, its correlation with vascular stiffness as an
important predictor of cardiovascular mortality, has not been
assessed in previous studies.

In this study, we observed that the CD14þCD16þ monocyte
subset also expands in predialysis CKD patients, similar to that
observed in HD patients. The expansion was greater in the
advanced CKD patients (CKD Stages 3–5) than in those in the
early stage of CKD, thereby suggesting that retained uremic toxins
might be key factors in the expansion of this monocyte subset and
the subsequent systemic inflammatory burden. In addition, the
plasma levels of IL-6 were significantly high only in the advanced
CKD patients, thereby suggesting that the production of IL-6 from
this monocyte subset contributes to hypercytokinemia and sys-
temic inflammation. Although impaired excretion might also
contribute to hypercytokinemia, preferential production of inflam-
matory cytokine from CD16þ monocytes has been demonstrated
in our previous study.

The proinflammatory cytokines produced from the expanded
proinflammatory monocytes may induce endothelial damage and
subsequently promote accelerated atherosclerosis and increased
CVD risk. This is a probable suggestion because the critical role of
lipid laden macrophages in the development and progression of
atherosclerosis is well known [11].

Next, we tested whether the expansion of CD14þCD16þ

monocytes is also closely associated with several other para-
meters of increased CVD risk. The indicator of vascular
stiffness, baPWV showed a positive correlation with the
percentage of CD14þCD16þ monocytes, moreover, in the
multivariate analysis, the percentage of CD14þCD16þ mono-
cytes was an independent factor associated with baPWV in the
diabetic patients, but not in nondiabetic patients. In our
analysis, the patients with diabetes had more advanced renal
failure (CKD Stages 3–5) and were older than the patients
without diabetes (67.1978.58 years vs. 54.72715.92 years);
therefore it could be possible that the expansion of CD14þ

CD16þ monocytes is associated with vascular stiffness espe-
cially in diabetic or elderly and advanced CKD patients.
Considering that strong correlations between PWV and CV
events and all-causes of mortality have already been demon-
strated in the general population as well as CKD patients



Figure 3. The relationship between percentage of CD14þCD16þ cells and (A) hs-CRP, (B) baPWV, (C) serum albumin, (D) hemoglobin, and
(E) 25(OH) vitamin D. baPWV, brachial–ankle pulse wave velocity; hs-CRP, high-sensitive C-reactive protein.

Table 3. Multiple linear regression analysis of risk factors associated with brachial-ankle pulse wave velocity

Subgroupn Variables Coefficient value P

1. Diabetic patients Age 2.625 0.086
CD14þCD16þ/total monocytes (%) 2.058 0.033

2. Nondiabetic patients Age 1.572 o0.001

n Excluded variables: Subgroup 1 C-reactive protein, estimated glomerular filtration rate, and triglyceride; Subgroup 2 C-reactive protein, estimated
glomerular filtration rate, triglyceride, and CD14þCD16þ population.
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[17–19], the expansion of proinflammatory monocytes could
serve as a possible target to suppress systemic inflammation
and decrease CV risks.

In addition, the percentage of CD14þCD16þ monocytes
also positively correlated with CRP levels, which are a well-
known indicator of increased CVD risk. This observation,
together with the finding that the percentage of proinflamma-
tory monocytes had a negative correlation with the serum
albumin levels, strengthens the proposal that proinflamamtory
monocytes play a critical role in premature CV death in CKD
patients.

Several recent studies have suggested the important link
between 25(OH)-vitamin D levels and CV events in general
populations [20] and showed the inverse correlation of 25
(OH)-vitamin D levels with CRP and IL-6 levels [21]. Interest-
ingly, we observed that the 25(OH)-vitamin D levels were
inversely correlated with the percentage of proinflammatory
CD14þCD16þ monocytes in CKD patients. Although the exact
mechanisms linking vitamin D and inflammation or CV events
are not clear, one of the plausible mechanisms by which
vitamin D modifies the risk for CVD outcomes is that vitamin
D modulates the inflammatory response, including the
monocyte-macrophage activity, via the nuclear vitamin D
receptor [22,23]. In addition, vascular smooth muscle cells
are also known to express vitamin D receptors and relax if they
bind to vitamin D [24]. London et al [25] showed the relation-
ship between arterial alterations and circulating levels of
vitamin D. Vitamin D deficiency is a common condition in
patients with CKD and, therefore, it is possible that
vitamin D deficiency is directly responsible for the increased
proinflammatory monocyte subset and subsequent systemic
inflammation and increased CVD risks.

Despite several meaningful findings, there are a number of
limitations in our study. First, this was a cross-sectional study
involving a relatively limited number of patients from a single
center. Second, analyses of the exact doses of calcium-containing
salts or active vitamin D treatments that might affect bone status,
iPTH, or plasma calcium and phosphorous levels were not
performed. Third, all parameters including the proinflammatory
monocyte subset, plasma cytokines, and the levels of hs-CRP,
albumin, and 25(OH)-vitamin D were analyzed once without a
follow-up of their changes over the time of measurement.

In conclusion, the results of our study suggest that the
expansion of the proinflammatory CD14þCD16þ monocyte sub-
set partially accounts for chronic inflammation, malnutrition, and
atherosclerosis in predialysis CKD patients. In addition, a better
understanding of the mechanisms of chronic inflammation will
help develop treatment strategies in CKD patients.
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