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Abstract: The impact of dried apples (Malus × domestica Borkh.) addition on improving the antioxi-
dant characteristics of dark chocolate was evaluated. The antioxidant activity was measured through
DPPH scavenging activity and showed an increase in the cocoa bar with ‘Nesta’ dry apple (17.3% vs.
46.8%) in comparison to cocoa mass. The 15 polyphenols analyzed by UHPLC-ESI-MS/MS indicated
great variability among the apple varieties. Quercetin was detected in the highest concentrations
(ranged from 753.3 to 1915.5 µg g−1), while the lowest were for kaempferol 7-O-glucoside, mea-
sured only in ‘Mora’ and ‘Nesta’ cocoa bars (from 0.034 to 0.069 µg g−1, respectively). P-coumaric
acid, trans-ferulic acid, and chlorogenic acid contribute largely to the antioxidant activity in cocoa
bars. Principal component analysis shows that a cocoa bar with the addition of ‘Nesta’ dry apple
differ from others due to its higher content of polyphenols (1614 ± 61.8 mg gallic acid equivalents
per 100 g). In conclusion, data confirm that cocoa bars with dry apples might be considered as a
polyphenol-enriched food.

Keywords: antioxidant; polyphenols; enriched foods; DPPH; old variety

1. Introduction

Food enrichment is a widely used process aimed to modify the composition and
content of nutrients and antioxidants in food products. The purpose is to increase their nutri-
tional and nutraceutical quality, meet consumers’ expectation, and increase market demand.

Many fruits are rich in nutrients and nutraceutical compounds; e.g., apple (Malus × domestica
Borkh.) fruits and derived products are particularly rich in antioxidant molecules [1]. Dried
apples have a high concentration of minerals, vitamins, and polyphenols [1,2]. For this
reason, apples can be used for the preparation of enriched foods in many forms: fresh,
dry, as juice extract, and even as apple pomace by-product [3–5]. It is noteworthy that
desiccation of apples rich in polyphenols may cause a dramatic change in color, making
them brown and not attractive for the consumers. In turn, a dark appearance during the
desiccation process could be a positive trait when dried apple slices or chips are mixed
with cocoa.

Many underutilized apple varieties show a fibrous peel, irregular size, and astringency
that make them below the commercial acceptability limits for fresh markets. On the con-
trary, they have a higher concentration of biologically active compounds when compared
to commercial cultivars [6–8], making underutilized apple germplasm interesting from
a nutraceutical point of view [9,10]. Their combination with cocoa might enhance the
marketing of defective-in-shape or colored apple fruits not good enough for fresh use but
still interesting for their nutritional and nutraceutical potential.
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Cocoa is considered one of the most important agricultural products worldwide. It is
a product with high nutritional value and beneficial for health. Moreover, the consumer
appreciates cocoa sensorial characteristics. Polyphenols present in cocoa powder are
considered relevant in this product [11,12]; among them, flavanols have beneficial effects
on health and aging, improving blood pressure, flow-mediated dilation, and vascular
stiffness in healthy subjects [13].

The consumption of high-quality cocoa products and chocolates enriched with dry
fruits are increasing. It has been shown that dry apples affect the chocolate’s texture and
have an impact on consumer acceptability of the cocoa bar [3]. Less known in the literature
is the effective improvement of cocoa nutraceutical profile with polyphenols derived by the
addition of dry apple fruits. Apples polyphenols are interesting considering their ability to
modulate several cell-signaling pathways in a wide range of human pathologies [14–17]. As
an example, apples have a high concentration of quercetin, which is a powerful antioxidant
that promotes brain growth, stimulates dopamine levels, and is considered very important
in preventing diseases such as lung cancer and type II diabetes [18].

The aim of this work is to study the polyphenol profile of a new set of cocoa bars—
named Toscolata®—containing dried apples prepared from underutilized and commer-
cial varieties. Polyphenol identification and concentration changes were studied us-
ing a liquid chromatography–electrospray ionization mass spectrometry (UHPLC-ESI-
MS/MS) approach.

2. Materials and Methods
2.1. Chemicals

P-coumaric acid (PCA), trans-ferulic acid (TFRA) phloretin (PHL), (+)-catechin (CTC), (-)-
epicatechin (ECTC), quercetin (QCT), chlorogenic acid (CGA) phloridzin (PDZ), kaempferol
7-O-glucoside (KPF7G), kaempferol 3-O-glucoside (KPF3G), quercetin 3-O-glucoside (QCT3G),
quercetagetin 7-O-glucoside (QGT7G), tiliroside (TSD), Kaempferol 3-O-rutinoside (KPF3R),
rutin (RTN), HPLC grade methanol, Folin–Ciocalteu’s phenol reagent, gallic acid, ace-
tonitrile, Na2CO3, formic acid, and 1,1-Diphenyl-2-picrylhydrazyl were purchased from
Sigma–Aldrich (Milan, Italy). The aqueous solutions were prepared with ultra-pure water
purified by a Milli-Q System (Millipore, Milan, Italy).

2.2. Materials

Five underutilized apples cultivars, namely, ‘Mora’, ‘Nesta’, ‘Ruggina’, and ‘Panaia’,
were used. We used as the reference standard the cultivar ‘Golden Delicious’. The latter
was selected because it is widely cultivated and studied in the literature. Apple fruits
were harvested at commercial ripening stage. This stage was determined on the base of
several fruit parameters as reported in Francini et al. [2]. After washing, the core of each
apple was removed, and the flesh cut into thick pieces. The dehydration was performed
by an air-drying oven set at a steady temperature of 35 ◦C for 10 h. At the end of the
drying process, the slices were added to the cocoa bar prototypes (2.5%), as described in
Cantini et al. [3].

2.3. Polyphenols Extraction

Aqueous methanol (20:80, v:v) was used for polyphenols extraction using 25 mL for
7.5 g of the following samples (n = 3): (a) dry apples; (b) dark cocoa bar (70%); (c) dark
cocoa bar (70%) containing 2.5% of dry apples. Total phenols content was determined
in technical triplicates following the reduction of Folin–Ciocalteau reagent by phenolic
compounds, with a formation of a blue-colored complex. Samples (30 µL) were added
to Folin–Ciocalteu’s phenol reagent (150 µL), or standard solution of gallic acid, and the
mixture was shaken. After 10 min, 600 µL of a 2% (w/v) Na2CO3 solution was added then
diluted to 3 mL with Milli-Q ultra-pure water, mixed, and finally incubated for 30 min
at 70 ◦C. The absorbance of the solution was measured at 750 nm using water as blank
control. A standard curve of gallic acid solutions in the range of 0.070–2.50 mg mL−1 was



Antioxidants 2022, 11, 694 3 of 11

prepared to determine the total phenolic content of the samples, expressed as mg gallic
acid equivalents per g of material.

2.4. DPPH Assay

Following the protocol of Francini et al. [19], the scavenging activity of 1,1-diphenyl-
2-picrylhydrazyl (DPPH) radicals was evaluated. Briefly, 200 µL of the methanol extract
of the cocoa bar and the cocoa bar with dry apples were mixed with 800 µL of a Tris-HCl
100 mM solution, pH 7.0. Samples were then supplemented with 250 µM DPPH and kept
in the dark for 30 min. Methanol was used as control reference and absorbance measured at
517 nm. DPPH inhibition (%) was calculated as follows: Inhibition ratio (%) = ((absorbance
of control − absorbance of sample) (absorbance of control)) × 100.

2.5. UHPLC-ESI-MS/MS Analysis

Selected known polyphenols were chosen in this study and quantitative analyses were
done in the extracts by UHPLC-ESI-MS/MS using a Sciex 5500 QTrap+ mass spectrometer
(AB Sciex LLC, Framingham, MA, USA), equipped with a Turbo V ion-spray source and
coupled to an ExionLC AC System custom made by Shimadzu (Shimadzu Corporation,
Kyoto, Japan) which includes 2 ExionLC AC Pumps, Autosampler, Controller, Degasser
and Tray.

MS/MS experiments were performed in the electrospray negative ion mode using
nitrogen as collision gas. The operation source parameters were source type, Turbospray;
nebulizer gas (GS1) 70; turbo gas (GS2) 50; curtain gas (CUR) 10; temperature (TEM) 500 ◦C;
Ionspray Voltage (IS) −4500 V, entrance potential (EP) 10 V. Compound parameters, declus-
tering potential (DP), collision energy (CE), and collision cell exit potential (CXP) were
adjusted for the specific Selected Reaction Monitoring (SRM) transition for any component.
SRM transitions and the corresponding compound parameters are reported in Table 1.

Table 1. Relative polyphenol compound parameters, retention time (RT), and selected reaction
monitoring transitions.

Name Acronym RT (min) Q1 Q3 DP (V) CE (eV) CXP (V)

Catechin CTC 2.33 289.0 244.9 −108 −22 −11
Chlorogenic acid CGA 2.44 353.0 191.0 −61 −24 −9
Epicatechin ECTC 2.63 289.0 244.9 −108 −22 −11
Quercetagetin 7-O-glucoside QGT7G 3.07 479.1 316.9 −152 −31 −14
p-coumaric acid PCA 3.09 163.0 119.0 −65 −18 −11
trans-ferulic acid TFRA 3.28 193.0 134.0 −62 −20 −8
Rutin RTN 3.30 609.2 299.9 −154 −48 −11
Quercetin 3-O-glucoside QCT3G 3.40 463.1 300.0 −154 −37 −5
Kaempferol 3-O-rutinoside KPF3R 3.53 593.2 284.9 −138 −40 −5
Kaempferol 3-O-glucoside KPF3G 3.62 447.1 284.1 −202 −39 −11
Kaempferol 7-O-glucoside KPF7G 3.66 447.1 284.9 −158 −38 −5
Phloridzin PDZ 3.71 435.1 272.9 −135 −23 −5
Quercetin QCT 4.30 301.0 150.9 −113 −38 −8
Tiliroside TSD 4.41 593.2 284.9 −138 −40 −5
Phloretin PHL 4.64 273.0 167.0 −103 −38 −11

Chromatographic separation was performed as reported in Francini et al. [20] by a
Phenomenex Kinetex EVO 2 × 100 × 5 µm column (Phenomenex, Torrance, CA, USA).
The elution was carried out in gradient mode using acetonitrile containing 0.1% formic
acid (solvent A) and water containing 0.1% formic acid (solvent B). A gradient elution was
programmed: 0.0 min, A 5%; 0.0–10.0 min, A 5–95%; 10.0–12.0 min, A 95%; followed by
4 min equilibration time (A 5%). The flow rate was 300 µL min−1, injection volume 20 µL,
and column oven temperature 40 ◦C.

The recovery percentage and matrix effect were used to normalize the data. Recovery
was calculated as the peak area of the sample spiked before extraction/peak area of the
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sample spiked after extraction, while the matrix effect was calculated as the peak area of
the sample spiked after extraction/peak area of the standard.

2.6. Statistical Analyses

Data are shown as the mean ± standard deviation of three-replicates. One-way
analysis of variance (one-way ANOVA) was performed in Graph Pad Prism 6.0 (GraphPad
software, San Diego, CA, USA) and Tukey’s post-hoc test was further applied when p ≤ 0.05
using the same statistical package. Principal component analysis was performed with a
statistical software program (NCSS 2004, NCSS Statistical Software, Kaysville, UT, USA).

3. Results

The dry apples used for the cocoa bar production, the cocoa bar with dry apple, and
the cocoa mass were analyzed for DPPH radical scavenging capacity and total polyphenols
(Table 2).

Table 2. Total antioxidant capacity (DPPH%) and total polyphenols concentration (mg gallic acid
equivalents per 100 g of DW or FW) in dry apples, in the cocoa bar with dry apples, and in the cocoa
mass. Data (n = 3) were analyzed by one-way ANOVA. Different letters are significantly different
according to Tukey’s post-hoc test at the 0.05 probability level.

DPPH (%) Total polyphenols
(mg Gallic Acid Equivalents per 100 g)

Dry apple

Golden 50.7 ± 5.28 a 991 ± 80.4 c
Mora 22.7 ± 3.39 b 1473 ± 18.6 b
Nesta 47.6 ± 5.80 a 1614 ± 61.8 a
Panaia 66.6 ± 8.56 a 1428 ± 57.1 b

Ruggina 55.1 ± 2.93 a 927 ± 16.2 c

Cocoa bar + Dry apple

Golden 37.3 ± 14.54 ab 640 ± 151.4 b
Mora 27.1 ± 1.14 ab 563 ± 46.8 b
Nesta 46.8 ± 4.14 a 890 ± 85.9 a
Panaia 24.2 ± 6.28 b 502 ± 34.0 b

Ruggina 30.0 ± 4.04 ab 561 ± 33.2 b

Cocoa mass 17.3 ± 3.80 b 519 ± 23.9 b

In dry apples, a lower DPPH activity was detected in the variety ‘Mora’ (22%). The
other apple showed a stronger activity than Mora, with the higher values for ‘Nesta’ (47.6%)
and ‘Panaia’ (66.6%) (Table 2). In a cocoa bar with dry apple, the DPPH activity decreased
in many combinations, except in ‘Mora ‘and ‘Nesta’.

Regarding the total phenolic content of the dry apples, ‘Nesta’ is the variety with
the higher total phenolic content (1614 mg GAE/100 g of dry weight) while ‘Golden’ and
‘Ruggina’ had the lowest values (991 and 927 mg gallic acid equivalents per 100 g of DW
respectively). A significant increase in the DPPH radical scavenging capacity was shown
when comparing the cocoa mass and cocoa bar with ‘Nesta’ dry apple (17.3% vs. 46.8%).

Data of total phenolic content reached the highest value in the cocoa bar with ‘Nesta’:
+71% when compared to the cocoa mass (Table 2).

On the basis of previous investigation, a panel of 15 polyphenols were selected
(Figure 1): 7 flavonols (quercetagetin 7-O-glucoside, rutin, quercetin 3-O-glucoside, kaempferol
3-O-rutinoside, kaempferol 7-O-glucoside, kaempferol 3-O-glucoside and quercetin), 2 fla-
vanols (epicatechin and catechin), 1 cinnamate ester (chlorogenic acid), 2 hydroxy-cinnamic
acids (p-coumaric and trans-ferulic acid), 2 dihydrochalcones (phloretine and phloridzin),
and 1 oxyflavone (tiliroside).
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Figure 1. Mean values and standard deviation for the concentration (µg/g DW) of (A) quercetin
(QCT), (B) (−)-epicatechin (ECTC), (C) chlorogenic acid (CGA), (D) quercetin 3-O-glucoside (QCT3G),
(E) phloridzin (PDZ), (F) (+)-catechin (CTC), (G) rutin (RTN), (H) phloretin (PHL), (I) kaempferol 3-O-
glucoside (KPF3G), (J) tiliroside (TSD), (K) quercetagetin 7-O-glucoside (QGT7G), (L) p-coumaric acid
(PCA), (M) kaempferol 7-O-glucoside (KPF7G), (N) trans-ferulic acid (TFRA), and (O) kaempferol 3-
O-rutinoside (KPF3R), determined by UHPLC-ESI-MS/MS for dry apples. Data (n = 3) were analyzed
by one-way ANOVA. Different letters are significantly different according to Tukey’s post-hoc test at
the 0.05 probability level.

A single SRM transition was used for the UHPLC-ESI-MS/MS analysis and for
molecule quantification. Qualitative confirmation was acquired taking advantage of one
of the features of a QTrap instrument. Information Dependent Acquisition (IDA) was
programmed so that the SRM transitions reported in the Table 1 were used as a survey
scan, switching the third quadrupole to act as a Linear Ion Trap, performing an Enhanced
Product Ions scan, affording the complete MS-MS product ions spectrum (MRM >> En-
hanced Product experiment). A comparison with a custom-built MS-MS product ions
spectra library allowed the qualitative confirmation.

All the phenolic compounds showed great variability among varieties (Figure 1). The
higher content was detected for quercetin, ranging from 2256 to 255 µg g−1 DW (Figure 1A),
while the lower for kaempferol 3-O-rutinoside, ranging from 0.006 to 0.143 µg g−1 DW in
‘Panaia’ and ‘Ruggina’, respectively (Figure 1O). The flavanol epicatechin and the flavonol
quercetagetin 7-O-glucoside did not showed difference among the dry apples studied
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(Figure 1B,K). The higher significant value of PCA and TFRA was observed in ‘Ruggina’
extract (1.02 and 0.49 µg g−1 DW, respectively), while the higher significant value of RTN
and KPF3R in ‘Panaia’ dry apples (14.7 and 0.14 µg g−1 DW, respectively). The reference
‘Golden’ apple showed higher value of QCT and KPF3G (Figure 1A,I).

In Figure 2, the specific phenolic composition of the cocoa bar with dry apples are
presented together with the cocoa mass.
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Figure 2. Mean values and standard deviation of (A) quercetin (QCT), (B) (−)-epicatechin (ECTC), 

(C) chlorogenic acid (CGA), (D) (+)-catechin (CTC), (E) quercetin 3-O-glucoside (QCT3G), (F) 

phloridzin (PDZ), (G) Phloretin (PHL), (H) quercetagetin 7-O-glucoside (QGT7G), (I) tiliroside 

(TSD), (J) p-coumaric acid (PCA), (K) kaempferol 3-O-glucoside (KPF3G), (L) rutin (RTN), (M) 

kaempferol 3-O-rutinoside (KPF3R), (N) trans-ferulic acid (TFRA), and (O) kaempferol 

7-O-glucoside (KPF7G), expressed as g/g FW for cocoa bars and cocoa mass determined by 

UHPLC-ESI-MS/MS. Data (n = 3) were analyzed by one-way ANOVA. Different letters are signifi-

cantly different according to Tukey’s post-hoc test at the 0.05 probability level. 

Figure 2. Mean values and standard deviation of (A) quercetin (QCT), (B) (−)-epicatechin (ECTC),
(C) chlorogenic acid (CGA), (D) (+)-catechin (CTC), (E) quercetin 3-O-glucoside (QCT3G), (F) phlo-
ridzin (PDZ), (G) Phloretin (PHL), (H) quercetagetin 7-O-glucoside (QGT7G), (I) tiliroside (TSD),
(J) p-coumaric acid (PCA), (K) kaempferol 3-O-glucoside (KPF3G), (L) rutin (RTN), (M) kaempferol
3-O-rutinoside (KPF3R), (N) trans-ferulic acid (TFRA), and (O) kaempferol 7-O-glucoside (KPF7G),
expressed as µg/g FW for cocoa bars and cocoa mass determined by UHPLC-ESI-MS/MS. Data
(n = 3) were analyzed by one-way ANOVA. Different letters are significantly different according to
Tukey’s post-hoc test at the 0.05 probability level.

Cocoa bar with ‘Nesta’ has the highest concentrations of almost all the 15 polyphenols
under study. Moreover, all cocoa bars with dry apples showed a significant increase in the
PDZ and CGA concentrations when compared to cocoa mass. Quercetin was the more abun-
dant polyphenol (Figure 2A), while kaempferol 7-O-glucoside was less abundant, being
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detected only in cocoa bars with ‘Mora’ and ‘Nesta’ and ranged from 0.034 to 0.069 µg g−1,
respectively (Figure 2O).

A principal component analysis was carried out with the aim of highlighting the
relationship among selected variables and cocoa bars with dried apples and cocoa mass
(Figure 3). Using the 15 polyphenols, the two principal components explain 84.11% of total
variance, and allow a good differentiation among cocoa bars and cocoa mass.
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Figure 3. Biplot of PC1 vs. PC2, showing the loadings of the scores and the variables of cocoa mass
and the cocoa bars with apples. Color dots with the number representing different cultivars analysed
in triplicate.

The variables that contributed more to PC1 (57.6%) were the trans-ferulic acid, phloretin,
(+)-catechin, (−)-epicatechin, quercetin, chlorogenic acid, phloridzin, kaempferol 3-O-
glucoside, quercetin 3-O-glucoside, kaempferol 3-O-rutinoside and rutin. The PC2 (26.5%)
was associated with p-coumaric acid, kaempferol 7-O-glucoside, quercetagetin 7-O-glucoside,
and tiliroside (Table 3). Phloretin and quercetin 3-O-glucoside contributed most to explain
the variation in the first component, followed by quercetin, while in the second component
p-coumaric acid and quercetagetin 7-O-glucoside were the most discriminant variables.

Table 3. Loadings of each attribute on the two principal components calculated using the data
produced by the UHPLC-MS/MS on six cocoa bars.

Variables Factor 1 Factor 2

PCA −0.6561 0.6776
TFRA −0.7522 0.6011
PHL −0.9715 0.0863
CTC −0.7986 0.4807

ECTC −0.7853 0.5045
QCT −0.8925 0.3033
CGA −0.8483 0.5050
PDZ −0.8940 −0.0402

KPF7G −0.2165 0.8474
KPF3G −0.8424 0.1918
QCT3G −0.9629 0.0860
QGT7G −0.5897 0.7203

TSD 0.1636 0.5776
KPF3R −0.7284 0.6470

Data indicated that there was a significant differentiation in three groups among the
cocoa bars (Figure 3). According to the PCA biplot, the cocoa bar with ‘Nesta’ dry apple had
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the higher polyphenol concentrations; the cocoa bar with ‘Golden’ dry apples showed an
intermediate behavior, while the other cocoa bars containing ‘Mora’, ‘Panaia’, and ‘Ruggina’
are similar to the cocoa mass.

Positive correlations between the phenolic compound concentration and total an-
tioxidant capacity (DPPH) in the cocoa bars with dry apples were found (Table 4). All
polyphenols positively contributed to the antioxidant activity in the cocoa bar, except
KPF3G and TSD.

Table 4. Pearson’s correlation coefficient between the polyphenol concentration and the total antioxi-
dant capacity (DPPH) on cocoa bar with dry apples. Significance levels expressed by asterisks (*** for
p-value ≤ 0.001; ** for p-value ≤ 0.01; * for p-value ≤ 0.05). n.s.: not significant.

Phenolic
Compound

Correlation
Coefficient

CTC 0.401 (**)
CGA 0.569 (***)
ECTC 0.356 (*)

QGT7G 0.347 (*)
PCA 0.650 (***)

TFRA 0.639 (***)
RTN 0.601 (***)

QCT3G 0.475 (**)
KPF3R 0.585 (***)
KPF3G 0.144 (n.s.)
KPF7G 0.525 (*)

PDZ 0.465 (**)
QCT 0.325 (*)
TSD 0.088 (n.s.)
PHL 0.452 (**)

4. Discussion

Following the increased demand for foods with nutraceutical value added, this re-
search explores the possibility to add antioxidant compounds from dry apples to cocoa
mass. Flòrez-Mendéz et al. [21] proved the importance of the consumption of chocolate
enriched with tryptophan and resveratrol, showing a significant decrease in insulin in
blood after consuming 15 g of chocolate for 21 days, making it a functional food. Our
previous studies also have noted the beneficial effects on human health of cocoa enriched
with other fruit products [22].

Many companies are now considering the incorporation into chocolate formulations
of functional ingredients, to gratify consumer demands from both a health and sensory
point of view. The development of new chocolate formulations with a healthier profile [23]
indicate that the added ingredients could affect the sensory properties of the original
products. To this respect, panel tests and consumer acceptability of cocoa bars improved
with Tuscan autochthonous food products [3], demonstrating that cocoa bar with apples
have a sensory profile widely appreciated by both professional panelist and consumers.

The reason for studying the bioactive polyphenolic compounds in underutilized
varieties derived from the observation that, in several cases, they are rich of polyphenols [1].
Using state-of-the-art UHPLC-ESI-MS/MS analytical tools, we proved that apple varieties
have a great variability among the fifteen phenolic compounds analyzed. This variation
among polyphenols is explained in the literature in relation to resistance to diseases or
adverse environmental conditions between varieties [24]. Moreover, underutilized apple
varieties are often characterized by astringency, which correlate with high polyphenols
concentrations [25], and is a trait that in commercial varieties has been slightly reduced,
favoring others such as sweetness and lower acidity.
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In apples, flavonoids, including flavones, flavanols, anthocyanins, and dihydrochal-
cones, are abundant [26], and quercetin, (−)-epicatechin, (+)-catechin, and chlorogenic acid
are besides these the main polyphenols [1].

Researchers have investigated the anti-inflammatory activity of phloridzin and
phloretin [27–29], demonstrating that these compounds present in apples could be posi-
tively linked with the beneficial effects of apple consumption. It is interesting to note that in
cocoa bars with dry apples a significant increment of phloridzin has been demonstrated and
also that cocoa bars with ‘Nesta’ and ‘Mora’ have a three-times higher value of phloretin
compared to cocoa mass.

During cocoa bar preparation, the concentration of total and single bioactive com-
pounds could be significantly modified [30]. The polyphenols concentration measured in
cocoa bars with dry apples products is not simply a sum between the molecules in dry
apples and cocoa mass. The final concentration is strictly related to the transformations
occurring to single polyphenols during the manufacturing process in each cocoa bar with
dry apple combinations. The literature reports that, even in chocolate alone, an industrial-
ization step reduces the total polyphenols originally present in cocoa bean. For example,
polyphenol oxidization reduce the flavanol content and determine the degradation of spe-
cific polyphenols such as (−)-epicatechin and (+)-catechin. Regarding flavonol, quercetin
undergoes the greatest decrease during the industrialization processes [31]. Gültekin-
Ozgüven et al. [32] demonstrated that, during chocolate manufacturing, a reduction in
phenolic content is normally expected due to high temperatures. Moreover, chemical
transformation like epimerization of the (−)-epicatechin in (−)-catechin could occur [33].
The complexity of these transformations during thermal processing to which polyphenols
undergo may significantly differ when polyphenols derive not only from cocoa but also
from apple. Additional aspects are related to the presence of vitamins in dry apples that
could have a role in preserving polyphenol reduction during cocoa bar preparation.

In general, these data demonstrate the importance of using dry apple material with
the highest concentration of polyphenols, thus minimizing total and specific antioxidant
reductions when dry apples are added to the cocoa bars. These complex interactions
during cocoa bar with dry apple preparation could determine the quick reduction in
specific polyphenols such as quercetin, with differences between ‘Golden’ and the other
apple varieties.

Concerning the DPPH scavenging activity, statistical analyses of our data indicated
that all the dry apples (except ‘Mora’) have a statistically similar DPPH activity. After cocoa
bar preparation, this activity was reduced in ‘Golden’ (−26.4%), ‘Panaia’ (−63.7%), and
‘Ruggina’ (−45.6%), while remaining stable in ‘Mora’ and ‘Nesta’ samples. The different
reductions in DPPH activity, despite showing no significant differences in DPPH at the dry
apple levels, might be due to the presence of vitamins and the polyphenol profile of the
apples studied. For all these reasons, our data prove that it is very important to provide a
real measure of the polyphenols and DPPH scavenging activity in the final products.

The relationship between bioactive compounds and the sensory properties of dark choco-
late produced from Brazilian hybrid cocoa have been demonstrated by das Virgens et al. [34].
The higher contents of epicatechin, catechin, and total phenolic compounds contributed
to a higher intensity of bitterness, cocoa flavor, acid taste, and astringency. The research
demonstrates the importance of the improvement of these compounds for consumer sat-
isfactoriness. Moreover, the significant positive correlations found between phenolic
compound concentrations, such as p-coumaric acid, trans-ferulic acid, and chlorogenic acid,
and total antioxidant capacity in cocoa bars indicated their role as molecule scavengers of
the oxidant compounds. This was particularly evident for the ‘Nesta’ variety apples, which
were well separated using principal component analysis in relation to the higher content of
polyphenols detected in dry apples and transferred to the cocoa bars.
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5. Conclusions

Underutilized apple varieties could be added to fine cocoa, modifying the chemical and
sensory value of the final product. These changes could successfully increase the consumers’
interest in these new cocoa-based foodstuffs. The UHPLC-ESI-MS/MS approach developed
in this study is a strategic tool for cocoa producers to achieve this objective and provide a
real quantification of the polyphenols in the final products.
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