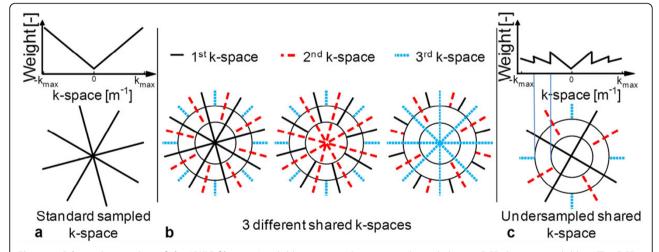
POSTER PRESENTATION

Open Access

Breath-held high-resolution cardiac T₂ mapping with SKRATCH

Emeline Lugand^{1*}, Jérôme Yerly^{1,2}, Hélène Feliciano¹, Jérôme Chaptinel¹, Matthias Stuber^{1,2}, Ruud B van Heeswijk¹


From 19th Annual SCMR Scientific Sessions Los Angeles, CA, USA. 27-30 January 2016

Background

Several cardiac T_2 mapping techniques with varying T_2 preparation (T_2 Prep) times have been proposed for the quantification of cardiac edema [1-3]. Among these, radial T_2 mapping, which is robust to motion artifacts, suffers from a low signal-to-noise ratio (SNR) caused by the undersampling of the k-space periphery and by its density compensation function (DCF) (Fig. 1a). However, since the contrast of an image is mainly determined by the center of its k-space, the T_2 -weighted images can share their k-space periphery using the KWIC (K-space Weighted

Image Contrast) filter (Fig. 1b) to reduce undersampling artifacts [4]. This allows for higher undersampling (Fig. 1c) and thus for a decrease in acquisition time [5].

We demonstrated that navigator-gated KWIC-filtered cardiac T_2 mapping (Shared K-space RAdial T_2 Characterization of the Heart, SKRATCH) enables a considerable decrease in acquisition time while maintaining the T_2 precision [5]. The goal of this study was to extend this approach to a short breath-held high-resolution T_2 map acquisition and to compare its performance to navigator-gated T_2 mapping.

Figure 1 Schematic overview of the KWIC filter. a. A radial k-space sampling pattern shown below its DCF along one radial line. The DCF is used to weigh the k-space points. **b.** Three similar k-spaces that share their periphery through the KWIC filter, thus increasing the local sampling density and decreasing the local weight attributed by the DCF. The radii outside of which data were added were defined through the Nyquist criterion. **c.** An undersampled KWIC-filtered k-space. While the number of lines has decreased, the periphery of k-space still has a higher sampling density than the standard radial k-space in a.

Full list of author information is available at the end of the article

¹University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland

Methods

The novel breath-held SKRATCH protocol consisted of a GRE sequence with a continuously increasing goldenangle radial acquisition. This ensured a unique k-space trajectory for all 64 lines of each of the 4 T₂Prep durations (0/30/45/60 ms), pixel size of $1.2 \times 1.2 \times 8 \text{ mm}^3$ and a total duration of 7 heartbeats. As reference, a navigatorgated radial cardiac T2 mapping GRE sequence was acquired with 3 T₂Prep durations (0/30/60 ms), 308 lines/ image and a pixel size of $1.25 \times 1.25 \times 5 \text{ mm}^3$ [3]. Images were acquired at 3T (Magnetom Prisma, Siemens Healthcare) in 17 healthy volunteers at the same midventricular short-axis orientation with both protocols. The T₂ maps were segmented according to the AHA guidelines [6]. The mean T_2 value (μ_{T2}) and the relative standard deviation $(\sigma_R$ = standard deviation/ μ_{T2}) of each segment as well as the myocardial area were calculated and tested for significant differences. The SKRATCH T2 map was acquired twice in 11 of the volunteers for Bland-Altman reproducibility analysis.

Results

The SKRATCH T_2 maps had average values of 39.9 \pm 4.4 ms, while those of the reference T_2 maps were 39.1 \pm 3.1 ms (p = 0.04, Fig. 2a-c). σ_R increased from 8 \pm 2% for the standard T_2 maps to 11 \pm 2% for the SKRATCH T_2 maps (p < 0.001). The myocardial area decreased from 643 \pm 155 to 585 \pm 121 pixels for the SKRATCH T_2 maps (a 10% decrease, p = 0.008). The repeatability analysis resulted in a confidence interval of \pm 3.09 ms (Fig. 2d).

Conclusions

The SKRATCH T_2 maps were highly similar to the reference high-resolution T_2 maps, while the shortening to breath-hold duration came at the cost of an acceptably small increase in standard deviation and decrease in

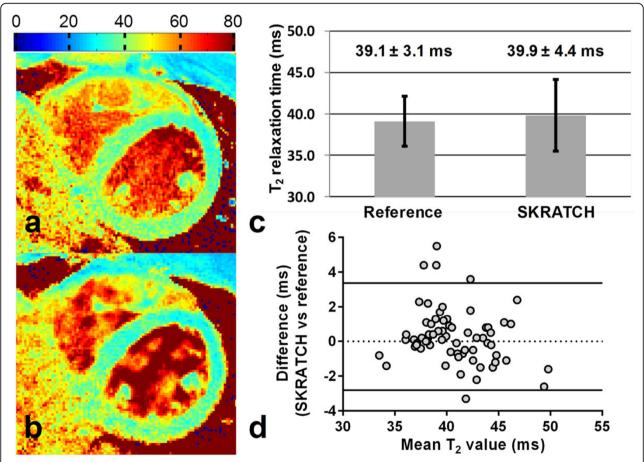


Figure 2 A comparison of navigator-gated and breath-held high-resolution T_2 maps in healthy volunteers. a,b. The standard navigator-gated T_2 map and breath-held SKRATCH T_2 map respectively. Note that the maps are homogeneous and have similar myocardial surface available for analysis. The color bar indicates the T_2 relaxation time in ms. c. The mean T_2 values and standard deviations of the 17 healthy volunteers show a slight increase in standard deviation for the breath-held SKRATCH acquisition. d. The Bland-Altman analysis of the difference in mean T_2 values for 11 volunteers. The dotted line represents the mean with a bias of 0.28, while the continuous lines represent the 95% confidence interval (1.96 × standard deviation).

Lugand et al. Journal of Cardiovascular Magnetic Resonance 2016, **18**(Suppl 1):P27 http://www.jcmr-online.com/content/18/S1/P27

myocardial area. These encouraging results will need to be validated in future high-resolution studies in patients.

Authors' details

¹University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland. ²Center for Biomedical Imaging (CIBM), Lausanne and Geneva, Switzerland.

Published: 27 January 2016

References

- 1. Foltz , et al: MRM 2003.
- 2. Giri , et al: JCMR 2009.
- 3. van Heeswijk , et al: JACCImaging 2012.
- 4. Song, et al: MRM 2000.
- 5. Lugand , et al: ISMRM 2015, 23:P28.
- 6. Cerqueira, et al: Cir 2002.

doi:10.1186/1532-429X-18-S1-P27

Cite this article as: Lugand *et al*: Breath-held high-resolution cardiac T₂ mapping with SKRATCH. *Journal of Cardiovascular Magnetic Resonance* 2016 18(Suppl 1):P27.

Submit your next manuscript to BioMed Central and take full advantage of:

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

Submit your manuscript at www.biomedcentral.com/submit

