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1  | INTRODUC TION

Cnidarian venom consists of a diverse array of peptides that have 
distinct biochemical and pharmacological properties (Frazão, 
Vasconcelos, & Antunes, 2012; Jouiaei, Sunagar, et al., 2015). These 
toxins are used for a variety of different roles, consistent with nema‐
tocyst morphology and function (Beckmann & Özbek, 2012; Fautin, 
2009; Fautin & Mariscal, 1991; Kass‐Simon & Scappaticci, 2002; 
Özbek, 2010). Multiple toxin types have been pharmacologically 

characterized in cnidarians, including neurotoxins, pore‐forming tox‐
ins, and enzymatic toxins (Casewell, Wüster, Vonk, Harrison, & Fry, 
2013; Daly, 2016; Jouiaei, Sunagar, et al., 2015; Jouiaei, Yanagihara, 
et al., 2015; Prentis, Pavasovic, & Norton, 2018). Consistent with 
other venomous lineages, cnidarian venoms are a rich source of 
novel biological compounds, often being encoded by genes that lack 
homology to sequences other than cnidarians (Moran, Praher, et al., 
2012; Sebé‐Pedrós et al., 2018; Sunagar et al., 2018; Surm et al., 
2019).
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Abstract
Sea anemones have a wide array of toxic compounds (peptide toxins found in their 
venom) which have potential uses as therapeutics. To date, the majority of studies 
characterizing toxins in sea anemones have been restricted to species from the super‐
family, Actinioidea. No highly complete draft genomes are currently available for this 
superfamily, however, highlighting our limited understanding of the genes encoding 
toxins in this important group. Here we have sequenced, assembled, and annotated 
a draft genome for Actinia tenebrosa. The genome is estimated to be approximately 
255 megabases, with 31,556 protein‐coding genes. Quality metrics revealed that 
this draft genome matches the quality and completeness of other model cnidarian 
genomes, including Nematostella, Hydra, and Acropora. Phylogenomic analyses re‐
vealed strong conservation of the Cnidaria and Hexacorallia core‐gene set. However, 
we found that lineage‐specific gene families have undergone significant expansion 
events compared with shared gene families. Enrichment analysis performed for both 
gene ontologies, and protein domains revealed that genes encoding toxins contribute 
to a significant proportion of the lineage‐specific genes and gene families. The results 
make clear that the draft genome of A. tenebrosa will provide insight into the evolu‐
tion of toxins and lineage‐specific genes, and provide an important resource for the 
discovery of novel biological compounds.

K E Y W O R D S

Cnidaria, concerted evolution, sea anemone, venom

www.ecolevol.org
mailto:﻿
mailto:﻿
https://orcid.org/0000-0001-6970-029X
https://orcid.org/0000-0002-3635-6848
https://orcid.org/0000-0001-6587-8875
http://creativecommons.org/licenses/by/4.0/
mailto:joachim.surm@hdr.qut.edu.au
mailto:joachim.surm@mail.huji.ac.il


     |  11315SURM et al.

Recent studies have revealed a high frequency of cnidarian‐spe‐
cific genes is enriched within the cnidocyte (Sebé‐Pedrós et al., 
2018; Sunagar et al., 2018). Many of these cnidarian‐specific genes 
expressed in the cnidocytes encode for toxin peptides (Columbus‐
Shenkar et al., 2018; Sebé‐Pedrós et al., 2018). This highlights that 
cnidarians possess both morphological and biochemical novelties and 
that the evolution of these innovations may be related. This is consis‐
tent with evidence that acrorhagin 1 and acrorhagin 2 are novel toxin‐
coding genes which are localized to the acrorhagi, a morphological 
structure used for envenomation that is unique to sea anemones from 
Actinioidea (Honma et al., 2005; Macrander, Brugler, & Daly, 2015).

Indeed, understanding the evolution of venom and its delivery in 
cnidarians can provide insights into the innovation of morphological 
and biochemical novelties. While the majority of cnidarian toxin re‐
search has focussed on sea anemones from the Actinioidea superfam‐
ily (Prentis et al., 2018), no highly complete sequenced genomes for 
members of this superfamily currently exist (Urbarova et al., 2018). 
This lack of genomic resources limits our collective ability to under‐
stand the phylogenetic and molecular evolutionary histories of toxin‐
encoding genes within this superfamily. Such a resource would provide 
an excellent model to investigate the evolution of novel morphological 
and cellular structures, and their relationship with novel genes.

Actinia tenebrosa is a sea anemone from the superfamily 
Actinioidea. This species is similar in morphology to the northern 
hemisphere species, Actinia equina (Farquhar, 1898; Sherman, Peucker, 
& Ayre, 2007; Watts, Allcock, Lynch, & Thorpe, 2000), both of which 
have been used as model organisms for the investigation of sea anem‐
one toxins (Honma et al., 2005; Maček & Lebez, 1988; Minagawa, 
Sugiyama, Ishida, Nagashima, & Shiomi, 2008; Moran et al., 2008; 
Norton, Maček, Reid, & Simpson, 1992; O'Hara, Caldwell, & Bythell, 
2018; Prentis et al., 2018; Surm et al., 2019; Watts et al., 2000). Here, 
we have assembled and annotated the first draft genome for A. tene-
brosa. We performed phylogenomic analyses and provide insights into 
the evolution of lineage‐specific genes in cnidarians, specifically re‐
vealing that these novel genes undergo increased rates of expansions 
compared with gene families that have a wider taxonomic distribution. 
Moreover, genetic innovations restricted to Actinioidea are found to 
be enriched for functions related to venom and its delivery. The suite 
of toxin and toxin‐like (TTL) genes identified in A. tenebrosa reveal an 
abundance of gene families evolving through lineage‐specific duplica‐
tions and, in some cases, concerted evolution. This study shows that 
gene duplication and divergent selective pressures have shaped the 
genetic variation in genes encoding toxins in actiniarians.

2  | METHODS

2.1 | Genome assembly of Actinia tenebrosa

2.1.1 | Sample preparation, 
sequencing, and assembly

Samples of A. tenebrosa were collected from the intertidal zone at 
Coolum, (QLD, Australia). Tissue from a single individual was used 

to extract high‐quality gDNA using the E.Z.N.A. Mollusc DNA Kit 
(Omega Bio‐Tek; Stefanik, Wolenski, Friedman, Gilmore, & Finnerty, 
2013). Extracted gDNA was used to construct four paired‐end (PE) 
libraries sequenced on Illumina 2500 HiSeq platform using multiple 
insert sizes (170, 500, 2,000, 5,000 bp) with a read length of 100 bp 
(NCBI BioProject PRJNA505921). Sequencing resulted in over 
150 million PE reads per library, with over 96% being high‐quality 
(Q > 30, [N(ambiguous bases) < 1%]). Contiguous sequences were 
generated and scaffolded using a manual operation of ALLPATH‐LG 
(Butler et al., 2008) with a focus on removing redundant sequences.

The presence of the complete mitochondrial genome of A. tene-
brosa in the draft genome was investigated. Assembled contigs were 
queried using BLASTN against a database which consisted of the 
complete mitochondrial genome of A. equina. Contigs receiving a 
significant hit (e value 1e−05) were imported into Geneious 9.1.6 and 
aligned using a global alignment with free end gap and 100% iden‐
tity. This resolved a single sequence, of 20,691 bp, and was aligned 
to the complete mitochondrial genome of A. equina using eight iter‐
ations of MUSCLE. Gene order and annotation of the mitochondrial 
genome of A. tenebrosa were performed as per Wilding and Weedall 
(2019).

2.1.2 | Annotation

Repeat library generation

Homology and ab initio‐based methods were used to identify repeat 
regions and low‐complexity DNA sequences. Miniature Inverted‐re‐
peat Terminal Elements (MITEs) were predicted with MITE‐HUNTER 
v.11‐2011 (Han & Wessler, 2010) and detectMITE v.20170425 (Ye, 
Ji, & Liang, 2016). MITE predictions were clustered using CD‐HIT 
v.4.6.4 (Fu, Niu, Zhu, Wu, & Li, 2012). Parameters = “cd‐hit‐est ‐c 
0.8 ‐s 0.8 ‐aL 0.99 ‐n 5” (same parameters used by detectMITE). 
Prediction of long terminal repeat retrotransposons (LTR‐RTs) 
was performed using LTRharvest (GT 1.5.10; Ellinghaus, Kurtz, & 
Willhoeft, 2008) and LTR_FINDER v.1.06 (Xu & Wang, 2007), and 
these results were combined using LTR_retriever commit 9b1d08d 
(Ou & Jiang, 2018) to identify canonical and noncanonical (i.e., 
non‐TGCA motif) LTR‐RTs. MITE and LTR‐RT libraries were concat‐
enated, and the genome sequence was masked using RepeatMasker 
open‐4.0.7 (Smit, Hubley, & Green, 2013) with settings “‐e ncbi 
‐nolow ‐no_is –norna.” De novo repeat prediction was performed 
using RepeatModeler open‐1.0.10 (Smit & Hubley, 2008) with the 
masked genome as input.

All repeat models were curated to remove models putatively 
part of protein‐coding genes. Any models confidently annotated by 
LTR_retriever or RepeatModeler (i.e., not classified as “Unknown”) 
were removed from consideration as they are not likely to be part 
of protein‐coding genes. Open reading frames from the remaining 
repeat models were extracted and examined using HMMER 3.1b2 
(Eddy, 2011) to identify models that only contained domains asso‐
ciated with transposable elements. For this purpose, we collated a 
list of transposon‐associated domains which primarily consisted of 
domains identified by Piriyapongsa, Rutledge, Patel, Borodovsky, and 
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Jordan (2007) with additional Pfam (Finn et al., 2014) and NCBI CDD 
(Marchler‐Bauer et al., 2015) domains included on the basis of man‐
ual inspection of domain prediction results for putative transposable 
elements. Repeat models that contained a TE‐associated domain pre‐
diction were removed from consideration and assumed to be true‐
positives. A custom database of known genes was created to enable 
BLAST comparison of remaining repeat models and subsequent re‐
moval of false predictions from protein‐coding genes. The database 
includes the UniProtKB/Swiss‐Prot proteins as well as the gene mod‐
els of Nematostella vectensis (v.2.0; Putnam et al., 2007; Schwaiger et 
al., 2014), Exaiptasia pallida (v.1.1; Baumgarten et al., 2015), Acropora 
digitifera (v.0.9; Shinzato et al., 2011), and Hydra vulgaris (Chapman 
et al., 2010). This database had probable transposons removed via 
the same process detailed above using HMMER 3.1b2 and domain 
organization. Any remaining repeat models were removed from the 
initial custom repeat library (CRL) if they had significant BLASTX hits 
(e value < 1e−02) when queried against the gene model database. The 
final curated CRL was used to soft‐mask the A. tenebrosa genome 
using RepeatMasker (‐e ncbi ‐s ‐nolow ‐no_is ‐norna ‐xsmall) for later 
gene prediction. Scripts were produced to automate this process 
and are available from https ://github.com/zkste wart/Genome_analy 
sis_scrip ts/tree/maste r/repeat_pipel ine_scripts.

2.2 | Gene model prediction and annotation

Following the masking of repeat regions, gene models were predicted 
using ab initio methods guided by transcriptional expression. These 
reads included the Red and Brown ecotypes obtained from NCBI 
(Bioproject PRJNA313244; van der Burg, Prentis, Surm, & Pavasovic, 
2016). Raw reads were quality trimmed using Trimmomatic (Bolger, 
Lohse, & Usadel, 2014) with parameters used by the Trinity de novo 
assembler (Haas et al., 2013; MacManes, 2014). Trimmed sequences 
were aligned against the genome using STAR 2.5 (Dobin et al., 2013) 
using the two‐pass procedure for the de novo identification of tran‐
scription splice sites. The SAM file produced by STAR was converted 
to BAM format and sorted using samtools v.1.5 (Li et al., 2009). Gene 
models were predicted by BRAKER1 v1.11 (Hoff, Lange, Lomsadze, 
Borodovsky, & Stanke, 2016) using the soft‐masked genome assembly 
and the STAR alignment file as inputs. The completeness of the protein‐
coding genes was then assessed using BUSCO (Simão, Waterhouse, 
Ioannidis, Kriventseva, & Zdobnov, 2015; Waterhouse et al., 2018).

Gene models were annotated by querying models against the 
Uniclust90 database (Mirdita et al., 2017) using MMseqs2 with an 
e value < 1e−05 (Steinegger & Söding, 2017). Gene Ontology (GO) 
terms associated with the representative UniProtKB sequence for 
each Uniclust90 hit were attributed to the A. tenebrosa gene model 
using the idmapping_selected.tab file provided by UniProtKB. 
Protein domain predictions were performed by HMMER 3.1b2 using 
a custom domain database, which included NCBI's CDD in addition 
to CATH (S35 v.4.1.0; Dawson et al., 2017) and SUPERFAMILY (1.75; 
Gough, Karplus, Hughey, & Chothia, 2001), and tabulated using 
scripts available from https ://github.com/zkste wart/Genome_analy 
sis_scrip ts/tree/maste r/annot ation_table .

2.3 | Gene family evolution

Using translated gene models from Nematostella vectensis, 
Exaiptasia pallida, Acropora digitifera, Amplexidiscus fenestrafer, 
Discosoma sp., and Hydra vulgaris, an “all‐against‐all” BLASTP analy‐
sis (e value < 10e−5) was performed. ORTHOMCL version 2.0.9 (Li, 
Stoeckert, & Roos, 2003) was used, with default parameters, to as‐
sign proteins into orthologous gene groups. Phylogenetic analyses 
were performed using single‐copy orthologs (SCO) for each species. 
A total of 1,314 SCO were identified and aligned using clustal‐omega 
(Sievers et al., 2011). The alignments were the concatenated, and 
the best evolutionary mode protein model (JTT+F+I+G4) was deter‐
mined. Finally, a maximum‐likelihood tree with 1,000 ultrafast boot‐
strap replicates was generated using IQ‐TREE (Nguyen, Schmidt, von 
Haeseler, & Minh, 2015).

Following the generation of a cnidarian species tree, the gain and 
loss of gene families across Cnidaria were inferred using the DOLLOP 
program from the PHYLIP package version 3.696 (Felsenstein, 1989; 
http://evolu tion.genet ics.washi ngton.edu/phylip.html). The species 
tree and a presence/absence matrix of gene families were imported 
into the DOLLOP program. The most parsimonious evolutionary 
scenario for the gain and loss of gene families was estimated using 
Dollo's parsimony law, which assumes genes arise once on the evolu‐
tionary tree and can be lost independently in different evolutionary 
lineages (Farris, 1977). The predicted proteomes from cnidarian spe‐
cies with sequenced genomes were used to investigate the evolution 
of protein domains. Protein domains were predicted using HMMER 
3.1b2 against the Pfam database (e value < 1e−05), the best hit was re‐
tained, and overlapping domains were removed. A Fisher exact test 
was performed to determine Pfam enrichment with p‐value of .05. 
Finally, we investigated the proportion of shared and unique gene 
families in actiniarian species. A BLASTP analysis (e value < 1e−05) 
was performed with OrthoVenn (Wang, Coleman‐Derr, Chen, & Gu, 
2015) using gene models from A. tenebrosa, N. vectensis, and E. pal-
lida to determine the number of shared and unique gene families in 
each species.

The presence of toxin and toxin‐like (TTL) genes was investi‐
gated in A. tenebrosa. The TTL genes were identified as per Surm et 
al. (2019). Briefly, BLASTP was performed against the against the 
manually curated Swiss‐Prot database (e value < 1e−05). Significant 
queries with top BLAST annotations from sequences in the Tox‐Prot 
database (Jungo & Bairoch, 2005) were considered candidate pro‐
teins. Candidate proteins were further interrogated and required to 
contain a signal peptide identified using SignalP (Petersen, Brunak, 
Heijne, & Nielsen, 2011).

The phylogenetic and evolutionary histories of multiple toxin 
gene families were investigated. Candidate sea anemone sodium 
channel inhibitory toxin (NaTx), sea anemone type 1 potassium chan‐
nel toxin (KTx), sea anemone type 3 (BDS‐LIKE) KTx, and membrane 
attack complex/perforin (MACPF) sequences were used for phy‐
logenetic analysis to determine their distribution among cnidarian 
taxa and aligned to functionally characterized sequences (Jouiaei, 
Sunagar, et al., 2015; Sunagar & Moran, 2015). The florescent 

https://github.com/zkstewart/Genome_analysis_scripts/tree/master/repeat_pipeline_scripts
https://github.com/zkstewart/Genome_analysis_scripts/tree/master/repeat_pipeline_scripts
https://github.com/zkstewart/Genome_analysis_scripts/tree/master/annotation_table
https://github.com/zkstewart/Genome_analysis_scripts/tree/master/annotation_table
http://evolution.genetics.washington.edu/phylip.html
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protein (FP) gene family was also investigated to explore the evolu‐
tion of nontoxin gene families. Sequences were identified in cnidar‐
ian genomes by the presence of GFP PFAM domain (PF01353) and 
aligned to sequences used in previous studies (Alieva et al., 2008; 
Ikmi & Gibson, 2010).

Protein alignments of candidate gene families were imported 
into IQ‐TREE (v1.4.2; Nguyen et al., 2015) to determine a best fit of 
protein model evolution. Phylogenetic trees were generated from 
the alignments using 1,000 ultrafast bootstrap iterations and visu‐
alized using Figtree (v1.4.3, http://tree.bio.ed.ac.uk/softw are/figtr 
ee/). Selection analyses were performed on these gene families 
using previously published methods (Jouiaei, Sunagar, et al., 2015; 
Sunagar & Moran, 2015).

3  | RESULTS

3.1 | Genome assembly

Using a whole‐genome shotgun strategy, we sequenced and assem‐
bled the genome of A. tenebrosa. A total of 1.2 billion paired‐end 
reads, with a length of 100 bp, were sequenced across four differ‐
ent insert size libraries (170, 500, 2,000, and 5,000 bp; Table S1). 
Raw reads were used to assemble the A. tenebrosa genome using 
ALLPATHS‐LG. The genome size of A. tenebrosa is estimated to be 
~255 Mbp (Table 1). The draft genome assembled is of similar quality 
to other cnidarian genomes (Table 1). Although the assembly resulted 
in the scaffold and contig N50 lower than other cnidarian genomes, 
the predicted genome completeness using metazoan Augustus gene 
models is among the highest (89.6%) for cnidarian genomes, with 
only N. vectensis having a more complete assembly (91.6%). The as‐
sembly contains ~19% repetitive DNA sequences, which is similar to 
reported values for other cnidarians (Tables 1 and S2).

3.2 | Functional annotation of predicted 
gene models

The ab initio gene model prediction identified 31,556 protein‐cod‐
ing genes in A. tenebrosa. All gene models were validated, receiving 
significant BLAST hits against multiple A. tenebrosa transcriptomes 
(van der Burg et al., 2016). Our ab initio gene model prediction was 
highly complete compared with other cnidarian genomes, increas‐
ing the previous BUSCO score to 94.6% (Table 1). Only E. pallida 
gene models were more complete (94.7%). Of the 31,556 protein‐
coding genes, 19,022 and 25,478 returned a significant BLAST hit 
(e value 1e−05) against the Swiss‐prot and TREMBL database, re‐
spectively. This highlights that ~80% of the predicted proteome 
shares sequence similarity to known protein sequences, with ~20% 
having no similarity to other proteins. In contrast, only 6.56% of 
E. pallida predicted proteome returned no hits to known proteins 
at this stringency. However, other cnidarian genomes returned 
similar levels of novelty, with Discosoma sp. having 16.17% of pro‐
teins returning no hits. The annotation of protein domains revealed 
19,056 (~60%) gene models contained identifiable Pfam domains. 
This is less than other sea anemone genomes, with 78.64% and 
68.35% of E. pallida and N. vectensis gene models having a protein 
domain, respectively. Additionally, both corallimorpharians ge‐
nomes reported less than 60% of gene models to encode proteins 
with known protein domains. Taken together, these results high‐
light that the draft genome of A. tenebrosa is mostly complete, yet 
a significant proportion of its genes are unique (Table 2).

Our assembly also resolved the complete mitochondrial ge‐
nome for A. tenebrosa (GenBank accession MK291977), shown to be 
20,691 bp long (Figure S1). The mitochondrion of A. tenebrosa was 
aligned to the recently completed A. equina mitochondrion (Wilding 
& Weedall, 2019), revealing identical gene order and protein‐coding 

Annotation 
metrics ADIG AFEN ATEN DSPP EPAL NVEC HVUG

Genome size 
(Mbp)

420 350 255 428 260 329/450 1,300

Assembly size 
(Mbp)

419 370 238 444 258 356 852

Total contig 
size (Mbp)

365 305 206 364 213 297 785

Total contig 
size (% of 
assembly)

87 82.43 86.56 81.98 82.5 83.4 92.2

Contig N50 
(kbp)

10.9 20 8.4 18.7 14.9 19.8 9.7

Scaffold N50 
(kbp)

191 510 159 769 440 472 92.5

Percent repeti‐
tive DNA

13 30.7 19.57 37.8 26 26 57

BUSCO (%) 74.7 83.7 89.6 86.3 87.3 91.6 77

Abbreviations: ADIG, Acropora digitifera; AFEN, Amplexidiscus fenestrafer; ATEN, Actinia tenebrosa; 
DSPP, Discosoma sp.; EPAL, Exaiptasia pallida; HVUG, Hydra vulgaris; NVEC, Nematostella vectensis.

TA B L E  1   Comparative genome metrics 
across Cnidaria

http://tree.bio.ed.ac.uk/software/figtree/
http://tree.bio.ed.ac.uk/software/figtree/
info:ddbj-embl-genbank/MK291977
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sequence similarity. Nucleotide differences in the mitochondrion of 
A. tenebrosa and A. equina included a thymine insertion in the inter‐
genic region between genes ND6 and CYTB in A. tenebrosa, a trans‐
version SNP was identified in the large RNA subunit, and a transition 
SNP was identified in the intergenic region between COIII and COI 
genes.

3.3 | Gene family evolution

Manual curation and a phylogenomic characterization of seven 
Cnidarian species drove our investigation of Cnidarian gene turno‐
ver. Using 1,314 genes, we built a representative cnidarian species 
tree from all seven genomes (Figure 1). This species tree confirmed 

TA B L E  2   Functional annotation of gene models from seven cnidarian species

Annotation metrics ADIG AFEN ATEN DSPP EPAL HVUG NVEC

BUSCO (%) 80.5 72.8 94.6 68.6 94.7 91.5 93.8

Protein‐coding genes 33,878 21,372 31,556 23,199 26,087 21,990 24,780

SP annotation 24,094 12,959 19,022 13,562 20,515 15,923 18,974

SP annotation (%) 71.12 60.64 60.28 58.46 78.64 72.41 76.57

No SP annotation (%) 28.88 39.36 39.72 41.54 21.36 27.59 23.43

TREMBL annotation 30,116 18,106 25,478 19,447 24,376 19,992 208,698

TREMBL annotation (%) 88.90 84.72 80.74 83.83 93.44 90.91 84.21a

No TREMBL annotation (%) 11.10 15.28 19.26 16.17 6.56 9.09 15.78a

Pfam 24,000 12,686 19,056 13,283 20,514 15,665 16,938

Pfam annotated (%) 70.84 59.36 60.39 57.26 78.64 71.24 68.35

No Pfam annotated (%) 29.16 40.64 39.61 42.74 21.36 28.76 31.65

Total Pfam found 52,242 27,154 42,834 27,355 45,944 28,984 30,605

Pfam per gene 1.54 1.27 1.36 1.18 1.76 1.32 1.24

Abbreviations: ADIG, Acropora digitifera; AFEN, Amplexidiscus fenestrafer; ATEN, Actinia tenebrosa; DSPP, Discosoma sp., EPAL, Exaiptasia pallida; 
HVUG, Hydra vulgaris; NVEC, Nematostella vectensis.
aAs the predicted proteome of N. vectensis is incorporated into the TREMBL protein database, a subset of TREMBL's database with N. vectensis pre‐
dicted proteins removed was used instead. 

F I G U R E  1   Comparative analysis of 
gene families within Cnidaria. Maximum‐
likelihood protein tree generated to 
determine cnidarian phylogeny, all 
bootstrap support 100%. TTL gene 
family gains (green) and losses (red) are 
represented above and below branches, 
respectively. ADIG, Acropora digitifera; 
AFEN, Amplexidiscus fenestrafer; ATEN, 
Actinia tenebrosa; DSPP, Discosoma sp.; 
EPAL, Exaiptasia pallida; HVUG, Hydra 
vulgaris; NVEC, Nematostella vectensis

ATEN

EPAL

NVEC

ADIG

AFEN

DSPP

HVUG

947

602

1,037

1,210

279

496

1,293

7,373

7,026

1,389

1,045

1,480

1,613

1,144

1,874

3,317

2,344

2,188

2,378

0

0

0

185

875

460

1,844
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the phylogenetic position of A. tenebrosa with previously published 
species trees (Daly et al., 2017; Rodríguez et al., 2014; Wang et al., 
2017). We found 7,373 gene families were shared among all cnidar‐
ian taxa investigated. An additional 7,026 gene families were gained 
in Anthozoa following their divergence from Medusozoa (H. vul-
garis). In the actiniarian lineage (which includes A. tenebrosa, E. pal-
lida, and N. vectensis), 1,389 and 185 gene families were gained and 
lost, respectively. Examination of the genome of A. tenebrosa found 
that 947 gene families (3,963 genes) were gained in this species fol‐
lowing divergence from other sea anemone taxa investigated. In all 
cnidarians, lineage‐specific gene families have undergone a greater 
expansion compared with gene families shared among cnidarians 
(Table 3). This is most apparent in A. tenebrosa and H. vulgaris, with 
lineage‐specific gene families having a mean copy number of 4.18 
and 4.99 genes, respectively. Additional novelty is observed with 
6,705 (21.26%) singletons (lineage‐specific genes not in gene fami‐
lies) found in the gene models of A. tenebrosa. These results suggest 
significant gene family conservation across cnidarians, particularly in 
Anthozoa, but with lineage‐specific genes contributing to a signifi‐
cant proportion of the genome.

A closer examination of gene families within Actiniaria revealed 
10,260 orthologs shared across the three actiniarian genomes in‐
vestigated (Figure 2). These 10,260 actiniarian orthologs, however, 
do not exhibit any GO term enrichment. Five GO terms, including 
nematocyst (GO: 0042151; Table S3), were over‐represented in the 
predicted protein sequences from the 1,208 genes unique to A. ten-
ebrosa. This highlights that a significant proportion of genes unique 
to A. tenebrosa have roles related to envenomation. Although all ac‐
tiniarians are venomous, we observe, therefore, the first expansion 
of lineage‐specific genes is related to venom delivery.

To better understand the evolution of protein domains across 
cnidarian genomes, we also investigated Pfam domain enrichment. 

Using a Fisher exact test, 25 Pfam domains were significantly en‐
riched in A. tenebrosa, in comparison with other cnidarian genomes 
(Figure 3). Enrichment of ShK and Defensin_4 domains underpinned 
much of the expansion of toxin‐related genes in A. tenebrosa. Both 
ShK and Defensin_4 domains are associated with potassium chan‐
nel‐blocking toxins in sea anemones, specifically sea anemone type 
1 potassium channel toxin (KTx) and type 3 (BDS‐LIKE) KTx, respec‐
tively (Castañeda et al., 1995).

With evidence supporting that genetic innovations in the ge‐
nome of A. tenebrosa are related to venom, we further investigated 
its total and toxin‐like gene (TTL) complement. Overall, we identified 
113 TTL gene families in A. tenebrosa (Table S4). Manual curation 
of TTL genes revealed that sea anemone type 3 (BDS‐LIKE) KTx 
family is the most highly expanded TTL gene family (15 copies, 11 
of which are full‐length sequences). A phylogeny of sea anemone 
type 3 (BDS‐LIKE) KTx was generated from these full‐length se‐
quences (Figure 4), as well as functionally characterized sequences 
from other sea anemones (Jouiaei, Sunagar, et al., 2015; Sunagar & 
Moran, 2015). The 11 A. tenebrosa sequences clustered into four dis‐
tinct clades, one of which includes only A. tenebrosa paralogs (Clade 
A). This suggests a process of concerted‐like evolution. Investigation 
into the genomic localization of the 11 A. tenebrosa sequences re‐
vealed no presence of tandem duplication, a common mechanism 
observed during concerted evolution. Furthermore, the sequence 
identity among A. tenebrosa sea anemone type 3 (BDS‐LIKE) KTx pa‐
ralogs is highly divergent at 34.2% and 43.5% at the nucleotide and 
protein level, respectively.

The sea anemone sodium channel inhibitory toxin family 
(NaTx) has also previously been shown to evolve via concerted 
evolution in multiple different sea anemone species (Moran et al., 
2008). Here we generated a phylogeny for the NaTx gene family 
(Figure 5), using sequences from a previously published alignment 

TA B L E  3   Expansion of shared and lineage‐specific gene families in cnidarians

 ADIG AFEN ATEN DSPP EPAL HVUG NVEC

Total genes 33,878 21,372 31,556 23,199 26,087 21,990 24,780

Singletons 4,053 5,261 6,705 5,752 2,590 2,800 5,492

Singletons (%) 11.96 24.62 21.25 24.79 9.93 12.73 22.16

Total gene families 14,285 13,279 15,576 13,306 14,501 8,666 13,323

Total genes in gene families 29,825 16,111 24,851 17,447 23,497 19,190 19,288

Expansion 2.09 1.21 1.6 1.31 1.62 2.21 1.45

Lineage‐specific gene families 1,210 279 947 496 602 1,293 1,037

Lineage‐specific gene families (%) 8.47 2.1 6.08 3.73 4.15 14.92 7.78

Lineage‐specific genes 4,238 659 3,963 1,232 1,830 6,451 3,447

Expansion 3.5 2.36 4.18 2.48 3.04 4.99 3.32

Shared gene families 13,075 13,000 14,629 12,810 13,899 7,373 12,286

Shared gene families (%) 91.53 97.90 93.92 96.27 95.85 85.08 92.22

Shared genes 25,587 15,452 20,888 16,215 21,667 12,739 15,841

Expansion 1.96 1.19 1.43 1.27 1.56 1.73 1.29

Abbreviations: ADIG, Acropora digitifera; AFEN, Amplexidiscus fenestrafer; ATEN, Actinia tenebrosa; DSPP, Discosoma sp.; EPAL, Exaiptasia pallida; 
HVUG, Hydra vulgaris; NVEC, Nematostella vectensis.
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(Jouiaei, Sunagar, et al., 2015; Sunagar & Moran, 2015), as well 
as newly identified sequences from N. vectensis (Nv4, Nv5, Nv6, 
Nv7, and Nv8; Sachkova et al., 2019). The phylogeny of NaTx gene 

family confirmed evidence of concerted evolution in multiple spe‐
cies, with paralogs clustering strongly together in N. vectensis, 
A. viridis, and A. equina. Three copies of NaTx were identified in 
A. tenebrosa, with two copies clustering together and another pa‐
ralog clustering with A. equina sequences. The three A. tenebrosa 
paralogs share 61.1% and 52.9% sequence similarity at the nucle‐
otide and protein level, respectively. Additionally, the genome of 
A. tenebrosa revealed no evidence of tandem duplication for the 
three NaTx paralogs.

Investigating the phylogenetic histories of cnidarian MACPF gene 
family also revealed evidence of concerted‐like evolution (Figure 6). 
This included two paralogs of A. tenebrosa MACPF sequences cluster‐
ing together. Genomic localization further revealed these sequences 
evolved through tandem duplication (Figure S2). Evidence of concerted 
evolution was also revealed with A. tenebrosa MACPF sequences being 
highly homogenous, sharing 94.3% and 92.8% similarly at the nucle‐
otide and protein level, respectively. In fact, clustering of paralogs of 
MACPF was observed in the majority of the anthozoan genomes in‐
vestigated, including all sea anemones. Multiple tandem duplications 
were observed in E. pallida; however, this was not consistent in all sea 
anemones with N. vectensis paralogs not adjacent to each other in the 
genome. We also found evidence of concerted‐like evolution in the 
sea anemone type 1 KTx family (Figure 7). While we did not observe 
this for A. tenebrosa paralogs, this process was observed for A. viridis 
paralogs.

While concerted‐like evolution appears to be a consistent pat‐
tern of TTL genes families in sea anemones, similar pattern is also 
observed broadly in cnidarians florescent protein (FP) family (Figure 

F I G U R E  2   Comparative analysis of gene families among 
Actiniarians. Venn diagram highlighting orthologous genes between 
Actiniarian genomes. EPAL, Exaiptasia pallida; NVEC, Nematostella 
vectensis; and ATEN, Actinia tenebrosa
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F I G U R E  3   Protein domain enrichment 
across Cnidaria. Heat map of Pfam 
domains enriched in Actinia tenebrosa. 
Abundance of Pfam domains in cnidarians 
log2 and median centered. ADIG, Acropora 
digitifera; AFEN, Amplexidiscus fenestrafer; 
ATEN, Actinia tenebrosa; DSPP, Discosoma 
sp.; EPAL, Exaiptasia pallida; HVUG, Hydra 
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S3), a nontoxin gene family. Combining published data (Alieva et al., 
2008; Ikmi & Gibson, 2010), with the genomic datasets from this 
study, we observed a consistent pattern of paralogs clustering to‐
gether. This is observed for A. tenebrosa FP paralogs that cluster to‐
gether in a clade consisting of other sea anemone chromoprotein 
sequences. While these sequences from A. tenebrosa appear to be 
evolving via concerted evolution, this appears to not be reliant on 
tandem duplication. While the A. tenebrosa paralogs sequence have 
escaped tandem duplication, they maintain a high level of sequence 
identity of 95.6% and 93.6% at the nucleotide and protein level, re‐
spectively. A similar pattern is also observed in other Hexacorallia 
taxa including N. vectensis and A. fenestrafer.

3.4 | Selection patterns on toxin gene families

In this study, we further explored the evolutionary histories of 
TTL gene families to provide insights into the selective pressures 
acting on them (Table S5). Here we report evidence of purifying 
acting on all TTL gene families. Given the evidence of concerted‐
like evolution acting on many of the gene families investigated, 
we tested the selective pressures of paralogs where possible. In 
A. tenebrosa, paralogs from the sea anemone type 3 (BDS‐LIKE) 
KTx (Figure 4; dN/dS = 2.0515) gene family revealed evidence of 
diversifying selection. Similarly, in A. viridis, sea anemone type 3 

(BDS‐LIKE) KTx paralogs also appear to be evolving under diver‐
sifying selection (Figure 4; dN/dS = 1.6665). We further explored 
the selective pressures acting on NaTx paralogs. Paralogs from 
A. tenebrosa and A. viridis appear to be evolving under diversifying 
selection, with a dN/dS ratio of 1.4438 and 2.6865, respectively. 
In A. equina, however, we cannot confirm diversifying selection 
acting on paralogs. Differences in selective pressures among a 
subset of NaTx orthologs were also observed, with orthologs from 
Actinia genus (dN/dS = 0.9825) and appear to be evolving under a 
relaxed rate of purifying selection compared to among actiniarian 
orthologs (dN/dS = 0.7397). Nematostella vectensis NaTx paralogs 
had a dN/dS ratio (0.881) consistent with the action of purifying 
selection. Additionally, all sea anemone type 1 KTx paralogs are 
inferred to be evolving under purifying selection, with the excep‐
tion of A. viridis (Figure 7; dN/dS = 3.0389).

Divergent evolutionary histories were also observed among pa‐
ralogs of gene families that appear to be evolving through a process 
of concerted‐like evolution. Specifically, in NaTx and sea anemone 
type 3 (BDS‐LIKE) KTx gene families, some paralogs are evolving 
through a process of concerted evolution and others are escaping 
this process. This is observed for N. vectensis and A. viridis NaTx par‐
alogs, and A. tenebrosa sea anemone type 3 (BDS‐LIKE) KTx paralogs. 
For N. vectensis, no evidence of positive selection could be inferred 
among the highly homogenous Nv1 sequences (Figure 5); however, 

F I G U R E  4   Maximum‐likelihood tree with midpoint root depicting relationships among sea anemone type 3 (BDS‐LIKE) KTx coding 
sequences. Bootstrap values after 1,000 iterations are shown next to nodes, values under 70% not reported. The GenBank accession 
numbers for the protein‐coding gene used in this phylogenetic analysis are described in Sunagar and Moran (2015). A corresponding bar 
plot is provided which shows the computed dN/dS value for orthologs and paralogs. 1 = Actiniaria orthologs, 2 = Anemonia viridis paralogs, 
3 = Actinia tenebrosa paralogs, 4 = Bunodosoma granulifera paralogs, 5 = Actinia tenebrosa Clade A paralogs (Clade A), and 6 = Actinia 
tenebrosa paralogs diverged
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paralogs that have escaped this homogenization are inferred to be 
evolving under diversifying selection (Nv3‐8; dN/dS = 2.1451). This 
is also observed for A. viridis NaTx paralogs. While we could not infer 
the selective pressures acting on the highly homogenous Av2 se‐
quences, those that have diverged are undergoing diversifying se‐
lection (dN/dS = 3.9116). In A. tenebrosa, some sea anemone type 
3 (BDS‐LIKE) KTx sequences paralogs also show strong clustering 
(Figure 4 Clade A), while other paralogs cluster with sequences 
from other sea anemones. While both sets of paralogs are evolv‐
ing under diversifying selection (Clade A dN/dS = 1.4761, diverging 
paralogs in A. tenebrosa dN/dS = 3.3732), those that have diverged 

show pronounced signatures of diversifying selection. Additionally, 
we also have evidence of concerted‐like evolution for the FP and 
MACPF gene families; however, we did not observe any paralogs es‐
caping this process (Figures 6 and S3).

4  | DISCUSSION

Here we present a draft genome assembly and annotation of A. ten-
ebrosa. This complete draft assembly is the first from any spe‐
cies of the superfamily Actinioidea. Overall, the assembly was of 

F I G U R E  5   Maximum‐likelihood tree with midpoint root depicting relationships among NaTx coding sequences. Bootstrap values 
after 1,000 iterations are shown next to nodes, values under 70% not reported. The GenBank accession numbers for the protein‐coding 
gene used in this phylogenetic analysis are described in Sunagar and Moran (2015) and Sachkova et al. (2019). A corresponding bar plot is 
provided which shows the computed dN/dS value for orthologs and paralogs. 1 = Actiniaria orthologs, 2 = Actinia orthologs, 3 = Nematostella 
vectensis paralogs, 4 = Actinia equina paralogs, 5 = Actinia tenebrosa paralogs, 6 = Anemonia viridis paralogs, 7 = Nv1 paralogs, 8 = Av2 
paralogs, 9 = Nematostella vectensis paralogs diverged, and 10 = Anemonia viridis paralogs diverged
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F I G U R E  6   Maximum‐likelihood tree with midpoint root depicting relationships among MACPF coding sequences. Bootstrap values 
after 1,000 iterations are shown next to nodes, values under 70% not reported. The European Nucleotide accession numbers for the 
protein‐coding genes are reported. A corresponding bar plot is provided which shows the computed dN/dS value for orthologs and paralogs. 
1 = Anthozoan orthologs, 2 = Nematostella vectensis paralogs, 3 = Exaiptasia pallida paralogs, and 4 = Acropora digitifera paralogs
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F I G U R E  7   Maximum‐likelihood tree with midpoint root depicting relationships among sea anemone type 1 KTx coding sequences. 
Bootstrap values after 1,000 iterations are shown next to nodes, values under 70% not reported. The GenBank accession numbers for the 
protein‐coding gene used in this phylogenetic analysis are described in Sunagar and Moran (2015). A corresponding bar plot is provided 
which shows the computed dN/dS value for orthologs and paralogs. 1 = Actiniaria orthologs, 2 = Metridium senile paralogs, and 3 = Anemonia 
viridis paralogs
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similar quality and completeness to currently published anthozoan 
genomes (Baumgarten et al., 2015; Chapman et al., 2010; Putnam 
et al., 2007; Shinzato et al., 2011; Wang et al., 2017), verifying its 
suitability for comparative genomic studies. Insights into the evolu‐
tion of gene families across Cnidaria revealed significant conserva‐
tion among anthozoan species, with the many gene families gained 
in either the last common ancestor of Cnidaria or Anthozoa. Notably, 
all anthozoans used in this study are from Hexacorallia, highlight‐
ing a high conservation of gene families shared among this subclass. 
This is consistent with previous studies that have suggested that this 
shared gene set plays an important role in the evolution of traits es‐
sential to Hexacorallia taxa, including symbiosis with dinoflagellates, 
stress response, and delivery of venom (Baumgarten et al., 2015; 
Rachamim et al., 2015; Wang et al., 2017).

The A. tenebrosa genome is the most gene dense among cnidar‐
ians, with only E. pallida having a smaller genome and only A. digi-
tifera having more protein‐coding genes. However, flow cytometry 
revealed that the genome size of A. equina is larger (~520 Mb) than 
that predicted here ~255 Mb (Adachi, Miyake, Kuramochi, Mizusawa, 
& Okumura, 2017). One hypothesis for the discrepancy observed 
between estimated genome sizes may be associated with repeat 
regions that have not been fully captured in our assembly. The 
A. tenebrosa genome also contained a higher proportion of lineage‐
specific genes compared with other cnidarian genomes. Previous 
studies have identified this pattern in species from the superfamily 
Actinioidea, particularly those genes that encode for peptide tox‐
ins (Prentis et al., 2018; Surm et al., 2019). It is shown that there is 
relatively little overlap of toxin genes among cnidarian species and 
that a high proportion are restricted to specific lineages (Rachamim 
et al., 2015; Surm et al., 2019). In addition, many lineage‐specific 
toxins from A. tenebrosa have expression restricted to acrorhagi, 
a novel structure used for envenomation. These data support the 
hypothesis that novel genes are expressed in novel morphological 
structures. Evidence in support of this hypothesis in other cnidarian 
species is equivocal. For example, although Nematostella‐specific 
genes comprise a significant proportion of genes expressed in the 
nematostome, a novel structure only found in this genus, many of 
these genes were also expressed in tissues common to all sea anem‐
one species (Babonis, Martindale, & Ryan, 2016).

The origin of new genes is considered to be an important source 
of evolutionary novelty, by providing the substrate upon which nat‐
ural selection can act. New genes may be formed through multiple 
processes, ranging from gene duplication through exon shuffling 
to de novo gene formation (Kaessmann, 2010; McLysaght & Hurst, 
2016; Tautz & Domazet‐Lošo, 2011). Genes created through these 
processes produce copies of a gene that are identical to the ances‐
tral sequence or generate genes with novel sequences that are re‐
stricted to specific lineages (Capra, Pollard, & Singh, 2010). Here, we 
have revealed that lineage‐specific gene families undergo increased 
rates of gene duplication compared with gene families shared 
among cnidarian orders. This suggests that following the formation 
of new genes in cnidarian taxa, repeated duplication events occur. 
However, this also suggests that few new genes arise through de 

novo gene evolution in cnidarians, as genes generated through this 
mechanism have been reported to undergo limited gene duplications 
(Schlötterer, 2015).

Sea anemones, and in particular species from the superfamily 
Actinioidea, are an important group used to understand the evolu‐
tion of toxins. Our results support this, with gene families encod‐
ing peptide toxins enriched in A. tenebrosa relative to sea anemones 
from other superfamilies. For example, genes involved in venom pro‐
duction (peptide toxins) or delivery (cnidocyte) are associated with 
the nematocyst GO term, which are significantly over‐represented 
in the gene families restricted to A. tenebrosa. This GO term was not 
enriched for toxin genes restricted to N. vectensis or E. pallida. This 
result, however, may be a consequence of ascertainment bias as the 
majority of toxins characterized in actiniarians to date have been 
identified in the superfamily, Actinioidea (206 of the 236 cnidar‐
ian toxins; Prentis et al., 2018). Furthermore, difference in genome 
assemblies and annotations methods may also contribute to differ‐
ences observed in gene family evolution among cnidarian genomes.

We propose that the major contributor to the evolution of 
new genes in cnidarians is through a process of gene duplication. 
Significant expansions of neurotoxins are observed in A. tenebrosa. 
This was evident from the increased copy number of Pfam domains 
(ShK and Defensin_4) which are associated with neurotoxins that 
modulate potassium ion channels. The Defensin_4 domain is asso‐
ciated with the sea anemone type 3 (BDS‐LIKE) potassium chan‐
nel toxin family, and both the gene family and protein domain are 
restricted to Actinioidea (Diochot, Schweitz, Béress, & Lazdunski, 
1998). This is supported by evidence of the sea anemone type 3 
(BDS‐LIKE) potassium channel toxin family identified to be gained in 
the 947 Actinioidean‐specific gene families (Figure 1). Furthermore, 
sea anemone type 3 (BDS‐LIKE) KTx appears to be the most highly 
duplicated toxin‐encoding gene in A. tenebrosa.

In this study, we explored the selective pressures acting on or‐
thologs and paralogs in TTL gene families to investigate the adapta‐
tive evolution of lineage‐specific duplications. We revealed repeated 
evidence of paralogs evolving at an accelerated rate compared with 
orthologs. Our findings identified that TTL paralogs often cluster to‐
gether, suggesting recent duplications undergo accelerated rates of 
nonsynonymous substitutions, whereas nucleotide variation in an‐
cient duplications is driven by selective forces that limit deleterious 
mutations (purifying selection). This pattern is supported by the work 
of Sunagar and Moran (2015) who observed this pattern of divergent 
selective pressures among ancient and young venomous lineages. 
The authors suggest that the evidence of diversifying selection act‐
ing on younger venomous lineages is driven by recent duplications 
allowing for the adaptations to an ecological niche. In ancient venom‐
ous lineages, however, TTL genes encoding toxins that resulted from 
ancient duplications events are dominated by purifying selection to 
limit deleterious mutations. This suggests that toxins in ancient ven‐
omous lineages have become specialized to their ecological require‐
ments. Our study supports these findings, and we further suggest 
that lineage‐specific duplications may drive the adaptive evolution of 
toxins in ancient venomous lineages required to meet their ecological 
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and life history requirements. This pattern was not conserved for all 
TTL gene families, however, with MACPF paralogs and N. vectensis 
NaTx paralogs evolving under purifying selection. This may be due to 
members of both gene families instead evolving via a process consis‐
tent with the action of concerted evolution.

Diverse evolutionary trajectories exist following gene duplica‐
tion including pseudogenization, neofunctionalization, and subfunc‐
tionalization. An additional trajectory includes conservation which 
can be driven through a process of concerted evolution. Concerted 
evolution is the homogenization of paralogs that results in sequence 
similarity greater within species compared to between species 
(Liao, 1999; Nei & Rooney, 2005). This homogenization is typically 
attributed to gene conversion or unequal‐crossing over (Brown, 
Wensink, & Jordan, 1972; Eickbush & Eickbush, 2007; Szostak & 
Wu, 1980). Here we observe concerted‐like evolution in multiple 
TTL gene families including sea anemone types 1 and 3 (BDS‐LIKE) 
KTx, NaTx, MACPF, and the nontoxin gene family FP. Whether the 
concerted‐like evolution observed is through lineage‐specific dupli‐
cations or concerted evolution remains elusive.

Concerted evolution of a sea anemone toxin gene family has 
previously been reported in multiple species (Moran, Genikhovich, 
et al., 2012; Moran et al., 2008). Nv1, a member of NaTx TTL gene 
family, is the major adult venom component in N. vectensis Nv1 has 
evolved via concerted evolution. This is supported by the evidence 
of Nv1 copies being encoded by a cluster of at least 12 highly con‐
served sequences (Moran, Genikhovich, et al., 2012; Moran et al., 
2008). This is further supported in the NaTx phylogeny we gener‐
ated in this study, with Nv1 sequences clustering strongly together 
(Figure 5). From our selection analyses, we could not infer that these 
highly homogenous Nv1 sequences are evolving under diversifying 
selection. Divergently, the N. vectensis paralogs that escaped this 
homogenization are inferred to be evolving under diversifying selec‐
tion, which consists of Nv3‐8. Recent experimental evidence sup‐
ports the adaptive evolution of these paralog escaping the process 
of concerted evolution (Sachkova et al., 2019). This is evident with 
Nv4 and Nv5 paralogs expression being mostly restricted to early 
life stages compared with Nv1, suggesting neofunctionalization or 
subfunctionalization. The Nv4 and Nv5 paralogs also exhibit diver‐
gent activity being highly toxic to fish, compared with Nv1 which has 
greater activity against arthropods (Sachkova et al., 2019). Indeed, a 
similar pattern is also observed in A. viridis NaTx paralogs with the 
Av2 copies being highly similar and other copies escaping this ho‐
mogenization. These escaped paralogs are also inferred to be evolv‐
ing under diversifying selection. While evidence supports that both 
Nv1 and Av2 are evolving through a process of gene conversion or 
unequal‐crossing over consistent with concerted evolution (Moran 
et al., 2008), the escaped paralogs, however, may have resulted from 
lineage‐specific duplications (Sachkova et al., 2019).

Overall, our phylogenetic analyses provide repeated evidence of 
paralogs clustering closer together than orthologs for multiple TTL 
gene families in cnidarians. Whether this occurs through a process 
of concerted evolution (gene conversion or unequal‐crossing over) 
or lineage‐specific duplications is unclear, especially given that a 

combination of both processes may be occurring in parallel. We pro‐
pose that concerted evolution is an important process in the evolu‐
tion of ancient actiniarian venom, occurring in gene families recruited 
into the venom of at least last common ancestor. Subsequently, 
lineage‐specific duplications allow paralogs to escape the homog‐
enizing process associated with concerted evolution, with selection 
driving these new duplicates to undergo neofunctionalization or 
subfunctionalization.

In venomous animals, biochemical and morphological innova‐
tions result in phenotypic adaptations, such as toxin peptides and 
an envenomation system. Although the cnidarian envenomation sys‐
tem is largely conserved across this phylum, our analysis revealed 
duplication events in gene families enriched in A. tenebrosa include 
many nematocyte‐related proteins such as toxin peptides. We pro‐
pose that the genome sequence of A. tenebrosa will aid future re‐
search to improve our understanding of Actinioidean innovations 
involved in venom production and its delivery.
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