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Abstract

Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is a rare and highly aggressive

hematological malignancy with a poorly understood pathobiology and no effective

therapeutic options. Despite a few recurrent genetic defects (eg, single nucleotide

changes, indels, large chromosomal aberrations) have been identified in BPDCN, none

are disease-specific, and more importantly, none explain its genesis or clinical behavior.

In this study, we performed the first high resolution whole-genome analysis of BPDCN

with a special focus on structural genomic alterations by using whole-genome

sequencing and RNA sequencing. Our study, the first to characterize the landscape of

genomic rearrangements and copy number alterations of BPDCN at nucleotide-level

resolution, revealed that IKZF1, a gene encoding a transcription factor required for the

differentiation of plasmacytoid dendritic cell precursors, is focally inactivated through

recurrent structural alterations in this neoplasm. In concordance with the genomic data,

transcriptome analysis revealed that conserved IKZF1 target genes display a loss-of-

IKZF1 expression pattern. Furthermore, up-regulation of cellular processes responsible

for cell-cell and cell-ECM interactions, which is a hallmark of IKZF1 deficiency, was

prominent in BPDCN. Our findings suggest that IKZF1 inactivation plays a central role

in the pathobiology of the disease, and consequently, therapeutic approaches directed

at reestablishing the function of this gene might be beneficial for patients.

K E YWORD S

BPDCN, blastic plasmacytoid dendritic cell neoplasm, cell adhesion, cutaneous lymphoma,

Ikaros, IKZF1, RNA sequencing, whole-genome sequencing

1 | INTRODUCTION

Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is a rare and

highly aggressive hematological malignancy derived from neoplastic

plasmacytoid dendritic cell (pDC) precursors. Patients with BPDCN

have infiltration of malignant cells characterized by the expression of

CD4, CD56, CD123, and CD303 in the skin, bone marrow, lymph

nodes, and peripheral blood. The median overall survival of patients
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with BPDCN ranges from 12 to 14 months as the disease typically

relapses after initial response to chemotherapy.1,2

The pathogenetic basis of BPDCN has been investigated using

DNA and RNA array-based methods, and more recently, next gen-

eration sequencing (NGS) approaches limited to the exome (whole-

exome sequencing) or a panel of genes (targeted sequencing).

Recurrent copy number alterations (CNAs) in BPDCN include

broad deletions within chromosomes 7, 9, 12, 13, and 15, particu-

larly the regions containing tumor suppressors CDKN2A/B,

CDKN1B, and RB1.3-6 Overexpressed genes with pathogenic rele-

vance include BCL2 and CCND1.7 Single nucleotide variants (SNVs)

and indels presumed as pathogenic have been observed predomi-

nantly in genes involved in cell cycle control (eg, ATM, TP53), chro-

matin regulation (eg, ASXL1, IDH2, NPM1, TET2), signal

transduction (eg, KRAS, NRAS), splicing (eg, ZRSR2) and transcrip-

tional regulation (eg, IKZF1/2/3, ZEB2).8-11 Additionally, cytoge-

netic studies, most of them performed in the context of case

reports, have revealed chromosomal rearrangements involving

ALK, ETV6, EWSR1, KMT2A (MLL), MYB, MYC, and SUPT3H in a

handful of cases.12-18

Even though these studies have uncovered a variety of genetic

abnormalities in BPDCN, none of the reported alterations has pro-

vided a clear biological rationale behind neither the genesis of the dis-

ease nor its clinical behavior. Furthermore, as yet no study has

characterized the landscape of genomic rearrangements and CNAs of

BPDCN using high resolution NGS.

Here, we present the first whole-genome analysis of BPDCN with

a special emphasis on structural anomalies by using whole-genome

sequencing (WGS) and RNA sequencing (RNA-seq). We report recur-

rent IKZF1 inactivation by focal structural alterations, a loss-of-IKZF1

expression pattern and overexpression of adhesion signatures in

BPDCN. Our findings on genome and transcriptome level not only

support IKZF1 inactivation as a putative driver event in the develop-

ment of BPDCN, but also provide a conceptual basis for the pathobi-

ology of the disease.

2 | MATERIALS AND METHODS

2.1 | Patient material

Frozen tumor biopsies from 10 patients with BPDCN (Table S1) were

subjected to WGS. Four samples of this cohort (ie, BDN1, BDN4,

BDN5, and BDN6) were additionally subjected to RNA-seq. Diagnosis

was performed by an expert panel of dermatologist and pathologists

according to the criteria of the WHO-EORTC classification for pri-

mary cutaneous lymphomas.2,19,20 Frozen tumor biopsies from

15 additional patients were used for validation purposes (extension

cohort) (Table S1). Patient material was approved by the institutional

review boards of Fondazione IRCCS Ca' Granda Ospedale Maggiore

Policlinico, Leiden University Medical Center and University of Pavia.

Informed consent was obtained from patients in accordance with the

declaration of Helsinki.

2.2 | Nucleic acid isolation

Genomic DNA was isolated using Genomic-tip 20/G kit (Qiagen).

DNA purity was evaluated with a Nanodrop One system (Nanodrop

Technologies, Wilmington, California) and DNA integrity was verified

by gel electrophoresis (0.7% agarose, ethidium bromide). Total RNA

was isolated using RNeasy mini kit (Qiagen). RNA integrity was veri-

fied with an Agilent 2100 Bioanalyzer.

2.3 | Sequencing and data processing

Sequencing was performed by the Beijing Genomics Institute (BGI)

and data was processed at Leiden University Medical Center (LUMC).

DNA libraries were subjected to paired-end sequencing (2 × 150 bp)

on the Illumina HiSeq X-Ten platform while RNA libraries derived

from rRNA-depleted total RNA were subjected to paired-end

sequencing (2 × 100 bp) on the Illumina HiSeq 4000 platform. Raw

reads (WGS, RNA-seq) were processed using in-house pipelines and

clean reads were aligned to human reference genome Hg38

(Table S2). WGS and RNA-seq data have been deposited in the

European Genome-Phenome Archive (EGA) under study number

EGAS00001003660.

2.4 | Detection of genomic rearrangements and
fusion transcripts

Detection of structural genomic variants (SV) was performed using an

in-house pipeline that included three structural variant callers

(Breakdancer-max v1.4.4, CleverSV v2.0rc3 and Delly v0.6.7)

(Table S3). SV calls were manually verified and curated using the

Integrative Genomic Viewer (IGV, v2.3.78). The expression of fusion

transcripts was investigated in four BPDCN samples with available

RNA-seq data using an in-house pipeline that included two fusion

transcript callers (FusionCatcher v0.99.6a and Star Fusion v0.8.0)

(Table S4). Fusion transcript calls were contrasted with genomic SV

data and visually verified on DNA level using IGV. Rearranged genes

implicated in cancer were identified using the Network of Cancer

Genes 6.0 (NCG 6.0)21 and literature search.

2.5 | Detection of CNAs

Control-FREEC was used to identify CNAs using a 50 Kb window.

The output was subjected to a Wilcoxon rank test and a Kolmogorov-

Smirnov test to generate a list of genomic regions with statistically

supported CNAs, and the latter were intersected to define recurrent

events. As a complement, GISTIC2.0 analysis was performed with seg-

ment files derived from Control-FREEC (Figure S1, Table S5). Recur-

rent CNAs derived from both analyses were visually verified and

curated using IGV (Table S6). Only CNAs confirmed after inspection

are reported.
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2.6 | Detection of SNVs and indels

SNVs and indels were detected using GATK (v3.5). Variants filtered

out of the output included SNVs present in dbSNP, SNVs with >5%

minor allele frequency in the Exome aggregation consortium (ExAC)

database, and SNVs present in an in-house cohort formed by

11 healthy volunteers. We searched for deleterious SNVs in 1271

genes taking part in signal transduction pathways, the cell cycle,

hematopoietic cell differentiation, and cellular processes previously

identified as mutated in BPDCN.8-10 Gene lists were retrieved from

the PathCards database (http://pathcards.genecards.org/). Only SNVs

predicted to produce highly deleterious amino acid substitutions by

both SIFT and PolyPhen-2 were further investigated on ClinVar, COS-

MIC, Varsome, and literature.

2.7 | Differential expression analysis

TMM normalization was applied to raw count data using EdgeR and

differential expression analysis was performed using Limma-Voom.

BPDCN samples were compared to a control group formed by resting

pDCs. RNA-seq data of pDC controls were generated by Alculumbre

et al and downloaded from GEO (https://www.ncbi.nlm.nih.gov/geo/;

GSE84204).22 Genes with a FDR < 0.01 were considered differentially

expressed (DE).

2.8 | Gene ontology annotation and transcriptome
analysis

Gene ontology annotation of rearranged genes and pathway analysis

with DE genes were performed using DAVID (v6.8) using default set-

tings.23 Gene set enrichment analysis (GSEA, v2.2.4) was run as a pre-

ranked analysis with 1000 permutations using gene set KEEG from

the Molecular Signatures Database (MSigDB).24 Normalized enrich-

ment scores (NES) were calculated to determine expression signa-

tures. FDR q values were obtained. Additional functional

characterization of the transcriptome (ie, ENCODE and CORUM data-

bases) was performed using Enrichr.25

2.9 | Validation of structural genomic alterations
and small-scale mutations

Select genomic rearrangements, interstitial deletions, indels, and SNVs

were validated by Sanger sequencing. Briefly, target sequences were

amplified by PCR, run on a 1% agarose gel, column-purified and

sequenced on the Applied Biosystems ABI3730xl platform. Validation

of select CNAs was performed using Bio-Rad QX200 droplet digital

PCR (ddPCR) system. ddPCR experiments were carried out following

the manufacturer's guidelines. Briefly, 20 to 40 ng of genomic DNA

was mixed with a frequent-cutting restriction enzyme, ddPCR super-

mix, probes against the gene of interest (FAM-labeled) and probes

against the reference gene (HEX-labeled). The reaction mix was then

partitioned into 20.000 nanodroplets, and subsequently, subjected to

the following cycling program: 95�C for 10 minutes, 39 cycles of 94�C

for 30 seconds, and 60�C for 1 minute, and 98�C for 10 minutes.

Copy number values were determined using Bio-Rad Quantasoft soft-

ware v1.7.4. Copy number reported for IKZF1 (at exons 1, 5, and 8) in

samples from the validation cohort are the average of 3 independent

measurements using different reference genes.

3 | RESULTS

3.1 | Landscape of genomic rearrangements

BPDCN displayed a heterogenous landscape of rearrangements. We

detected a total of 86 rearrangements in 10 BPDCN genomes

(Figure 1). The number of events per patient ranged from 1 to

18 (mean/patient ± SD, 9 ± 5) (Figures 2A and S2). Intrachromosomal

events constituted 66% of all rearrangements (range/patient, 0%-

100%) (Figure 2B). We observed events joining either two annotated

genes (32% of events), a gene with a nongenic region (36%), two

nongenic regions (27%), or rearranging sequences within a single gene

(5%) (Figure 2C).

Genomic rearrangements disrupted a total of 54 genes across

10 patients (Table S7). Out of 54 rearranged genes, 13 are implicated

in cancer at present (Figure 1, Table S8). The latter group included

genes implicated in hematological malignancies (ie, AHI1, CD36,

IKZF1, MLLT4, MYB, TFG) and other neoplasms (ie, FAT1, IQGAP2,

NRG1, PIK3C2G, PMS1, PPFIBP1, PTPRD). Gene ontology analysis

showed that rearranged genes primarily encode proteins that partici-

pate in cellular component organization (esp. cytoskeleton-related

processes), cell adhesion and transcriptional regulation (Figure 2D,

Table S9).

We observed two recurrently rearranged genes, MYB and TMTC1,

both of them in 2 of 10 patients. The type of MYB rearrangements

found in our patients (BDN3 and BDN10) have been previously

described in BPDCN and result in a gain-of-function effect due to the

loss of the 30-end of the gene which contains conserved target sites

for inhibitory microRNAs (miRNAs).16 In contrast, the observed

TMTC1 rearrangements do not seem to have analogous functional

consequences (ie, dissimilar breakpoint positions, loss vs gain of DNA,

genic vs nongenic partner sequences). We detected additional

rearrangements reported in cancer before. An oncogenic

rearrangement involving SUPT3H, found in patient BDN1, has been

previously described in BPDCN.18 Also, fusion gene NAV2-TCF7L1,

found in patient BDN7, is recurrent in colorectal cancer.26

Notably, we identified rearrangements leading to IKZF1 inactiva-

tion. Fusion gene TMTC1-IKZF1, found in patient BDN6, had a trun-

cated coding sequence (CDS) encoding a peptide constituted only by

the first 77-AA of TMTC1 due to the formation of a premature stop

codon; thus, preventing the synthesis of a functional IKZF1 protein

(Figures 2E and 5C). Another patient, BDN2, underwent a

chromothripsis-like event in chromosome 7 that resulted in the
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deletion of several focal areas within 7p and 7q, including a narrow

region (450 Kb) containing IKZF1 (Figure 2F).

3.2 | Landscape of CNAs

BPDCN exhibited a predominance of large-scale chromosomal imbal-

ances. Broad numerical aberrations (>3 Mb) included monosomy

9 (four patients), as well as deletions within 3p (two patients), 6q (five

patients), 7p (three patients), 9p (two patients), 9q (three patients),

12p (three patients), 13q (six patients), 15q (two patients), and Y (two

patients). Also, broad gains within 1q (three patients), 7q (two

patients) and 12q (two patients) (Figures 3 and 4).

We detected seven focal (≤3 Mb) minimal common regions

(MCRs) between CNAs affecting our sequenced patients (Table S6).

Out of seven focal MCRs, six contained either bona fide or candidate

cancer genes. These focal MCRs were deletions at 9q21.32, 7p12.2,

13q14.2, 6q25.1, 12p13.1, and 7p14.1-p14.2 observed in eight,

seven, six, five, four, and three out of 10 sequenced patients, respec-

tively (Figure 4). Cancer genes residing within these regions are mainly

involved in hematopoiesis and cell cycle regulation.

The most common focal MCRs were deletions at 9q21.32 and

7p12.2 which contained, respectively, tumor suppressors HNRNPK

and IKZF1. HNRNPK encodes a nuclear ribonucleoprotein that

influences multiple cellular functions (eg, cell cycle, chromatin remo-

deling, RNA synthesis, and processing) in hematopoietic cells.27 IKZF1,

on the other hand, encodes a transcription factor with critical roles in

the development of various hematopoietic lineages, including

pDCs.28-31 Remarkably, deletions at 7p12.2 were considerably narrow

(<500 Kb) in four of seven affected patients, ranging from loss of

IKZF1 and a few neighboring genes, to loss of the IKZF1 locus exclu-

sively, to loss of IKZF1's exon 8 only (Figure 5A,B). Patients where

deletions did not involve the whole locus, but part of it, enclosed

exons encoding IKZF1's functional domains (Figure 5B). For instance,

the loss of exon 8 in patient BDN1 generated a CDS encoding an

IKZF1 protein that lacked its C-terminal dimerization domain, which is

essential for its functionality (Figure 5D).

Deletions at 13q14.2 and 6q25.1 encompassed, respectively, RB1

and SYNE1. RB1 encodes an established negative regulator of the cell

cycle whereas candidate tumor suppressor SYNE1, which is often

silenced by hypermethylation in lung cancer,32 encodes a

cytoskeleton-associated protein that helps maintain subcellular spatial

organization.

Deletion at 12p13.1 included tumor suppressors CDKN1B,

DUSP16, and ETV6 which play roles in the cell cycle, signal transduc-

tion and hematopoiesis, respectively. Finally, deletion at 7p14.1-p14.2

enclosed tumor suppressor SFRP4, a negative regulator of WNT

signaling.

F IGURE 1 Landscape of genomic
rearrangements in BPDCN. Circos plot
showing 86 genomic rearrangements
detected in 10 BPDCN genomes by
WGS. The outer ring is formed by
human chromosome ideograms
arranged circularly end to end. The
area at the center of the plot contains
arcs representing interchromosomal

(blue) and intrachromosomal (red)
events. The ring between the
chromosome ideograms and the arcs
contains rearranged genes with
established roles in cancer. BPDCN,
blastic plasmacytoid dendritic cell
neoplasm; WGS, whole-genome
sequencing [Color figure can be
viewed at wileyonlinelibrary.com]
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3.3 | Small-scale mutations

We looked for small-scale mutations (ie, indels, SNVs) with potential

pathogenic relevance in exonic sequences of genes involved in the cell

cycle, hematopoietic cell differentiation, signal transduction (ie, JAK-

STAT, MAPK, NF-κB, and PI-3-K/Akt signaling pathways) and genes

that have been previously found to be mutated in BPDCN (Table S10).

Two gain-of-function SNVs, BRAF (p.G464V33) and NRAS (p.

E63K34), were observed in patient BDN5. NRAS (p.G12A35), a SNV

associated with melanoma and lung cancer, was found in patient

BDN2. Truncating frameshift mutations in ASXL1 (p.E635Rfs*15, p.

V624Gfs*8) were observed in BDN4/9 and BDN7, respectively. Also,

seven patients carried indels and SNVs leading either to premature

stop codons or amino acid substitutions predicted as deleterious in

F IGURE 2 Distribution of genomic rearrangements and gene ontology annotation of rearranged genes in BPDCN. A, Number of genomic
rearrangements per patient. The distribution of inter- and intrachromosomal rearrangements per patient is shown too; B, Distribution of inter-
and intrachromosomal rearrangements (cohort); C, Distribution of genomic rearrangements based on the type of DNA sequences (genic,
nongenic) involved in the event (cohort); D, Distribution of rearranged genes according to the biological process their encoded protein
participates in; E, Circos plot showing interchromosomal rearrangement t(7;12)(p12;p11) in patient BDN6 which fuses TMTC1 with IKZF1, causing
the inactivation of the latter. F, Circos plot displaying a chromothripsis-like event in patient BDN2 which mediated the loss of several focal

regions in chromosome 7, including a narrow area (450 Kb) containing IKZF1. BPDCN, blastic plasmacytoid dendritic cell neoplasm [Color figure
can be viewed at wileyonlinelibrary.com]
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TET2. (Figures 4, S3, and S4). Of note, we found mutations in IKZF1

(ie, BDN9: p.H421Afs*68, BDN4: p.H480Y) that impacted the dimer-

ization domain of this gene. The former mutation generates an IKZF1

protein with a truncated dimerization domain while the latter leads to

an amino acid substitution predicted as deleterious (Figures S3

and S4).

Finally, we found 24 additional patient-specific SNVs of unknown

significance in cancer-associated genes, including genes previously

implicated in BPDCN (ie, ARID1A, ASH1L, ASXL3, ATR, CBLC, CHD8,

EP400, ETV6, PHC2, RAD52, SMARCD1, SRSF2, and ZRSR2) (Table S11).

3.4 | DE genes

Prior research using array-based gene expression profiling showed

that BPDCN cells appear to originate from pDC precursors that are

phenotypically close to resting pDCs.7 Therefore, to determine DE

genes in the disease, we compared gene expression in BPDCN with

gene expression in resting pDCs. The analysis uncovered 1827 DE

genes (1191 up-regulated, 636 down-regulated, FDR < 0.01)

(Figure 6A, Table S12), 272 of which are currently associated with

cancer (213 up-regulated, 64 down-regulated) (Table S13). Up-

regulated genes included (proto-) oncogenes with roles in apoptosis

(ie, BCL2, TERT), cell cycle regulation (ie, FOXM1), hematopoietic cell

development (ie, AFF3, MYB), and signal transduction (ie, BCL9,

FGFR1,MET, PDGFRA, PDGFRB, PLCG1, RRAS2) (Figure 6B). Prominent

down-regulated genes included cell cycle inhibitors (ie, BTG2, IFIT3,

TSPYL2, TXNIP) and tumor suppressors implicated in hematological

malignancies (ie, PTPRO, SAMD9L) (Figure 6B).

F IGURE 3 Landscape of CNAs in BPDCN. Human chromosome ideograms displaying regions of gain and loss detected through WGS in
10 BPDCN genomes. Blue bars to the right of the chromosomes depict regions of loss whereas red bars to the left of the chromosomes depict
regions of gain. BPDCN, blastic plasmacytoid dendritic cell neoplasm; CNAs, copy number alterations; WGS, whole-genome sequencing [Color
figure can be viewed at wileyonlinelibrary.com]

F IGURE 4 Distribution of recurrent CNAs and deleterious indels/
SNVs in BPDCN. Upper panel: large CNAs (>3 Mb). Middle panel:
focal MCRs (≤3 Mb) between CNAs; reputable tumor suppressors
enclosed within focal MCRs are specified. Bottom panel: Indels and
SNVs either leading to protein truncations, reported as pathogenic in

literature or predicted as deleterious (SIFT and PolyPhen-2) are
shown. Only genes mutated in more than one patient are indicated.
BPDCN, blastic plasmacytoid dendritic cell neoplasm; CNAs, copy
number alterations; MCRs, minimal common regions; SNVs, single
nucleotide variants [Color figure can be viewed at
wileyonlinelibrary.com]
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F IGURE 5 Legend on next page.
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Transcriptome analysis with Enrichr using ChIP-seq data from

ENCODE revealed that genes regulated by EZH2, TCF12, and

FOXM1 are greatly overrepresented in the group of up-regulated

genes (Figure 6C, Table S14). EZH2 is part of polycomb repressive

complex 2 (PRC2), a gene silencing protein complex that influences

various cellular processes, including hematopoietic cell differentia-

tion.36 Transcription factor TCF12, on the other hand, participates in

T-cell differentiation and is typically lowly expressed in mature

pDCs.37 Finally, transcription factor FOXM1, which is overexpressed

in numerous cancers, takes part in multiple biological processes (eg,

apoptosis, cell cycle, DNA damage response).38

Since IKZF1 deletion was the most focal recurrent CNA in our

sequenced cohort, we next looked at the expression of a group of evo-

lutionarily conserved IKZF1 target genes that are associated with the

development of BCR-ABL1+ pre-B acute lymphoblastic leukemia (pre-B

ALL)39,40 (Table S15), an aggressive hematological cancer characterized

by IKZF1 inactivation. We detected 29 DE cancer-associated IKZF1 tar-

get genes (25 up-regulated, 4 down-regulated) in BPDCN (Figure 6D).

The expression of all IKZF1 target genes matched perfectly the

expected consequence of IKZF1 deficiency; that is, genes repressed by

IKZF1 were up-regulated while genes activated by IKZF1 were down-

regulated. Genes of interest in the group of up-regulated IKZF1 targets

included among others, CCND1, CDC42BPB, and IFITM3. Cyclin D1

(encoded by CCND1) promotes G1/S transition in the cell cycle and has

been previously found to be overexpressed in BPDCN.7 CDC42BPB

encodes a serine/threonine kinase with roles in cytoskeletal reorganiza-

tion and cell migration.41 Interestingly, overexpression of this kinase

has been shown to facilitate cancer cell invasion.42 Finally, IFITM3

encodes an antiviral membrane protein that has been shown to trigger

CD19-mediated PI-3-K/Akt signaling in pre-B ALL.43

3.5 | Deregulated processes/pathways

We performed pathway analysis with DAVID to identify deregulated

cellular processes/pathways in BPDCN. The analysis uncovered up-

regulation of several adhesion profiles: ECM-receptor interaction

(P = 2.51 × 10−15), focal adhesion (P = 5.61 × 10−14), adherens junction

(P = 2.64 × 10−5), and Rap1 signaling (P = 4.58 × 10−5). BPDCN also

displayed up-regulation of PI-3-K/Akt signaling (P = 6.46 × 10−11) and

the cell cycle (P = 8.22 × 10−5) (Figure 6E, Table S16). Down-regulated

cellular processes included ribosome synthesis (P = 3.34 × 10−17), oxi-

dative phosphorylation (P = 4.11 × 10−12) and protein processing in the

endoplasmic reticulum (ER) (P = 6.98 × 10−6) (Figure 6F, Table S16). To

complement DAVID analysis, we performed GSEA using gene set KEEG

from MSigDB. GSEA confirmed that BPDCN is characterized by the

up-regulation of adhesion signatures (Figure 6G, Table S17). Impor-

tantly, these deregulated profiles support an IKZF1-deficient pheno-

type of BPDCN cells, as previous studies performed by others have

established that a hallmark of IKZF1 deficiency in immune cells (ie,

pDCs, pre-B cells) is the overexpression of proteins responsible for cell-

cell and cell-ECM interactions.29,44

Additionally, we identified a group of up-regulated genes

encoding components of the integrin-cytoskeleton network that have

been proven to undergo up-regulation as a result of IKZF1 deficiency

in murine models of pre-B ALL (Figure 6H).44 One of these genes,

THY1 (CD90), encodes a membrane glycoprotein involved in integrin

signaling and adhesion. Notably, THY1 is one of the key surface mole-

cules underlying the highly adhesive phenotype of IKZF1-deficient

malignant cells in BCR-ABL1+ pre-B ALL.45,46 Another gene, CTTN,

encodes cortactin, a cytoplasmic protein that participates in the for-

mation of podosomes in motile cells. Cortactin overexpression occurs

in a number of aggressive cancers and promotes the formation of

invadopodia (hyperactive podosomes) which make malignant cells

highly invasive and migratory.47 Interestingly, transcriptome analysis

with Enrichr using CORUM database predicted the existence of pro-

tein complex DDEF1-CTTN-PXN in BPDCN cells (Figure 6I,

Table S18). This cytoskeleton-associated protein complex has been

found exclusively in malignant cells with highly invasive behavior

(breast cancer), and not in their noninvasive or normal counterparts.48

3.6 | Structural alterations involving IKZF1 are
recurrent in BPDCN

Since the findings derived from our genome and transcriptome ana-

lyses strongly pointed at IKZF1 as a central player in the pathogenesis

of BPDCN, we next used ddPCR to assess the copy number of IKZF1

F IGURE 5 Interstitial deletions and rearrangements inactivate IKZF1 in BPDCN. A, Diagram representing the hemizygous loss of IKZF1
(217 Kb-3.8 Mb) in BPDCN tumors. Blue bars depict deleted areas at 7p12.2 in tumors from three patients with BPDCN. Monoallelic IKZF1
deletion occurred through narrow interstitial deletions in patients BDN3 and BDN10, and through a complex intrachromosomal rearrangement in
patient BDN2 (see also Figure 2F); B, Diagram showing inactivating structural changes at the IKZF1 locus in BPDCN tumors. These events
included narrow interstitial deletions (BDN1/9) and an unbalanced interchromosomal rearrangement (BDN6). The breakpoints of all IKZF1-
inactivating structural alterations were validated by Sanger sequencing. Genomic coordinates of breakpoints according to reference genome
Hg38. Arrows indicate the direction toward which genomic coordinate numbers increase. Plus (+) and minus (−) signs specify strand polarity; C,

The fusion between TMTC1 and IKZF1 in patient BDN6 generated a truncated coding sequence (77-AA) due to the formation of a premature stop
codon (shown in RNA-seq reads), rendering IKZF1 inactive on protein level. D, Sashimi plots showing RNA expression at IKZF1 in patient BDN1
(purple) and control sample pDC3 (green). Due to a focal interstitial deletion (blue bar), the transcript of IKZF1 in patient BDN1 lacks exon 8, and
instead includes a readthrough sequence starting from exon 7 toward the remaining part of the 30-UTR and beyond. The resulting transcript
encodes a functionally defective IKZF1 protein that lacks its dimerization domain. BPDCN, blastic plasmacytoid dendritic cell neoplasm; CTX,
interchromosomal rearrangement; iDel, interstitial deletion; ITX, intrachromosomal rearrangement [Color figure can be viewed at
wileyonlinelibrary.com]
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in tumors from 15 additional patients. Because our genomic data

showed that IKZF1-disrupting unbalanced rearrangements and dele-

tions did not affect the entire locus in all patients, but deleted only

the 50-end or the 30-end of IKZF1 in some of them (Figures 5B and

7A), we evaluated copy number at three different exons (ie, 1, 5, and

8). Exons 1, 5, and 8 encode, respectively, the leader sequence (50-

UTR), two of the four Zn fingers forming the DNA-binding domain,

and the dimerization domain of IKZF1.

CNAs involving IKZF1 were detected in 6 of 15 (40%) patients

from the extension cohort, 5 of which had deletions (Figure 7B). Inter-

estingly, one patient (BDN15) displayed normal copy number at exon

1 and 8, but a gain at exon 5, suggesting a focal duplication of one or

more exons within the IKZF1 locus (Figure 7B). Of note, focal exon

duplications in tumor suppressors can generate inactivating frame-

shifts, as documented in BRCA1.49 Overall, combining the sequenced

and extension cohorts, 13 of 25 patients (52%) had structural alter-

ations involving IKZF1.

4 | DISCUSSION

In this study we describe the first high resolution whole-genome anal-

ysis of BPDCN using WGS. Our analysis, which focused on structural

genomic alterations, identified 54 genes disrupted by rearrangements

which are predominantly involved in cytoskeleton-associated pro-

cesses, adhesion and transcriptional regulation. Out of 54 rearranged

genes, 13 are involved in malignancies at present, being IKZF1 and

MYB the only cancer genes recurrently impacted by rearrangements

in our sequenced cohort. We identified 6 recurrently deleted genomic

regions enclosing recognized tumor suppressors (ie, CDKN1B, ETV6,

HNRNPK, IKZF1, RB1, and SFRP4) with important roles in hematopoie-

sis and cell cycle regulation. In addition, deleterious indels and SNVs

in ASXL1, IKZF1, NRAS, and TET2 were recurrent in our patients.

IKZF1 inactivation, which mainly occurred through narrow inter-

stitial deletions (9.5 Kb-3.8 Mb) and unbalanced rearrangements, was

the most prominent alteration in BPDCN due to its focality, recur-

rence, and likely adverse effects during early development of pDCs.

The latter is supported by the fact that IKZF1 deficiency keeps pDC

precursors stuck at an early differentiation stage whereas function-

impairing changes in both IKZF1 alleles lead to absence of pDCs in

murine models.29,31 Using an independent cohort, we confirmed by

ddPCR that structural alterations at the IKZF1 locus are recurrent in

BPDCN. Although the incidence of CNAs involving IKZF1 was lower

in the extension cohort compared to the sequenced cohort (difference

not statistically significant, P > .05, Fisher's exact test), patients with

normal IKZF1 copy number might still carry inactivating balanced

rearrangements, indels or SNVs which do not entail numerical

changes. In agreement with the recurrent IKZF1 inactivation observed

in BPDCN, transcriptome analysis revealed that conserved IKZF1 tar-

get genes show a clear loss-of-IKZF1 expression pattern.

Even though the roles of IKZF1 in hematopoiesis and leukemogen-

esis are only starting to be understood, it is currently well-established

that insufficiency of functional IKZF1 proteins leads to overexpression

of adhesion molecules, surface receptors and ECM proteins in immune

cells, as demonstrated in murine pDC precursors carrying hypomorphic

Ikzf1 alleles (eg, Igll1, Mmp14, Ncam1 [Cd56], Thy1, etc.),29 murine B cell

precursors engineered to produce Ikzf1 proteins lacking DNA-binding

ability (eg, Itga9, Itgb3, Lamb1, Mmp14, etc.)44 and malignant cells

derived from murine models of BCR-ABL1+ pre-B ALL carrying loss-of-

function mutations in Ikzf1 (eg, Cd28, Itga5, Thy1, etc.).45,46 Our data, in

full concordance with this evidence, suggest that IKZF1 inactivation lies

behind the up-regulation of adhesion profiles in BPDCN.

BPDCN displayed up-regulation of the PI-3-K/Akt pathway and the

Rap1 pathway. The PI-3-K/Akt pathway, often overactivated in human

cancers, promotes cancer cell proliferation. Notably, IKZF1 has been

shown to transcriptionally repress components of the PI-3-K/Akt path-

way (eg, PIK3CD, PIK3C2B, PIP4K2B, etc.),50 and concordantly,

IKZF1-deficient malignant cells from murine models of pre-B ALL show

overactivation of PI-3-K/Akt signaling.44 Hence, IKZF1 deficiency in

BPDCN might underlie or contribute to the observed overactivation of

the PI-3-K/Akt pathway. In contrast, the Rap1 pathway regulates cell

motility and integrin-mediated adhesion in leukocytes, lymphocytes and

dendritic cells, both of which are processes hijacked by neoplastic cells

to disseminate to other body sites.51 In fact, activation of Rap1 signaling

has been shown to trigger migration of T-acute lymphoblastic leukemia

and B-cell lymphoma cells, in vitro and in vivo, respectively.52,53

We found that genes silenced by PRC2 (EZH2) were the most over-

represented in the group of up-regulated genes in BPDCN. This agrees

F IGURE 6 RNA-seq supports a loss-of-IKZF1 phenotype in BPDCN and uncovers aberrant cell adhesion in the disease. A, Heat map showing
1827 differentially expressed genes (1191 up-regulated, 636 down-regulated, FDR < 0.01) in BPDCN when compared to resting pDCs. B, (Proto)-
oncogenes and tumor suppressors involved in cell cycle regulation, hematopoietic cell differentiation and signal transduction are differentially
expressed in BPDCN. C, Genes regulated by EZH2, TCF12, and FOXM1 are the most overrepresented in the group of up-regulated genes. D,
Conserved IKZF1 target genes follow a loss-of-IKZF1 expression pattern in BPDCN; that is, genes repressed by IKZF1 are up-regulated while
genes activated by IKZF1 are down-regulated. E, F, Pathway analysis using DAVID uncovered up-regulation of cellular processes responsible for
cell-cell and cell-ECM interactions, the PI-3-K/Akt pathway, the Rap1 pathway and the cell cycle. Down-regulated profiles included ribosome,

oxidative phosphorylation and protein processing in the endoplasmic reticulum (ER) (See Table S16 for a complete list of enriched terms/
processes). G, Gene set enrichment analysis (GSEA) confirmed that BPDCN is characterized by the up-regulation of adhesion signatures. NES,
normalized enrichment score; FDR q-value, false discovery rate q-value. (See Table S17 for a complete list of GSEA signatures). H, Genes
encoding components of the integrin-cytoskeleton network, which have been shown to undergo up-regulation due to IKZF1 deficiency in BCR-
ABL1+ pre-B ALL, are up-regulated in BPDCN as well. I, Protein complex DDEF1-CTTN-PXN is predicted to exist in BPDCN cells based on
transcriptome data. This complex has only been found in neoplastic cells with an invasive phenotype. BPDCN, blastic plasmacytoid dendritic cell
neoplasm; CPC, chromosomal passenger complex; NDC80, NDC80 kinetochore complex [Color figure can be viewed at wileyonlinelibrary.com]
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with a previous report of a loss-of-EZH2 expression signature in tumor

cells from patients with highly aggressive BPDCN.54 Remarkably, it has

been established that IKZF1, which predominantly acts as a transcrip-

tional repressor, silences genes in erythroid and T-cell precursors by rec-

ruiting PRC2 to target sites.55,56 Thus, up-regulation of genes silenced by

PRC2 in BPDCN might result from shortage of functional IKZF1 mole-

cules, which in turn, would hinder PRC2 recruitment to target sites.

Interestingly, analysis of DE genes in BPDCN not only confirmed

up-regulation of BCL2 and MYB as described in previous studies,7,16

but also uncovered additional up-regulated (proto-) oncogenes of

interest. AFF3, for instance, encodes a transcriptional activator

expressed in early lymphoid development which appears to be

leukemogenic in patients with pre-B ALL carrying MLL-AFF3 fusions.57

FOXM1, on the other hand, promotes cell proliferation and dissemina-

tion in a plethora of neoplasms by inducing cell cycle progression (esp.

at G2/M) and the acquisition of an invasive phenotype.38 RRAS2,

which encodes a small GTPase involved in PI-3-K/Akt signaling, has

been found to be overexpressed in a number of lymphoid malignan-

cies, including cutaneous T cell lymphoma (CTCL).58 Other prominent

up-regulated oncogenes encode receptors (ie, FGFR1, MET, and

PDGFRA/B) that signal through the PI-3-K/Akt pathway.

In addition, we identified in BPDCN a group of down-regulated

genes encoding cell proliferation inhibitors. BTG2, a member of the

BTG/Tob family, stops the cell cycle at G1/S by down-regulating

F IGURE 7 Evaluation of an extension cohort confirms recurrent structural alterations at IKZF1 in BPDCN. A, IKZF1-deleting events detected
by WGS in BPDCN tumors were validated using ddPCR. Copy number was evaluated at exon 1, 5, or 8 according to the region of IKZF1 found to
be deleted by WGS in each affected patient (ie, exon 1:50-end; exon 5: whole locus; exon 8:30-end). B, The existence of recurrent structural
alterations at IKZF1 was confirmed in an extension cohort by ddPCR. Copy number was evaluated at three different exons in all samples to
account for CNAs affecting only the 50-end (exon 1), the middle section (exon 5) or the 30-end (exon 8) of IKZF1. Exons 5 and 8 encode two of the
four Zn fingers forming the DNA-binding domain and the dimerization domain of IKZF1, respectively, being both critical for its functionality. Ctrl,
normal T cells. BPDCN, blastic plasmacytoid dendritic cell neoplasm; CNAs, copy number alterations; WGS, whole-genome sequencing
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cyclin D1, or at G2/M by preventing binding between cyclin B1 and

CDK1.59 IFIT3 and TXNIP, which increase expression of p21/p27 and

p27, respectively, promote cell cycle arrest at G0/G1.60,61 TSPYL2

triggers the inhibition of several cell cycle kinases (ie, CDK1, 2, 4, 6),

halting the cell cycle at multiple phases (G1 to M).62

It has not escaped our notice the apparent parallelism between

BPDCN and BCR-ABL1+ pre-B ALL in terms of deregulated genes

and cellular processes. We hypothesize that these similarities are

rooted in the recurrent inactivation of IKZF1 occurring in both neo-

plasms. This may also explain the positive effects of ALL-like therapy

for the treatment of patients with BPDCN.

In summary, our data strongly supports IKZF1 inactivation as a key

event in the development of BPDCN. First, IKZF1 was found to be

inactivated by structural alterations in 7 of 10 patients from our

sequenced cohort, and recurrent IKZF1 inactivation was confirmed in an

extension cohort. Secondly, expression of conserved IKZF1 target genes

in BPDCN was fully consistent with a loss-of-IKZF1 phenotype. Thirdly,

expression signatures in BPDCN matched known physiological conse-

quences of IKZF1 deficiency (ie, aberrant adhesion, activation of the

PI-3-K/Akt pathway) in immune cells. Finally, since IKZF1 is critical for

pDC differentiation, its abrogation can be expected to derail normal

development of pDC precursors, conceivably leading to their

malignization.

Based on our findings, we suggest that counteracting the patho-

genic loss-of-IKZF1 phenotype of malignant cells in BPDCN through

pharmacological induction of the wild-type IKZF1 allele (eg, by using

retinoids)45 might have beneficial therapeutic effects on patients with

BPDCN.

ACKNOWLEDGMENTS

This study was funded by the Dutch Cancer Society (grant

UL2013-6104).

CONFLICT OF INTEREST

The authors declare no conflicts of interest.

AUTHOR CONTRIBUTIONS

A.N.B.T., D.F., E.B., and C.P.T. designed the project. A.N.B.T. and C.P.

T wrote the manuscript. A.N.B.T., D.C., and H.M. performed the bioin-

formatic analyses. A.N.B.T. interpreted the data, performed the exper-

iments and produced figures and tables. D.F., J.G., L.C., M.P., M.V.,

R.W., and E.B. provided valuable biological specimens. A.N.B.T, D.C.,

H.M., D.F., J.G., L.C., M.P., M.V., R.W., E.B., and C.P.T revised and

approved the final manuscript.

DATA AVAILABILITY STATEMENT

The data that support the findings of this study are openly available in

the European Genome-Phenome Archive (EGA) at https://www.ebi.

ac.uk/ega/home, reference number [EGAS00001003660].

ORCID

Armando N. Bastidas Torres https://orcid.org/0000-0003-1579-

917X

REFERENCES

1. Pagano L, Valentini CG, Grammatico S, Pulsoni A. Blastic plasmacytoid

dendritic cell neoplasm: diagnostic criteria and therapeutical

approaches. Br J Haematol. 2016;174(2):188-202.

2. Willemze R, Jaffe ES, Burg G, et al. WHO-EORTC classification for

cutaneous lymphomas. Blood. 2005;105(10):3768-3785.

3. Lucioni M, Novara F, Fiandrino G, et al. Twenty-one cases of blastic

plasmacytoid dendritic cell neoplasm: focus on biallelic locus 9p21.3

deletion. Blood. 2011;118(17):4591-4594.

4. Wiesner T, Obenauf AC, Cota C, Fried I, Speicher MR, Cerroni L.

Alterations of the cell-cycle inhibitors p27(KIP1) and p16(INK4a) are

frequent in blastic plasmacytoid dendritic cell neoplasms. J Invest

Dermatol. 2010;130(4):1152-1157.

5. Jardin F, Callanan M, Penther D, et al. Recurrent genomic aberrations

combined with deletions of various tumour suppressor genes may

deregulate the G1/S transition in CD4+CD56+ haematodermic

neoplasms and contribute to the aggressiveness of the disease.

Leukemia. 2009;23(4):698-707.

6. Dijkman R, van Doorn R, Szuhai K, Willemze R, Vermeer MH,

Tensen CP. Gene-expression profiling and array-based CGH classify

CD4+CD56+ hematodermic neoplasm and cutaneous

myelomonocytic leukemia as distinct disease entities. Blood. 2007;

109(4):1720-1727.

7. Sapienza MR, Fuligni F, Agostinelli C, et al. Molecular profiling of blas-

tic plasmacytoid dendritic cell neoplasm reveals a unique pattern and

suggests selective sensitivity to NF-kB pathway inhibition. Leukemia.

2014;28(8):1606-1616.

8. Stenzinger A, Endris V, Pfarr N, et al. Targeted ultra-deep sequencing

reveals recurrent and mutually exclusive mutations of cancer genes in

blastic plasmacytoid dendritic cell neoplasm. Oncotarget. 2014;5(15):

6404-6413.

9. Menezes J, Acquadro F, Wiseman M, et al. Exome sequencing reveals

novel and recurrent mutations with clinical impact in blastic plas-

macytoid dendritic cell neoplasm. Leukemia. 2014;28(4):823-829.

10. Sapienza MR, Abate F, Melle F, et al. Blastic plasmacytoid dendritic

cell neoplasm: genomics mark epigenetic dysregulation as a primary

therapeutic target. Haematologica. 2019;104(4):729-737.

11. Alayed K, Patel KP, Konoplev S, et al. TET2 mutations,

myelodysplastic features, and a distinct immunoprofile characterize

blastic plasmacytoid dendritic cell neoplasm in the bone marrow.

Am J Hematol. 2013;88(12):1055-1061.

12. Tokuda K, Eguchi-Ishimae M, Yagi C, et al. CLTC-ALK fusion as a pri-

mary event in congenital blastic plasmacytoid dendritic cell neoplasm.

Genes Chromosomes Cancer. 2014;53(1):78-89.

13. Gao NA, Wang XX, Sun JR, Yu WZ, Guo NJ. Blastic plasmacytoid den-

dritic cell neoplasm with leukemic manifestation and ETV6 gene

rearrangement: a case report. Exp Ther Med. 2015;9(4):1109-1112.

14. Cao Q, Liu F, Niu G, Xue L, Han A. Blastic plasmacytoid dendritic cell

neoplasm with EWSR1 gene rearrangement. J Clin Pathol. 2014;67(1):

90-92.

15. Toya T, Nishimoto N, Koya J, et al. The first case of blastic plas-

macytoid dendritic cell neoplasm with MLL-ENL rearrangement. Leuk

Res. 2012;36(1):117-118.

16. Suzuki K, Suzuki Y, Hama A, et al. Recurrent MYB rearrangement in

blastic plasmacytoid dendritic cell neoplasm. Leukemia. 2017;31(7):

1629-1633.

17. Boddu PC, Wang SA, Pemmaraju N, et al. 8q24/MYC rearrangement

is a recurrent cytogenetic abnormality in blastic plasmacytoid den-

dritic cell neoplasms. Leuk Res. 2018;66:73-78.

18. Nakamura Y, Kayano H, Kakegawa E, et al. Identification of SUPT3H

as a novel 8q24/MYC partner in blastic plasmacytoid dendritic cell

neoplasm with t(6;8)(p21;q24) translocation. Blood Cancer J. 2015;5:

e301.

19. Petrella T, Pileri SA. Blastic plasmacytoid dendritic cell neoplasm. In:

Swerdlow SH, Harris NL, Jaffe ES, Pileri SA, Stein H, Thiele J, eds.

306 BASTIDAS TORRES ET AL.

https://orcid.org/0000-0003-1579-917X
https://orcid.org/0000-0003-1579-917X
https://orcid.org/0000-0003-1579-917X


WHO Classification of Tumours of Haematopoietic and Lymphoid Tis-

sues. 4th ed. Lyon, France: IARC; 2017.

20. Petrella T, Pileri SA. Blastic plasmacytoid dendritic cell neoplasm. In:

Elder DE, Scolyer RA, Willemze R, eds. WHO Classification of Skin

Tumours. 4th ed. Lyon, France: IARC; 2018.

21. Repana D, Nulsen J, Dressler L, et al. The network of cancer genes

(NCG): a comprehensive catalogue of known and candidate cancer

genes from cancer sequencing screens. Genome Biol. 2019;20(1):1.

22. Alculumbre SG, Saint-Andre V, Di Domizio J, et al. Diversification of

human plasmacytoid predendritic cells in response to a single stimu-

lus. Nat Immunol. 2018;19(1):63-75.

23. da Huang W, Sherman BT, Lempicki RA. Systematic and integrative

analysis of large gene lists using DAVID bioinformatics resources. Nat

Protoc. 2009;4(1):44-57.

24. Subramanian A, Tamayo P, Mootha VK, et al. Gene set enrichment

analysis: a knowledge-based approach for interpreting genome-wide

expression profiles. Proc Natl Acad Sci USA. 2005;102(43):15545-

15550.

25. Kuleshov MV, Jones MR, Rouillard AD, et al. Enrichr: a comprehen-

sive gene set enrichment analysis web server 2016 update. Nucleic

Acids Res. 2016;44(W1):W90-W97.

26. Cancer Genome Atlas N. Comprehensive molecular characterization

of human colon and rectal cancer. Nature. 2012;487(7407):330-337.

27. Gallardo M, Lee HJ, Zhang X, et al. hnRNP K is a Haploinsufficient

tumor suppressor that regulates proliferation and differentiation pro-

grams in hematologic malignancies. Cancer Cell. 2015;28(4):486-499.

28. Yoshida T, Georgopoulos K. Ikaros fingers on lymphocyte differentia-

tion. Int J Hematol. 2014;100(3):220-229.

29. Allman D, Dalod M, Asselin-Paturel C, et al. Ikaros is required for plas-

macytoid dendritic cell differentiation. Blood. 2006;108(13):4025-

4034.

30. Cytlak U, Resteu A, Bogaert D, et al. Ikaros family zinc finger 1 regu-

lates dendritic cell development and function in humans. Nat

Commun. 2018;9(1):1239.

31. Schjerven H, McLaughlin J, Arenzana TL, et al. Selective regulation of

lymphopoiesis and leukemogenesis by individual zinc fingers of

Ikaros. Nat Immunol. 2013;14(10):1073-1083.

32. Tessema M, Willink R, Do K, et al. Promoter methylation of genes in

and around the candidate lung cancer susceptibility locus 6q23-25.

Cancer Res. 2008;68(6):1707-1714.

33. Haling JR, Sudhamsu J, Yen I, et al. Structure of the BRAF-MEK com-

plex reveals a kinase activity independent role for BRAF in MAPK sig-

naling. Cancer Cell. 2014;26(3):402-413.

34. Eberlein CA, Stetson D, Markovets AA, et al. Acquired resistance to

the mutant-selective EGFR inhibitor AZD9291 is associated with

increased dependence on RAS Signaling in preclinical models. Cancer

Res. 2015;75(12):2489-2500.

35. Chraybi M, Abd Alsamad I, Copie-Bergman C, et al. Oncogene abnor-

malities in a series of primary melanomas of the sinonasal tract: NRAS

mutations and cyclin D1 amplification are more frequent than KIT or

BRAF mutations. Hum Pathol. 2013;44(9):1902-1911.

36. Di Carlo V, Mocavini I, Di Croce L. Polycomb complexes in normal

and malignant hematopoiesis. J Cell Biol. 2019;218(1):55-69.

37. Nagasawa M, Schmidlin H, Hazekamp MG, Schotte R, Blom B. Devel-

opment of human plasmacytoid dendritic cells depends on the com-

bined action of the basic helix-loop-helix factor E2-2 and the Ets

factor Spi-B. Eur J Immunol. 2008;38(9):2389-2400.

38. Koo CY, Muir KW, Lam EW. FOXM1: from cancer initiation to pro-

gression and treatment. Biochim Biophys Acta. 2012;1819(1):28-37.

39. Schjerven H, Ayongaba EF, Aghajanirefah A, et al. Genetic analysis of

Ikaros target genes and tumor suppressor function in BCR-ABL1(+)

pre-B ALL. J Exp Med. 2017;214(3):793-814.

40. Witkowski MT, Hu Y, Roberts KG, et al. Conserved IKAROS-

regulated genes associated with B-progenitor acute lymphoblastic

leukemia outcome. J Exp Med. 2017;214(3):773-791.

41. Unbekandt M, Olson MF. The Actin-myosin regulatory MRCK

kinases: regulation, biological functions and associations with human

cancer. J Mol Med (Berl). 2014;92(3):217-225.

42. Rafn B, Nielsen CF, Andersen SH, et al. ErbB2-driven breast cancer

cell invasion depends on a complex signaling network activating mye-

loid zinc finger-1-dependent cathepsin B expression. Mol Cell. 2012;

45(6):764-776.

43. Lee J-W, Geng H, Chen Z, et al. IFITM3 (CD225) links the B cell anti-

gen CD19 to PI3K-AKT Signaling in human ALL cells. Blood. 2015;

126(23):1325.

44. Joshi I, Yoshida T, Jena N, et al. Loss of Ikaros DNA-binding

function confers integrin-dependent survival on pre-B cells and

progression to acute lymphoblastic leukemia. Nat Immunol. 2014;

15(3):294-304.

45. Churchman ML, Low J, Qu C, et al. Efficacy of Retinoids in

IKZF1-mutated BCR-ABL1 acute lymphoblastic Leukemia. Cancer

Cell. 2015;28(3):343-356.

46. Churchman ML, Qian M, te Kronnie G, et al. Germline genetic IKZF1

variation and predisposition to childhood acute lymphoblastic Leuke-

mia. Cancer Cell. 2018;33(5):937-948.e938.

47. MacGrath SM, Koleske AJ. Cortactin in cell migration and cancer at a

glance. J Cell Sci. 2012;125(Pt 7):1621-1626.

48. Onodera Y, Hashimoto S, Hashimoto A, et al. Expression of AMAP1,

an ArfGAP, provides novel targets to inhibit breast cancer invasive

activities. EMBO J. 2005;24(5):963-973.

49. Puget N, Sinilnikova OM, Stoppa-Lyonnet D, et al. An Alu-mediated

6-kb duplication in the BRCA1 gene: a new founder mutation?

Am J Hum Genet. 1999;64(1):300-302.

50. Song C, Gowda C, Pan X, et al. Targeting casein kinase II restores

Ikaros tumor suppressor activity and demonstrates therapeutic effi-

cacy in high-risk leukemia. Blood. 2015;126(15):1813-1822.

51. Shah S, Brock EJ, Ji K, Mattingly RR. Ras and Rap1: a tale of two

GTPases. Semin Cancer Biol. 2019;54:29-39.

52. Infante E, Heasman SJ, Ridley AJ. Statins inhibit T-acute lymphoblas-

tic leukemia cell adhesion and migration through Rap1b. J Leukoc Biol.

2011;89(4):577-586.

53. Lin KB, Tan P, Freeman SA, Lam M, McNagny KM, Gold MR. The rap

GTPases regulate the migration, invasiveness and in vivo dissemina-

tion of B-cell lymphomas. Oncogene. 2010;29(4):608-615.

54. Emadali A, Hoghoughi N, Duley S, et al. Haploinsufficiency for

NR3C1, the gene encoding the glucocorticoid receptor, in blastic plas-

macytoid dendritic cell neoplasms. Blood. 2016;127(24):3040-3053.

55. Ross J, Mavoungou L, Bresnick EH, Milot E. GATA-1 utilizes Ikaros

and polycomb repressive complex 2 to suppress Hes1 and to promote

erythropoiesis. Mol Cell Biol. 2012;32(18):3624-3638.

56. Oravecz A, Apostolov A, Polak K, et al. Ikaros mediates gene silencing

in T cells through Polycomb repressive complex 2. Nat Commun.

2015;6:8823.

57. Isnard P, Core N, Naquet P, Djabali M. Altered lymphoid development

in mice deficient for the mAF4 proto-oncogene. Blood. 2000;96(2):

705-710.

58. Delgado P, Cubelos B, Calleja E, et al. Essential function for the

GTPase TC21 in homeostatic antigen receptor signaling. Nat Immunol.

2009;10(8):880-888.

59. Boiko AD, Porteous S, Razorenova OV, Krivokrysenko VI,

Williams BR, Gudkov AV. A systematic search for downstream media-

tors of tumor suppressor function of p53 reveals a major role of

BTG2 in suppression of Ras-induced transformation. Genes Dev.

2006;20(2):236-252.

60. Xiao S, Li D, Zhu HQ, et al. RIG-G as a key mediator of the antiproliferative

activity of interferon-related pathways through enhancing p21 and p27

proteins. Proc Natl Acad Sci USA. 2006;103(44):16448-16453.

61. Jeon JH, Lee KN, Hwang CY, Kwon KS, You KH, Choi I. Tumor sup-

pressor VDUP1 increases p27(kip1) stability by inhibiting JAB1. Can-

cer Res. 2005;65(11):4485-4489.

BASTIDAS TORRES ET AL. 307



62. Tu Y, Wu W, Wu T, et al. Antiproliferative autoantigen CDA1 tran-

scriptionally up-regulates p21(Waf1/Cip1) by activating p53 and

MEK/ERK1/2 MAPK pathways. J Biol Chem. 2007;282(16):11722-

11731.

SUPPORTING INFORMATION

Additional supporting information may be found online in the

Supporting Information section at the end of this article.

How to cite this article: Bastidas Torres AN, Cats D, Mei H,

et al. Whole-genome analysis uncovers recurrent IKZF1

inactivation and aberrant cell adhesion in blastic plasmacytoid

dendritic cell neoplasm. Genes Chromosomes Cancer. 2020;59:

295–308. https://doi.org/10.1002/gcc.22831

308 BASTIDAS TORRES ET AL.

https://doi.org/10.1002/gcc.22831

	Whole-genome analysis uncovers recurrent IKZF1 inactivation and aberrant cell adhesion in blastic plasmacytoid dendritic ce...
	1  INTRODUCTION
	2  MATERIALS AND METHODS
	2.1  Patient material
	2.2  Nucleic acid isolation
	2.3  Sequencing and data processing
	2.4  Detection of genomic rearrangements and fusion transcripts
	2.5  Detection of CNAs
	2.6  Detection of SNVs and indels
	2.7  Differential expression analysis
	2.8  Gene ontology annotation and transcriptome analysis
	2.9  Validation of structural genomic alterations and small-scale mutations

	3  RESULTS
	3.1  Landscape of genomic rearrangements
	3.2  Landscape of CNAs
	3.3  Small-scale mutations
	3.4  DE genes
	3.5  Deregulated processes/pathways
	3.6  Structural alterations involving IKZF1 are recurrent in BPDCN

	4  DISCUSSION
	ACKNOWLEDGMENTS
	  CONFLICT OF INTEREST
	  AUTHOR CONTRIBUTIONS
	  DATA AVAILABILITY STATEMENT

	REFERENCES


