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Abstract: Neurological diseases (NDs) are a leading cause of death worldwide and tend to mainly
affect people under the age of 50. High rates of premature death and disability caused by NDs
undoubtedly constrain societal development. However, effective therapeutic drugs and methods are
very limited. Schisandra chinensis Fructus (SCF) is the dry ripe fruit of Schisandra chinensis (Turcz.)
Baill, which has been used in traditional Chinese medicine for thousands of years. Recent research has
indicated that SCF and its active ingredients show a protective role in NDs, including cerebrovascular
diseases, neurodegenerative diseases, or depression. The key neuroprotective mechanisms of SCF
and its active ingredients have been demonstrated to include antioxidation, suppression of apoptosis,
anti-inflammation, regulation of neurotransmitters, and modulation of brain-derived neurotrophic
factor (BDNF) related pathways. This paper summarizes studies of the role of SCF and its active
ingredients in protecting against NDs, and highlights them as promising resources for future
treatment. Furthermore, novel insights on the future challenges of SCF and its active ingredients
are offered.

Keywords: Schisandra chinensis Fructus; active ingredients; neurological diseases;
molecular mechanism

1. Introduction

Neurological diseases (NDs) are a major public health problem, with high prevalence, and leading
to disability and mortality. The World Health Organization estimates that NDs and their sequelae
affect as many as one billion people worldwide and are major factors contributing to associated
disability and suffering. Cerebrovascular diseases, neurodegenerative diseases, and mental disorders,
such as stroke and dementia, rank among the leading causes of death and disability, often affecting
the adults in working-age [1]. The health index level of NDs is closely related to the level of regional
socioeconomic development. In low- and middle-income countries, the prognosis of NDs is worse,
as the resources to treat and manage patients are limited [2]. In China, the prevalence of cerebrovascular
diseases has increased to 12.3‰ in rural areas, as evidenced by a survey taken every five years,
from 1993 to 2013 [3]. The current number of cardiovascular and cerebrovascular diseases patients is
290 million, including 13 million stroke patients.

The treatment of NDs, including stroke and Alzheimer’s disease (AD), is critical to patients’
lifespan and quality of life. However, effective therapeutic drugs and methods are very limited.
Even in high-income countries, stroke remains a common cause of death and disability [4], and women

Int. J. Mol. Sci. 2018, 19, 1970; doi:10.3390/ijms19071970 www.mdpi.com/journal/ijms

http://www.mdpi.com/journal/ijms
http://www.mdpi.com
https://orcid.org/0000-0002-9197-3283
http://www.mdpi.com/1422-0067/19/7/1970?type=check_update&version=1
http://dx.doi.org/10.3390/ijms19071970
http://www.mdpi.com/journal/ijms


Int. J. Mol. Sci. 2018, 19, 1970 2 of 25

experience more stroke over their lifetime and more deaths from stroke [5,6], compared with men.
The management of patients who suffer from acute ischemic stroke at an early stage is crucial and
existing drugs are limited [7]. In addition, AD is a progressive neurodegenerative phenotype with
complex cerebrovascular disorders [8]. The current treatment of AD mainly consists of neuroleptics,
antidepressants, and benzodiazepines. However, drug interactions and toxicity resulting from the
long-time use of pleiotropic drugs exacerbate the clinical symptoms of patients [9]. Therefore, it is
necessary to find effective drugs to treat these NDs.

Schisandra chinensis Fructus (SCF) is the dry ripe fruit of Schisandra chinensis (Turcz.)
Baill, which tastes sweet and sour. In traditional Chinese medicine it is mainly used for the
treatment of dysphoria and palpitation, insomnia, and many dreams resulting from the poor
preservation of the patient’s spirit [10,11]. The main components of SCF include lignans, volatile
oils, and polysaccharides [12,13]. Previous studies have revealed the properties of SCF and its active
components, including anti-myocardial dysfunction [14], anti-myocardial ischemia/reperfusion (I/R)
injury [15], hepatoprotective effects [16], anti-tumor effects [17], and anti-HIV effects [18]. More recent
advances have demonstrated that SCF and its active ingredients, schizandrin A (Sch A), schizandrin B
(Sch B), schizandrin C (Sch C), schisantherin A (STA), schisandrin (SCH), schizandrol B, α-isocubebenol
(ICO), gomisin A, gomisin N, and nigranoic acid, manifest protective effects on hypoxia-ischemia
neural injury and neurodegenerative diseases, including stroke, AD, and Parkinson’s disease (PD).
This paper summarizes the neuroprotective effects of SCF and its active ingredients, and provides a
reference for the treatment of NDs.

2. Literature and Data Search Methodology

Pathway and biological term enrichment was based on the Bioinformatics Analysis Tool for
Molecular mechANism of Traditional Chinese Medicine (BATMAN-TCM) [19]. The literature search
was based on electronic databases, including PubMed/MEDLINE, CNKI, ScienceDirect, and Scopus,
from 2000 to 2018. Search terms included SCF, SCF ingredients, SCF lignans, NDs, cerebrovascular
diseases, neurodegenerative diseases, neuron, brain, oxidative stress, apoptosis, inflammation,
neurotransmitters disorders, stroke, AD, PD, depression, and anxiety.

3. Biological Function Enrichment of SCF

The results from searching in the BATMAN database showed that the biological mechanisms
of SCF are mostly linked to neurologically related functions (Figure 1). Of the top 15 biological
terms, 11 are strongly linked to mental functions, namely, neuroactive ligand–receptor interaction,
the calcium signaling pathway, the cGMP-dependent protein kinase (cGMP-PKG) signaling pathway,
dopaminergic synapse, serotonergic synapse, the adenosine monophosphate activated protein Kinase
(AMPK) signaling pathway, retrograde end cannabinoid signaling, gap junctions, cholinergic synapses,
the peroxisome proliferators activated receptor (PPAR) signaling pathway, and inflammatory mediator
regulation of transient receptor potential (TRP) channels. The results indicated that SCF and its
bioactive ingredients could potentially be treatments for NDs.

A literature search was carried out, focusing on the protective effect of SCF and its active
components on NDs. The results showed that their main mechanisms are antioxidation, suppression
of apoptosis, anti-inflammation, regulation of neurotransmitters, and modulation of pathways related
to brain-derived neurotrophic factor (BDNF) (Table 1).
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Table 1. Summary of the pharmacological effects and biological analysis of Schisandra
chinensis Fructus (SCF) and its active ingredients. BDNF—brain-derived neurotrophic factor;
CREB—cAMP-response element binding protein; PI3K—phosphatidylinositol 3-kinase;
GSK—glycogen synthase kinase; TLS—total lignans of SCF; SCH—schisandrin; ICO—α-isocubebenol;
STA—schisantherin A; GSH—glutathione; NO—nitric oxide; ERK—extracellular signal-regulated
kinase; NE—norepinephrine; MAPK—mitogen-activated protein kinases; TRAF6—tumor necrosis
factor-associated factor 6; IKK—inhibitory kappa B kinase; NF-κB—nuclear translocation of
nuclear factor-κB; Jak2/Stat3—Janus kinase-2/signal transducer and activator of transcription-3;
GLT-1—glutamate transporter type 1; NADPH—nicotinamide adenine dinucleotide phosphate;
JNK—c-Jun NH2-terminal kinases; RAGE—receptors for advanced glycation end products;
ROS—reactive oxygen species.

SCF and Its
Active Ingredients Pharmacological Activity Biological Analysis Key References

SCF

Anti-oxidant GSH antioxidant response [20,21]

Modulate BDNF related pathways BDNF, TrkB/CREB/ERK and
PI3K/Akt/GSK-3β pathways [22,23]

Regulate neurotransmitters NE activity [24]

Neurotransmitters activities [25]

TLS

Anti-oxidant Mitochondrial function [26]

GSH antioxidant response [27]

Anti-apoptosis Bcl-2 expression [26]

Bcl-2 and Bax expression [28]

Anti-inflammatory NO activity [29]

MAPKs signaling [26]

Sch A
Anti-oxidant GSH antioxidant response [30]

Anti-apoptosis ERK, JNK, Caspase-3 signaling [31]

Anti-inflammatory TRAF6/IKKβ/NF-κB and Jak2/Stat3
signaling pathways [32]

Sch B

Anti-oxidant ACh activity [33]

GSH antioxidant response [34]

GLT-1 and GSK3β activities [35]

ROS, NADPH oxidase activity [36]

Anti-apoptosis Caspase-3, HSP70, beclin-1 expression [37]

Anti-inflammatory RAGE, NF-κB, MAPKs signaling [37]

PPAR-γ activity [38]

MyD88/IKK/NF-κB signaling pathway [36]

TNF-α, IL-1β activities [39]

Sch C
Anti-apoptosis JNK/Caspase-3 signaling [40]

Anti-inflammatory cAMP/PKA/CREB and Nrf-2 signaling [41]

STA

Anti-oxidant MAPKs, PI3K/Akt and GSK3β signaling [42]

GSH antioxidant response [43]

Anti-apoptosis Bcl-2 expression and PI3K/Akt signaling [44]

JNK/Caspase-3 signaling [40]

SCH
Anti-oxidant GSH antioxidant response [45]

Regulate neurotransmitters Neurotransmitters and their metabolites effects [46]

Schizandrol B Anti-apoptosis JNK/Caspase-3 signaling [40]

ICO

Anti-oxidant ROS and calcium accumulation [47]

Anti-apoptosis CREB/Nrf-2 signaling [47]

Bcl-2 and Bax expression [48]

Anti-inflammatory NF-κB and MAPK signaling pathways [49]

Gomisin A
Anti-oxidant ROS, NADPH oxidase activity [50]

Anti-apoptosis CYP3A activity [51]

Anti-inflammatory TLR4 mediated NF-κB and MAPKs pathways [50]

Gomisin N Anti-inflammatory Inflammatory responses and neural activation [52]

Nigranoic acid Modulate BDNF related pathways ERK1/2, Ca2+-CaMKII pathways, BDNF activity [53]
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Figure 1. The biological mechanisms enrichment of Schisandra chinensis Fructus (SCF). The round 
represents the relationship between SCF and the biological terms. The size of the round signifies the 
count of the signaling pathways or functions. The color denotes the log10 of p value. The closer to red, 
the smaller p value is. 

4. Antioxidative Effect in Neurological Diseases 

Oxidative stress is one of the main causes of neural injury and neurodegeneration [54]. 
Moreover, because of the fact that antioxidant substances cannot easily penetrate the blood–brain 
barrier, brain tissue is particularly sensitive to oxidative stress [55]. The oxidizable/reducible chemical 
pairs, including reduced thioredoxin/oxidized thioredoxin, glutathione/glutathione disulfide, and 
NAD+/NADH (and NADP/NADPH), determine the overall redox potential of a cell [56]. 

Increasing evidence demonstrates that oxidative stress participates in the pathophysiological 
processes of stroke (including ischemia-reperfusion injury) and other brain injuries [57,58]. The 
production of reactive oxygen species (ROS) rapidly increases and overwhelms the antioxidant 
defenses. An excess of ROS directly modifies or degenerates cellular macromolecules, causing lipid 
peroxidation, protein oxidation, and DNA damage in neural tissues, and finally leading to brain 
injury [59,60]. In neurodegenerative diseases, the increased ROS leads to neuronal dysfunction. In 
the early events of AD, ROS are related to Aβ-induced nerve injury, as well as the abnormal 
phosphorylation of tau proteins. In addition, the accumulated ROS exacerbate dopaminergic 
neuronal death in the substantia nigra of PD patients [61]. In neuronal excitotoxicity, stroke, and 
neurodegenerative disease, increased extracellular glutamate levels bring about calcium overload, as 
well as mitochondrial dysfunction [62]. Therefore, redox regulation has recently been recognized as 
an important factor in acute and chronic NDs [63]. SCF and its ingredients were shown to manifest 
neuroprotective effects on NDs by attenuating oxidative stress (Figure 2). The pharmacological data 
are shown in Table 2.

Figure 1. The biological mechanisms enrichment of Schisandra chinensis Fructus (SCF). The round
represents the relationship between SCF and the biological terms. The size of the round signifies the
count of the signaling pathways or functions. The color denotes the log10 of p value. The closer to red,
the smaller p value is.

4. Antioxidative Effect in Neurological Diseases

Oxidative stress is one of the main causes of neural injury and neurodegeneration [54]. Moreover,
because of the fact that antioxidant substances cannot easily penetrate the blood–brain barrier,
brain tissue is particularly sensitive to oxidative stress [55]. The oxidizable/reducible chemical
pairs, including reduced thioredoxin/oxidized thioredoxin, glutathione/glutathione disulfide,
and NAD+/NADH (and NADP/NADPH), determine the overall redox potential of a cell [56].

Increasing evidence demonstrates that oxidative stress participates in the pathophysiological
processes of stroke (including ischemia-reperfusion injury) and other brain injuries [57,58].
The production of reactive oxygen species (ROS) rapidly increases and overwhelms the antioxidant
defenses. An excess of ROS directly modifies or degenerates cellular macromolecules, causing lipid
peroxidation, protein oxidation, and DNA damage in neural tissues, and finally leading to brain
injury [59,60]. In neurodegenerative diseases, the increased ROS leads to neuronal dysfunction.
In the early events of AD, ROS are related to Aβ-induced nerve injury, as well as the abnormal
phosphorylation of tau proteins. In addition, the accumulated ROS exacerbate dopaminergic
neuronal death in the substantia nigra of PD patients [61]. In neuronal excitotoxicity, stroke,
and neurodegenerative disease, increased extracellular glutamate levels bring about calcium overload,
as well as mitochondrial dysfunction [62]. Therefore, redox regulation has recently been recognized as
an important factor in acute and chronic NDs [63]. SCF and its ingredients were shown to manifest
neuroprotective effects on NDs by attenuating oxidative stress (Figure 2). The pharmacological data
are shown in Table 2.
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Table 2. The pharmacological data of SCF and its active ingredients in protecting against NDs by anti-oxidative effect. LPS—lipopolysaccharide;
6-OHDA—6-hydroxydopamine; CTX—cyclophosphamide; AD—Alzheimer’s disease; NS—neurological disease; MDA—malondialdehyde;
I/R—ischemia/reperfusion; T-AOC—total antioxidant capacity; GSSG—glutathione disulfide; CAT—catalase.

SCF and Its
Active Ingredients Study Design Study Type Molecular and Cellular Mechanisms

of Action Dose Range Minimal Active Concentration Key Reference

SCF
CTX induced brain injury in rats In vivo Increases GSH content 0.10–1.00 g/kg 0.50 g/kg [20]

Decreases MDA levels

intra-hippocampal Aβ1-42 induced
AD in rats In vivo Increases SOD and GSH-Px activity 200 mg/kg 200 mg/kg [21]

TLS

Aβ1-42 induced AD in primary
mouse neuronal cells In vitro Blocking the decrease of MMP 10, 30, 100 µM 10 µM [26]

Aβ1-42 induced AD in mice In vivo Restroes T-AOC and MDA level 50, 200 mg/kg 50 mg/kg

Ameliorates the neurodegeneration in
the hippocampus

D-galactose (D-gal)-induced
neurotoxicity in rats In vivo Attenuates SOD, CAT, T-AOC

decreasing — — [27]

Maintains GSH, MDA, NO levels

Sch A
Aβ1-42 induced AD in mice In vivo Increases SOD, GSH-Px, GSH levels 4, 12, 36 mg/kg 12 mg/kg [30]

Decreases MDA, GSSG levels

Sch B

SP induced dementia in mice In vivo Suppresses AChE
(acetylcholinesterase) activity 10, 25, 50 mg/kg 25 mg/kg [33]

Maintaines ACh level

Occlusion (using aneurysm clips)
induced cerebral I/R injury In vivo Increases GSH, α-TOC, Mn-SOD 1, 10, 30 mg/kg 1 mg/kg [34]

Decreases MDA, Ca2+, MPT

Aβ1-42 induced AD in mice In vivo Restroes GLT-1 and GSK3β activities 0.15 mg/kg [35]

Decreases hyperphosphorylated
tau protein

Microglial-mediated
inflammatory injury In vitro Inhibites ROS, NADPH oxidase activity 5, 10, 20 µM 5 µM [36]
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Table 2. Cont.

SCF and Its
Active Ingredients Study Design Study Type Molecular and Cellular Mechanisms

of Action Dose Range Minimal Active Concentration Key Reference

STA

6-OHDA-induced neural damage in
SH-SY5Y cells In vitro Decreases cytotoxicity 3, 6, 12, 25, 50, 100 µM 14.8 µM (EC50) [42]

Down-regulates ROS level

Inhibites NO, iNOS levels

Opposes ERK
phosphorylation decreases

Up-ragulates p-Akt/t-Akt ratio

Preventes GSK3β dephosphorylation

6-OHDA-induced neural damage in
zebrafish In vivo Prevents dopaminergic neuron loss 2.5, 5, 10 µM 10 µM

Aβ1-42 induced AD in mice In vivo Restroes SOD, GSH-Px, MDA,
GSH activites 0.01–0.1 mg/kg 0.1 mg/kg [43]

SCH
Aβ1-42 induced AD in mice In vivo Increases SOD, GSH-Px, GSH levels 4, 12, 36 mg/kg 36 mg/kg [45]

Decreases MDA, GSSG levels

ICO

6-OHDA-induced neural damage in
SH-SY5Y cells In vitro Inhibites ROS 20, 40, 80 µM 40 µM [47]

Inhibites calcuim accumulation

Increases NQO1, HO-1 levels

Gomisin A LPS-stimulated N9 microglia In vitro Inhibites ROS, NADPH,
gp91phox expression 1–100 µM 3 µM [50]



Int. J. Mol. Sci. 2018, 19, 1970 7 of 25Int. J. Mol. Sci. 2018, 19, x  7 of 25 

 

 

Figure 2. SCF and its active ingredients protect against oxidative stress in neurological diseases (NDs). 
Under pathological conditions, the redox balance is disrupted. The degradation of glutathione (GSH) 
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(MMP) decreases, while reactive oxygen species (ROS) is released excessively [70,71]. Intracellular Ca2+ 
influx, as well as intracellular Ca2+ release from the endoplasmic reticulum are increased, resulting in 
a series of downstream pathological responses [72–74]. The protective effect of SCF and its active 
ingredients are shown in orange. 

4.1. SCF and Total Lignans of SCF 

SCF was supposed to be a complementary medicine in cyclophosphamide (CTX) treatment for 
its effect of reducing chloroacetaldehyde (CAA) production and decreasing the Cmax and AUC0-24h 
of 2-dechloroethylcyclophosphamide (DCCTX). With SCF treatment, brain glutathione (GSH) 
content increased and malondialdehyde (MDA) levels were reduced in rats with CTX-induced 
damage [20]. Yang et al. reported that SCF showed an antioxidant effect on AD rats by elevating 
superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activity, and reducing MDA level [21]. 

The lignans extracted from SCF were identified as a potential treatment for AD, because of their 
protection against damage from oxidative stress. In a recent report, the total lignans of SCF (TLS) 
blocked the decrease of mitochondrial membrane potential (MMP) in primary mouse neuronal cells. 
Moreover, TLS restored the activity of total antioxidant capacity (T-AOC) in AD mice (see Sections 5.1 
and 6.1 for more detail) [26]. In addition, the lignans of SCF were assumed to protect against D-
galactose (D-gal)-induced neurotoxicity in rats by maintaining GSH, MDA, and nitric oxide (NO) 
levels, and alleviating the decrease of SOD, catalase (CAT), and T-AOC activity. They were 
demonstrated to be potential candidates for the treatment of aging-associated neurodegenerative 
diseases [27]. 
  

Figure 2. SCF and its active ingredients protect against oxidative stress in neurological diseases (NDs).
Under pathological conditions, the redox balance is disrupted. The degradation of glutathione (GSH) is
accelerated when the GSH-Px activity is decreased, and the production of glutathione disulfide (GSSG)
is increased [64–66]. The expression of enzymes with antioxidant effects, as superoxide dismutase
(SOD) and catalase (CAT), are inhibited simultaneously [67–69]. The mitochondrial membrane potential
(MMP) decreases, while reactive oxygen species (ROS) is released excessively [70,71]. Intracellular Ca2+

influx, as well as intracellular Ca2+ release from the endoplasmic reticulum are increased, resulting in
a series of downstream pathological responses [72–74]. The protective effect of SCF and its active
ingredients are shown in orange.

4.1. SCF and Total Lignans of SCF

SCF was supposed to be a complementary medicine in cyclophosphamide (CTX) treatment for its
effect of reducing chloroacetaldehyde (CAA) production and decreasing the Cmax and AUC0-24h of
2-dechloroethylcyclophosphamide (DCCTX). With SCF treatment, brain glutathione (GSH) content
increased and malondialdehyde (MDA) levels were reduced in rats with CTX-induced damage [20].
Yang et al. reported that SCF showed an antioxidant effect on AD rats by elevating superoxide
dismutase (SOD) and glutathione peroxidase (GSH-Px) activity, and reducing MDA level [21].

The lignans extracted from SCF were identified as a potential treatment for AD, because of
their protection against damage from oxidative stress. In a recent report, the total lignans of
SCF (TLS) blocked the decrease of mitochondrial membrane potential (MMP) in primary mouse
neuronal cells. Moreover, TLS restored the activity of total antioxidant capacity (T-AOC) in AD mice
(see Sections 5.1 and 6.1 for more detail) [26]. In addition, the lignans of SCF were assumed to protect
against D-galactose (D-gal)-induced neurotoxicity in rats by maintaining GSH, MDA, and nitric oxide
(NO) levels, and alleviating the decrease of SOD, catalase (CAT), and T-AOC activity. They were
demonstrated to be potential candidates for the treatment of aging-associated neurodegenerative
diseases [27].
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4.2. Sch A and Sch B

Sch A and Sch B, derived from SCF, manifested anti-oxidative effects on AD. In research by
Hu et al. Sch A significantly attenuated short-term and spatial memory impairments in AD mice
by upregulating SOD, MDA, GSH-Px, GSH levels, and glutathione disulfide (GSSG) levels [30].
Furthermore, Sch B attenuated learning and memory impairment of AD mice induced by Aβ1-42.
The restoration of glutamate transporter type 1 (GLT-1) and the capacity of glycogen synthase kinase3β
(GSK3β) were maintained by Sch B treatment [35].

In a study by Chen et al. Sch B showed a protective effect in rats with cerebral
ischemia/reperfusion (I/R) injury by strengthening the cerebral mitochondrial antioxidant effect.
With the Sch B treatment, the GSH, α-TOC, and Mn-SOD expressions were increased, whereas
the MDA-level and Ca2+-induced permeability transition was decreased [34]. In addition, Sch B
relieved microglial-mediated inflammatory injury by inhibiting ROS and NADPH oxidase activity
(see Section 6.2 for more detail) [36]. Sch B also modulated acetylcholine (ACh) activity in mice
with dementia induced by scopolamine. The ACh level was maintained as normal, while the
acetylcholinesterase (AChE) activity was inhibited by Sch B [33].

4.3. STA and SCH

STA is regarded as a neuroprotective lignin and works by attenuating the damage induced by
6-hydroxydopamine (6-OHDA) during in vivo and in vitro experiments. It alleviated neural damage
by inhibiting ROS and NOS overproduction, and regulating extracellular signal-regulated kinase (ERK)
phosphorylation, phosphatidylinositol 3-kinase (PI3K)/Akt ratio, and GSK3β dephosphorylation [42].
Moreover, STA restored SOD, GSH-Px, MDA, and GSH activity in AD mice, which indicated its
protective effect against cognitive deficits and oxidative stress [43].

SCH is a bioactive lignan isolated from SCF. It has been suggested as a potential cognitive enhancer
against AD through an antioxidative effect. As Hu et al. reported, SCH improved short-term and
spatial memory impairments by upregulating SOD, GSH-Px, and GSH activity, and downregulating
MDA and GSSG levels in the cerebral cortex and hippocampus of AD mice [45].

4.4. ICO and Gomisin A

ICO isolated from SCF showed an antioxidative effect on 6-OHDA-induced human neuroblastoma
SH-SY5Y cell (a human derived cell line used as in vitro models of neuronal function and
differentiation) death, inhibiting ROS and calcium accumulation. Additionally, ICO stimulated the
expression of the antioxidant response genes NQO1 and HO-1 (see Section 5.4 for more detail) [47].
Moreover, gomisin A inhibited the ROS production, NADPH oxidase activation, and gp91phox
expression induced by lipopolysaccharide (LPS) in microglia (see Section 6.3 for more detail) [50].

5. Suppression of Apoptosis

Apoptosis is the main mechanism behind the appearance of DNA in circulation [75]. On the
one hand, apoptosis may contribute to a significant proportion of neuronal death following acute
brain ischemia (ABI), which may lead to stroke [76]. On the other hand, when ischemic stroke and
neurodegenerative diseases such as AD and PD occur, the apoptosis results in profound brain injury,
including neuronal death and loss of neurological functions [77–79]. More recent advances have
revealed that the cell death pathways of apoptosis, intracellular Ca2+ homeostasis, and key metabolic
pathways are regulated by mitochondria in neurologic disease [80]. More specifically, with more
suppressed mitochondrial respiration comes more dysregulated calcium signaling. Furthermore,
caspase-dependent and apoptosis-inducing factor-dependent apoptotic cell deaths are activated by
Bax-dependent mitochondrial permeabilization [81,82]. SCF and its ingredients protect against NDs
by suppressing apoptosis (Figure 3). The pharmacological data are shown in Table 3.
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from the cytosol to the mitochondria in apoptosis [88,89]. Mitochondrial Bcl-2 exerts an anti-apoptotic 
effect by preventing the release of mitochondrial cytochrome c (Cyt c), and reducing the activity of 
caspase [90–92]. Cyt c released into the cytoplasm binds to apoptosis-related factor 1 (Apaf-1) in the 
presence of dATP, and forms apoptotic bodies with caspase-9. With the activating of caspase-9, 
caspase-3 is subsequently activated to induce apoptosis [93–95]. The protective effect of SCF and its 
active ingredients are shown in orange. 
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In a study by Jiang et al. TLS manifested a protective effect on rats with cerebral ischemia injury. 
The mechanism is related to increased Bcl-2 and p-Akt levels and the inhibition of apoptin Bax 
expression in the cerebral infarction area [28]. Moreover, TLS showed significant antiapoptotic effects 
in Aβ1–42-induced AD in primary mouse neuronal cells, by increasing Bcl-2 expression [26]. 

5.2. Sch A and Sch B 

Sch A has been reported to reduce cell apoptosis and necrosis in primary cultures of rat cortical 
neurons after oxygen and glucose deprivation, followed by reperfusion (OGD/R). Intracellular Ca2+ 
and LDH levels were decreased by Sch A treatment. Proteins play an important role in neuronal 
apoptosis, c-Jun NH2-terminal kinases (JNK), p38, and caspase-3 were modulated by Sch A in H293T 
cells [31]. Furthermore, Sch B showed antiapoptotic and anti-autophagy effects in rats with AD 
induced by Aβ (1–40). In these experiments, the overexpression of caspase-3 and terminal transferase-
mediated dUTP nick-end labeling (TUNEL) positive cells were suppressed by Sch B treatment. In 
addition, proteins such as HSP70 and beclin-1 were upregulated by Sch B (see Section 6.2 for more 
detail) [37]. 

Figure 3. SCF and its ingredients attenuate apoptosis in NDs. Apoptosis are initiated by various
external factors through the signal transduction of apoptosis signal with membrane receptors [83,84].
The apoptosis-inducing complex on the cell membrane includes a Fas-assiociated protein with death
domain protein (FADD), of which N-terminal (DED) homophilic crosslinks with the inactive caspase-8.
With the activating of caspase-8, the following cascade reactions are promoted [85–87]. Bax migrates
from the cytosol to the mitochondria in apoptosis [88,89]. Mitochondrial Bcl-2 exerts an anti-apoptotic
effect by preventing the release of mitochondrial cytochrome c (Cyt c), and reducing the activity of
caspase [90–92]. Cyt c released into the cytoplasm binds to apoptosis-related factor 1 (Apaf-1) in
the presence of dATP, and forms apoptotic bodies with caspase-9. With the activating of caspase-9,
caspase-3 is subsequently activated to induce apoptosis [93–95]. The protective effect of SCF and its
active ingredients are shown in orange.

5.1. TLS

In a study by Jiang et al. TLS manifested a protective effect on rats with cerebral ischemia
injury. The mechanism is related to increased Bcl-2 and p-Akt levels and the inhibition of apoptin Bax
expression in the cerebral infarction area [28]. Moreover, TLS showed significant antiapoptotic effects
in Aβ1–42-induced AD in primary mouse neuronal cells, by increasing Bcl-2 expression [26].

5.2. Sch A and Sch B

Sch A has been reported to reduce cell apoptosis and necrosis in primary cultures of rat cortical
neurons after oxygen and glucose deprivation, followed by reperfusion (OGD/R). Intracellular Ca2+

and LDH levels were decreased by Sch A treatment. Proteins play an important role in neuronal
apoptosis, c-Jun NH2-terminal kinases (JNK), p38, and caspase-3 were modulated by Sch A in H293T
cells [31]. Furthermore, Sch B showed antiapoptotic and anti-autophagy effects in rats with AD induced
by Aβ (1–40). In these experiments, the overexpression of caspase-3 and terminal transferase-mediated
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dUTP nick-end labeling (TUNEL) positive cells were suppressed by Sch B treatment. In addition,
proteins such as HSP70 and beclin-1 were upregulated by Sch B (see Section 6.2 for more detail) [37].

5.3. STA, Sch C, and Schizandrol B

As Sa et al. reported, STA pretreatment inhibited 1-methyl-4-phenylpyridinium ion
(MPP+)-induced cytotoxicity in SH-SY5Y cells and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine
(MPTP)-induced the loss of TH-positive dopaminergic neurons in PD mice. The mechanism was
suggested to increase cAMP-response element binding protein (CREB)-mediated Bcl-2 expression
and activate PI3K/Akt signaling [44]. In addition, STA, Sch C, and Schizandrol B showed beneficial
effects in preventing serum and glucose deprivation (SGD) injury. Overexpressed proteins related to
apoptosis were regulated by these lignans [40].

5.4. ICO and Gomisin A

α-Isocubebenol (ICO) derived from SCF was recently shown to exert neuroprotective properties
with an antiapoptotic effect. In the scopolamine-induced AD mice, ICO significantly upregulated
the Bcl-2/Bax ratio. In addition, the AChE activity and decreased ERK phosphorylation induced
by scopolamine were attenuated by ICO treatment [48]. In an in vitro experiment, ICO showed a
protective effect on 6-OHDA-induced neural damage in SH-SY5Y cells. The mechanism was suggested
to inhibit the release of the apoptosis-inducing factor from the mitochondria into the cytosol and
nucleus [47]. In addition, gomisin A protected against CTX toxicity by blocking CYP3A-mediated
metabolism and reducing CAA production in GH3 cells [51].
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Table 3. The pharmacological data of SCF and its active ingredients in protecting against NDs by suppressing apoptosis. TUNEL—terminal transferase-mediated
dUTP nick-end labeling; OGD/R— oxygen and glucose deprivation followed by reperfusion.

SCF and Its
Active Ingredients Study Design Study Type Molecular and Cellular Mechanisms of Action Dose Range Minimal Active Concentration Key Reference

TLS Aβ1-42 induced AD in primary mouse
neuronal cells In vitro Increase Bcl-2 expressions 10, 30, 100 µM 10 µM [26]

Suture-occluded induced cerebral
ischemia injury In vivo Inhibites Bax level 25–100 mg/kg 25 mg/kg [28]

Increases Bcl-2, p-Akt levles

Sch A OGD/R-induced cell death in primary
culture of rat cortical neurons In vitro Decreases Ca2+, LDH levels 1.25, 2.5, 5 µg/mL 1.25 µg/mL [31]

Up-regulates C3aR, C5aR levels

H293T cell Down-regulates ERK, JNK, p38, caspase-3 levels

Sch B Aβ-induced neuronal dysfunction in
rats In vivo Inhibites Caspase-3, TUNEL positive cells 25 or 50 mg/kg 25 mg/kg [37]

Up-regulates HSP70, beclin-1

Sch C, Schizandrol B Serum and glucose deprivation (SGD)
injury in SH-SY5Y cells In vitro Inhibites LDH level 2.5, 5.0 mg/mL 2.5 mg/mL [40]

Inhibites NLRP3, Caspase-1, IL-1β, NF-κB, plκB/lκB,
pJNK1/2, JNK1/2, Caspase-3 expression

STA MPP+ induced neural damage in
SH-SY5Y cells In vitro Decreases cytotoxicity 60 µM 60 µM [44]

Increases CREB, Bcl-2 expression

Activates PI3K and Akt levels

MPTP induced neural damage in
mice (PD) In vivo Prevents TH-positive dopaminergic neurons loss 30, 100, 300 mg/kg 300 mg/kg

Serum and glucose deprivation (SGD)
injury in SH-SY5Y cells In vitro Inhibites LDH level 2.5, 5.0 mg/mL 2.5 mg/mL [40]

Inhibites NLRP3, Caspase-1, IL-1β, NF-κB, plκB/lκB,
pJNK1/2, JNK1/2, Caspase-3 expression

ICO 6-OHDA-induced neural damage in
SH-SY5Y cells In vitro Inhibites TUNEL positive cells 20, 40, 80 µM 40 µM [47]

Inhibites the release of AIF

Stimulates the activation of PKA/PKB/CREB/Nrf-2

SP induced memory impairment in
mice (AD) In vivo Decreases AChE activity 5, 10 mg/kg 5 mg/kg [48]

Up-ragulates Bcl-2/Bax ratio

Attenuates the decrease of ERK phosphorylation

Gomisin A CTX induced brain injury in rats In vivo Blocking CYP3A-mediated metabolism 20.8 mg/kg 20.8 mg/kg [51]

Reducing CAA production
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6. Anti-Inflammatory Effect

Neuroinflammation has been proven to contribute to the etiology of hypoxia-ischemia neural
injury and neurodegenerative diseases [96]. Despite discrepancies in their pathophysiological
timeframe and severity, NDs share common molecular mechanisms that include inflammation,
mitochondrial dysfunction, and endoplasmic reticulum stress [79]. In an ischemic stroke,
neuroinflammatory processes are upregulated and initiate a feedback loop of inflammatory cascades
that can expand the region of damage [97]. Inflammatory molecules such as cytokines, chemokines,
and reactive oxygen and nitrogen species are thought to be pivotal mediators of persistent neuronal
injury [98–100]. SCF and its ingredients exert a neuroprotective effect on NDs by alleviating
inflammation (Figure 4). The pharmacological data are shown in Table 4.
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Figure 4. SCF and its active ingredients protect against inflammation in NDs. In the
inflammatory response, TLR4 recognizes lipopolysaccharide (LPS), and then binds to the MyD88
Toll structure, forming a TLR-MyD active complex. Then, the complex recruits and activates the IL-1
receptor-associated kinase (IRAK), which is associated with tumor necrosis factor-associated factor 6
(TRAF6), activating the downstream mitogen-activated protein kinases (MAPK) pathway [101,102].
Meanwhile, TNFR1 binds to TNF, and interacts with receptor-interacting protein (RIP), activating the
downstream inhibitory kappa B kinase (IKK) and MAPK pathway [103,104]. Phosphorylation of IκB
protein leads to degradation of the protein, promotes nuclear translocation of nuclear factor-κB (NF-κB),
and transfers NF-κB to the nucleus [105]. At the same time, the activation of the MAPK pathway leads
to the production of activator protein-1 (AP-1), which is phosphorylated, and then enters the nucleus.
Activation of NF-κB and AP-1 can lead to over-expression of the inflammatory factors, such as TNF-α,
IL-1β, IL-6, IL-8, and IL-10, resulting a series of inflammatory reactions [106–109]. The protective effect
of SCF and its active ingredients are shown in orange.
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6.1. TLS

As Zhao et al. reported, TLS protects against cognitive deficits and neurodegeneration by
inhibiting the expression of JNK/p38 and BACE1 in Aβ1–42-induced primary mouse neuronal cells.
These results indicated that TLS could be applied as an active pharmaceutical ingredient for cognitive
improvement in AD [26]. Furthermore, the lignans isolated from SCF, including Sch A–D, manifested
beneficial activity by inhibiting the lipopolysaccharide (LPS)-induced NO release in primary murine
BV2 microglia cells [29].

6.2. Sch A, Sch B, and Sch C

Song et al. reported that Sch A can exert anti-inflammatory and neuroprotective effects on
LPS-induced inflammatory injury in microglia (BV2 cells) and neurons. The potential molecular
mechanism may be the inhibition of the tumor necrosis factor-associated factor 6(TRAF6)- inhibitory
kappa B kinase (IKK)β/ nuclear translocation of nuclear factor-κB (NF-κB) and Janus kinase-2/signal
transducer and activator of transcription-3 (Jak2/Stat3) signaling pathways [32].

Sch B has been effective at inhibiting neural inflammation during in vivo and in vitro
studies. Giridharan reported that Sch B modulated receptors for advanced glycation end products
(RAGE), NF-κB, and the mitogen-activated protein kinases (MAPK) signaling pathway. Moreover,
an overexpression of the proteins prompting inflammation were inhibited by Sch B [37]. As Lee
reported, Sch B attenuated cerebral ischemia injury in rats by suppressing the overexpression of
inflammatory markers in ischemic hemispheres [39], and relieved microglial-mediated inflammatory
injury by inhibiting the TLR4-dependent MyD88/IKK/NF-κB signaling pathway [36]. Moreover,
Sch B showed an inhibitory effect on the LPS-induced inflammatory response by suppressing NF-κB
activation, while activating PPAR-γ [38].

As Park et al. reported, Sch C was regarded as a natural antineuroinflammatory agent, protecting
against lipoteichoic acid (LTA)-stimulated inflammation in mouse primary microglia. The results
showed that Sch C suppressed NF-κB, AP-1, JAK-STATs, and MAPK expression, and activated
cAMP/PKA/CREB and Nrf-2 signaling [41].

6.3. ICO, Gomisin A, and Gomisin N

ICO showed a protective effect on Aβ-stimulated neuroinflammation in mouse primary microglia.
The research indicated that ICO provided a neuroprotective function by inhibiting IκB-α, NF-κB,
and the MAPK signaling pathway [49].

As one of the major dibenzocyclooctadiene lignans isolated from SCF, gomisin A manifested as a
neuroprotective treatment for LPS-stimulated inflammation on N9 microglia. The potential mechanism
of gomisin A was suggested to be inhibition of the TLR4-mediated NF-κB and MAPKs signaling
pathways [50]. As Araki et al. reported, gomisin N ameliorated LPS-induced inflammation in mice
and BV2 cells. The research demonstrated that an elevation of the inflammatory markers induced by
LPS was inhibited by gomisin N treatment [52].
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Table 4. The pharmacological data of SCF and its active ingredients in protecting against NDs by anti-inflammation effect.

SCF and Its Active
Ingredients Study Design Study Type Molecular and Cellular Mechanisms of Action Dose Range Minimal Active Concentration Key Reference

TLS

Aβ1-42 induced AD in primary
mouse neuronal cells In vitro Decreases BACE1 activity 10, 30, 100 µM 10 µM [26]

Inhibites JNK/p38 expression

LPS-induced inflammation in
microglia (BV2 cells) In vitro Inhibites NO level 1, 10 µM 10 µM [29]

Sch A

LPS-induced inflammation in
microglia (BV2 cells) In vitro Down-regulates the NO, TNF-α, IL-6 increasing 10, 20, 50 µM 10 µM [32]

Microglia-mediated inflammatory
injury in neurons Inhibites iNOS, COX-2 levels 10, 20, 50 µM 20 µM

Inhibites TRAF6-IKKβ-NF-κB pathway

Inhibites Jak2-Stat3 pathway activation and Stat3
nuclear translocation

Sch B

Aβ-induced neuronal dysfunction in
rats In vivo Inhibites iNOS, COX-2, IL-1β, IL-6, TNF-α levels and

DNA damage 25 or 50 mg/kg 25 mg/kg [37]

Inhibites RAGE, NF-κB, MAPKs

LPS-induced inflammation in
microglia (BV2 cells) In vitro Down-regulates TNF-α, IL-6, IL-1β, and PGE2 levels 12.5, 25, 50 µM 12.5 µM [38]

Inhibites NF-κB activation

Up-ragulates the expression of PPAR-γ

Microglial-mediated inflammatory
injury In vitro Down-regulates NO, TNF-α, PGE2, IL-1β, IL-6 levels 5, 10, 20 µM 5 µM [36]

Inhibites TLR 4, MyD88, IRAK-1, TRAF-6 interaction

Inhibites IKK, NF-κB levels

Intraluminal thread induced focal
cerbral ischemia in rats In vivo Inhibites TNF-α, IL-1β, matrix metalloproteinase (MMP)-2,

MMP-9, OX-42 levels 10, 30 mg/kg 10 mg/kg [39]

Sch C

LTA induced inflammation in mouse
primary microglia In vitro Increases HO-1, NQO-1 levels 1, 5, 10, 20 µM 10 µM [41]

Activates cAMP, PKA, CREB, Nrf-2 levels

Attenuates ddAdo, H-89 levels

Inhibites PGE2, NO, ROS, iNOS, COX-2,
MMP-9 expressions

Suppresses NF-κB, AP-1, JAK-STATs, MAPK activation
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Table 4. Cont.

SCF and Its Active
Ingredients Study Design Study Type Molecular and Cellular Mechanisms of Action Dose Range Minimal Active Concentration Key Reference

ICO Aβ-stimulated neuroinflammation
in mouse primary microglia In vitro Inhibites PGE2, NO, ROS, MMP-9 levels 25, 50, 100 µM 100 µM [49]

Inhibites iNOS, COX-2 levels

Inhibites IκB-α, NF-κB, MAPK activities

Gomisin A LPS-stimulated inflammation N9
microglia In vitro Suppresses iNOS, COX-2 levels 1–100 µM 3 µM [50]

Attenuates TNF-α, IL-1β and IL-6 levels

Inhibited TAK1-IKKa/b-IκB -NF- κB and MAPKs
inflammatory signaling pathways 30–100 µM 30 µM

Inhibited TLR4 expression

Gomisin N LPS-induced inflammatory and
depressive symptoms in mice In vivo Inhibites iNOS, COX-2, IL-1β, IL-6, TNF-α levels 100 mg/kg 100 mg/kg [52]

Increases c-Fos immunopositive cells number

LPS-induced inflammation in
microglia (BV2 cells) In vitro Inhibites iNOS, COX-2, IL-1β, IL-6, TNF-α levels 1.56–50 µM 25 µM
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7. Regulation of Neurotransmitters

The emotional processing and behavioral anxiety are determined by the reciprocal relationship
between the central nervous system and the endocrine signals. Peptide hormones are increasingly
recognized for their effects on anxiety-like behavior and reward [110]. The neurobiological bases of
depression and anxiety disorders are not fully understood and the currently available treatments are
not always effective [111]. In recent years, the disorders of neurotransmitters, including norepinephrine
(NE), 5-hydroxytryptamine (5-HT), dopamine (DA), and gamma-aminobutyric acid (GABA) have
been reported to lead to significant changes in neurodegenerative diseases and induce anxiety,
depression, arousal, and alarm [112–114]. They are involved in the pathophysiological bases of these
diseases and provide benefits in their treatment through their diverse functions [115,116]. Despite this,
antidepressant and anxiolytic drug development has largely stalled [117].

SCF was demonstrated to ameliorate 4-chloro-dl-phenylalanine (PCPA) induced insomnia
in rats by regulating the expression of brain neurotransmitters and their metabolites through its
sedative-hypnotic effects [25]. Furthermore, SCF was used as an efficient treatment for anxiety-like
behavior induced by ethanol withdrawal. The results showed that it attenuated anxiety by significantly
downregulating the elevation of norepinephrine (NE) and its metabolite in the hypothalamic
paraventricular nucleus [24]. According to the latest report, SCH showed a neuroprotective effect
by ameliorating learning and memory impairments in APP/PSI transgenic mice. The mechanism
was suggested to be regulation of neurotransmitters and their metabolites in the brain. The results
indicated that SCH could be applied as an active pharmaceutical compound for neurodegenerative
diseases such as PD and AD [46]. The pharmacological data are shown in Table 5.

8. Modulation of BDNF Related Pathways

As a growth factor dynamically expressed in the brain across postnatal development,
BDNF regulates neuronal differentiation and synaptic plasticity. It is acknowledged that decreased
BDNF levels lead to altered neural plasticity, contributing to disease [118]. The mechanism of BDNF
release appears to be related to synaptic sprouting and strengthened synaptic connections [119].
Nowadays, depression and anxiety are becoming major burdens to society, affecting as much as 7% of
the world’s population [120]. BDNF has been introduced to treatment-resistant depression and it has
been identified as a therapeutic target for depression [121,122]. Furthermore, it is a distinct marker of
stress adaptation, extinction of fear, and neuroimmune response [123–125].

Yan et al. reported that SCF could improve a depression-like emotional state and associated
cognitive deficits in mice with chronic unpredictable mild stress (CUMS). The mechanism was proven
to regulate BDNF expression in the hippocampus as well as upregulate the TrkB/CREB/ERK and
PI3K/Akt/GSK-3β pathways [22,23]. Moreover, Yuan et al. reported that nigranoic acid (SBB1,
3,4-secocycloartene triterpenoid) manifested beneficial effects in terms of enhancing mental and
intellectual functions by increasing BDNF and c-fos expression in NGF-differentiated PC12 cells [53].
The pharmacological data are shown in Table 6.



Int. J. Mol. Sci. 2018, 19, 1970 17 of 25

Table 5. The pharmacological data of SCF and its active ingredients in protecting against NDs by regulating neurotransmitters. PCPA—4-chloro-dl-phenylalanine;
GABA—gamma-aminobutyric acid; DA—dopamine.

SCF and its
Active Ingredients Study Design Study Type Molecular and Cellular Mechanisms of Action Dose Range Minimal Active Concentration Key Reference

SCF

Ethanol withdrawal induced
anxiety-like behavior In vivo Decreases NE and its metabolite [24]

PCPA induced insomnia in rat In vivo Reduces the elevation of GABA, NE, DA,
DOPAC, HVA 7.5 g/kg 7.5 g/kg [25]

Increases 5-HT, 5-HIAA levels

SCH

APP/PS1 transgenic mice
(induced AD) In vivo Ameliorated the cognitive impairment 2 mg/kg 2 mg/kg [46]

Decreases Aβ deposition in the hippocampus

Regulates serotonin, 5-HIAA, DA, NE,
γ-aminobutyric acid, glutamic acid, homovanillic

acid, 3,4-dihydroxyphenylacetic acid and
acetylcholine levels

Table 6. The pharmacological data of SCF and its active ingredients in protecting against NDs by modulating BDNF related pathways. CUMS—chronic unpredictable
mild stress.

SCF and Its
Active Ingredients Study Design Study Type Molecular and Cellular Mechanisms of Action Dose Range Minimal Active Concentration Key Reference

SCF

Corticosterone induced
depressive-like behavior in mice In vivo Up-ragulates BDNF/TrkB/CREB 300, 600 mg/kg 600 mg/kg [22]

CUMS-induced depression and
cognitive impairment in mice In vivo Increases BDNF levels in hippocampus 600–1200 mg/kg 600 mg/kg [23]

Up-regulates TrkB/CREB/ERK

Up-regulates PI3K/Akt/GSK-3β

Nigranoic acid
NGF-differentiated PC12 cells In vitro Increases BDNF, c-fos mRNA 1, 10, 50 µM 50 µM [53]

Increases cytoplasmic Ca2+, NO levels

Activates ERK1/2, CaMKII levels
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9. Conclusions and Perspectives for Future Work

SCF and its active ingredients manifest a protective effect on NDs by attenuating injury induced
by overoxidative stress, apoptosis, inflammation, and neurotransmitter disorders. The most active
ingredients in SCF, lignans, share the same physiologically active structure as biphenyl cycloalkenol,
whose parent nucleus is biphenyl cyclooctadiene [126]. Biphenyl cyclooctadiene has a biphenyl
structure, as well as the eight-membered ring structure of biphenyl and side-chain synthesis. Given its
many structural forms and stereoisomers, it is acknowledged as the key structure displaying
antioxidation, antiapoptosis, and antiviral effects [127]. In future studies, attention should be paid
to the components of the key active structures, so as to screen out lead compounds. The structure of
the lead compounds should be optimized to enhance metabolic stability and improve bioavailability,
in order to provide new candidates for the clinical treatment of NDs.

The pathogenesis of NDs has been further elucidated in recent years, such as the mitochondrial
mechanism of neuroglial crosstalk after stroke [128], phagocytosis of reactive astrocytes following
brain ischemia [129], purinergic signaling in reactive astrocytes of AD [130], endothelial cytoskeletal
reorganization in blood–brain barrier disruption [131], cerebral cavernous malformations in stroke,
and seizure [132,133]. Furthermore, more therapeutic targets of NDs have been discovered recently,
such as TRPA1 [134], IL-27 [135], TIM-3 [136], tau [137], and histamine H3 receptor [138].
As biologically active drugs, in future work, SCF and its active ingredients should be applied to
many more target-screening models.
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