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The aim of the present study is to build a software implementation of a previous study and to diagnose discoid lateral menisci on
knee joint radiograph images. A total of 160 images from normal individuals and patients who were diagnosed with discoid lateral
menisci were included. Our software implementation includes two parts: preprocessing and measurement. In the first phase, the
whole radiograph image was analyzed to obtain basic information about the patient. Machine learning was used to segment the
knee joint from the original radiograph image. Image enhancement and denoising tools were used to strengthen the image and
remove noise. In the second phase, edge detection was used to quantify important features in the image. A specific algorithm was
designed to build a model of the knee joint and measure the parameters. Of the test images, 99.65% were segmented correctly.
Furthermore, 97.5% of the tested images were segmented correctly and their parameters were measured successfully. There was no
significant difference between manual and automatic measurements in the discoid (P = 0.28) and control groups (P = 0.15). The
mean and standard deviations of the ratio of lateral joint space distance to the height of the lateral tibial spine were compared with
the results of manual measurement. The software performed well on raw radiographs, showing a satisfying success rate and
robustness. Thus, it is possible to diagnose discoid lateral menisci on radiographs with the help of radiograph-image-analyzing
software (BM3D, etc.) and artificial intelligence-related tools (YOLOv3). The results of this study can help build a joint database
that contains data from patients and thus can play a role in the diagnosis of discoid lateral menisci and other knee joint diseases in
the future.

1. Introduction

Discoid lateral meniscus is an anatomic variant in the knee
exhibiting a greater area of the tibial plateau than the normal
meniscus. According to studies, having a discoid lateral
meniscus increases the possibility of meniscal tears, which
leads to symptoms such as pain, clicking, swelling, articular
block, limited knee extension, meniscal instability, and the
formation of meniscal cysts [1]. Discoid lateral meniscus is
relatively common in Asia, and the diagnosis of discoid
lateral meniscus needs to take the patient’s symptoms and
magnetic resonance imaging (MRI) results into consider-
ation. The use of MRI, however, shows several disadvantages
during operation. Not every primary hospital may have the

capabilities to perform MRI, and even in large general
hospitals where MRI is a common tool for diagnosis, pa-
tients still suffer from the inconvenience of waiting to make
reservations. In addition, MRI has contraindications for
patients with magnetic metallic implants or claustrophobia.
These factors all contribute to the need to diagnose discoid
lateral meniscus on radiographs, which are more popular
and convenient and have fewer side effects compared to
MRIL

In a previous work [2], a new method to diagnose discoid
lateral menisci on radiographs was presented. Several geo-
metric distances and angles were measured from the
anteroposterior view of plain knee radiographs, as shown in
Figure 1, to identify significant differences between normal
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and abnormal knees. As a result, significant differences were
found in the following parameters: height of the fibular head
(HFH), lateral joint space distance (LJSD), height of the
lateral tibial spine (HLTS), distance from the lateral tibial
spine to the lateral femoral condyle (DLC), chordal distance
of the femoral condyle (CDLF), HFH/LJSD, and LJSD/
HLTS.

Automating the calculation of LJSD/HLTS using soft-
ware would be advantageous because this ratio was found to
have the largest significant difference between patients who
were diagnosed with discoid lateral menisci and normal
individuals. Similar studies on radiograph image processing
and computer-assisted knee joint analyses were carried out
before. Kalinosky et al. [3] developed a detailed method to
quantify the tibiofemoral joint space on radiographs using
image processing tools to build a spatial model of the knee
joint. Other works focused on diagnosing osteoarthritis on
knee radiographs, such as the work of Shamir et al. [4],
which used several image classification tools to describe
features of knee radiograph images, and the work of Lee et al.
[5], which used an active shape model to calculate the
geometric parameters of the knee joint. Other studies that
used an active contour model to locate and segment the
region of interest on radiographs were also performed, such
as the work of Chen et al. [6], which segmented the patella
from knee radiograph images, and Anitha and Prabhu’s
work [7], which quantified the spinal curvature on radio-
graphs. In recent years, machine-learning-based research
has been performed: Zhou et al. used a deep convolutional
neural network to obtain a two-dimensional segmentation of
a lateral-view knee radiograph [8]; Tiulpin et al. developed a
computer-assisted knee osteoarthritis (OA) diagnosis
method, which used a deep Siamese convolutional neural
network to automatically score the knee OA severity [9]; and
Menchon-Lara and Sancho-Gomez’s work automatically
evaluated carotid intima-media thickness on radiographs
(10].

The method to diagnose discoid lateral menisci on ra-
diographs was based on some of the trivial shapes of bones in
the knee joint, such as the height of the lateral tibial spine
and the shape of the lateral femoral condyle. These features
were reflected as graphic details in radiograph images.
Therefore, a conservative strategy is preferred, especially
when selecting preprocessing tools. When noises are re-
moved from the image, there is also the risk that information
of the trivial parts in the image may be lost. Our imple-
mentation tried to ensure that no information of edges in the
image would be lost. After preprocessing, a well-designed
algorithm analyzes the image. By analyzing the overall
distribution of the edges and the orientation of each specific
edge, high-level features of the knee joint were employed to
locate the femur condyle and tibial plateau in the image.
Feature points and lines were then drawn in the image, each
regarding an important anatomic position of the knee joint.
These feature points and lines became the geometric
foundation of the parameter calculation. Procedures of the
software are demonstrated in Figure 2. The value of the
parameter, as indicated in a previous work, differed sig-
nificantly between normal knee radiographs and abnormal
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FIGURE 1: Geometrical definitions of the parameters: height of the
fibular head (HFH) from the imaginary tibial joint line to the tip of
the fibular head, the lateral joint space distance (LJSD) from the
imaginary tibial joint line to the lateral femoral condylar joint line
at its midpoint, the height of the lateral tibial spine (HLTS), the
height of the medial tibial spine (HMTS), the distance from the
imaginary tibial joint line to the tip of the lateral intercondylar
spine, and the distance from the lateral tibial spine to the lateral
femoral condyle (DLC).
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FIGURE 2: Proposed software pipeline.

ones [2]. This finding proves that the software automation of
the new method is feasible. In addition, the feature points
and lines can be stored as personal information of the patient
because they contain a geometric description of the femur
condyle, tibial plateau, and tibial spine. Databases can thus
be built to help record the data of patients, and data could
possibly be used to diagnose other knee diseases.

2. Materials and Methods

From September 2017 to March 2020, 70 consecutive out-
patients (70 knees) who were diagnosed with discoid lateral
menisci (discoid group) by MRI were enrolled in the study.
Control subjects were selected by a one-to-one matching
method with the matching of age and sex (control group).
The control patients demonstrated normal medial and lat-
eral menisci on MRI, regardless of other intra-articular
pathologies. The discoid group consisted of 43 men and 27
women, with a median age of 33 years (range 20-67 years).
The control group consisted of 51 men and 39 women, with a
median age of 35 years (range 21-69 years). All patients and
controls underwent a standardized knee radiograph that was
a nonweight bearing anteroposterior view with a tube (GE
Difinium 6000DR, United States) to film a distance of
110cm. Each plain radiograph was evaluated from the
anteroposterior view. All radiographic studies were reviewed



Journal of Healthcare Engineering

by two experienced musculoskeletal radiologists who were
unaware of the MRI findings, clinical history, and initial
radiographic interpretations. All the measurements were
performed on an Advantage Workstation (General Electric
Company, United States) using a mouse-point cursor and an
automated computer calculation for the distance and angle
as described in previous work [2]. The accuracy of distance
measurement was 0.0l mm and angle measurement was
0.01°. The figures were rounded to one decimal. The insti-
tutional review board of Shanghai Jiaotong University
School of Medicine Renji Hospital approved the study
protocol (No. KY2019-012) and granted exemption for
patient consent.

A total of 160 images from normal individuals and
patients who were diagnosed with discoid lateral menisci
were included in this study. The software accepts a single
image as an input without knowing any specific information
about the patient. The software will then try to analyze the
image and calculate several parameters, including an im-
portant ratio LJSD/HLTS [2].

The software comprises two parts. The first is the pre-
processing phase, in which information will be taken from the
image. Whether the lateral part of the knee joint is on the left side
of the image or on the right side will be decided. The femoral axis
and tibial axis will also be determined. Then, YOLOV3 (https://
pjreddie.com/darknet/yolo/), an object-detection tool based on
machine learning, is used to segment the knee joint from the
original image [11, 12]. A median filter, i.e., block-matching and
three-dimensional (BM3D) filter, and histogram equalization
will be applied to the segmented image for enhancement and
removal of noise. The algorithm is implemented with python,
using OpenCV 3.4.3 (https://opencv.org/), a state-of-the-art
software library for image processing tools [13].

The second part is the measurement phase. In the seg-
mented knee joint image, the femoral condyle will be found
by analyzing the distribution of all edges. The femoral
condyle becomes the base to find other feature points, in-
cluding the tibial spines and tibial plateau. When all feature
points are found, several lines are drawn on the image, and
the calculation is automatically performed. The result of the
calculation corresponds to several important parameters
mentioned in the previous work, which can signify the
discoid lateral menisci of the patient.

2.1. Image Segmentation. Raw radiograph images were re-
ceived as the input of the software, as shown in Figure 3.(a)

We used YOLO to detect and segment the knee joint
from the original radiograph images. YOLO is a state-of-the-
art, real-time object-detection system based on machine
learning [11, 12]. YOLO is feasible for the real-time detection
of objects in videos and static images. YOLO frames object
detection as a regression problem to spatially separated
bounding boxes and associated class probabilities, using a
single neural network to predict bounding boxes and class
probabilities directly from full images in one evaluation.
Traditional object-detection methods, when compared with
YOLO, suffer from lower accuracy and failure in images that
include multiple objects.

A total of 160 actual X-ray images were selected to fine-
tune a pretrained YOLO model. The training process took
several hours on an up-to-date machine with GeForce GTX
1080 Ti GPU. Other features of the machine, such as CPU and
operating system, will not affect the process of training in any
way because only GPU is used for calculation; therefore, their
specifications are not listed. The training parameters are listed
in Table 1. The same number of real images was tested by the
trained network, and we obtained a satisfying result with a
success rate of 99.65% in predicting a knee joint; furthermore,
none of the predictions were a false positive. As demonstrated
in Figure 3(b), the region in the red box is predicted as a knee
joint with a probability of 95%. Our fine-tuned model not
only performs well in good-quality X-ray images but also on
images with flaws and on images including more than one
knee.

2.2. Image Preprocessing. To enhance the segmented image
and remove noise, median filter, histogram equalization, and
BM3D filter were applied [14]. In our test, simply using a
median blur in the preprocessing phase can reach satistying
results on almost all the images. This process benefits from
our measurement algorithm, which is robust against errors
in edge detection. However, in some extreme cases, histo-
gram equalization is needed. Histogram equalization was
only used when the original image was in extremely low
contrast. The total number of edges in the image was
counted after the image enhancement phase. If very few
edges were detected, the program will abort the current
process, use histogram equalization to enhance the image,
and then retry. In other normal cases, histogram equaliza-
tion was not used because it may also enhance noise, and a
BM3D filter was used instead.

2.3. Measurement. After the preprocessing phase, the
measurement of parameters started. First, a Canny edge
detector was applied to the image. The canny edge detector is
a frequently used algorithm for edge detection [15]. It scans
the whole image to calculate the gradient of each pixel and
then recognizes high-gradient pixels as possible edges. It
then conducts some overall checking and filtering to
eliminate false edges, using a pair of parameters provided by
the user. In our case, two different groups of parameters were
prepared for the Canny detector, (20, 80) and (20, 90), based
on the tested image. These parameters indicate the threshold
to filter false edges. If one parameter pair fails, similar to
what is done in histogram equalization, the software will
abort, then switch to another group of parameters, and retry.
In all of our cases, this retry strategy of edge detection
reached a satisfying result. A satisfactory result of edge
detection is shown in Figure 4(e).

To measure the parameters, we started with finding the
femoral condyles. All edges in the image were scanned and
analyzed to find the POFB edges. An edge that matches the
following requirements was recognized as part of the whole
femur boundary (POFB): (a) the edge is significantly longer
in the horizontal direction, and (b) there is no other edge
that lies above it and overlaps with most of the horizontal
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(@)
F1GURE 3: (a) Original radiograph image of the knee joint. (b) Result of the segmentation using YOLO.

TaBLE 1: YOLO training parameters and results.

Hyperparameters and results Value
Batch size 5
Learning rate 0.001
Epoch 100
Momentum 0.9
Prediction rate 99.65%
Misprediction rate 0.00%

region it covers. POFB edges can either contain multiple
edges or a single edge. If multiple POFB edges are found, all
of them will be considered POFB; thus, they will be con-
nected as a new single edge. The new edge is considered to be
the upper boundary of the knee joint. In cases in which the
quality of the original image was remarkably good, only one

Y = max{F(X -K),F(X-K+1),.

where K is a constant value determined by the horizontal
distance between the up-left feature point and the up-right
feature point. Tip tops that are higher than the femur
boundary or that are located at the end point of any edge are
then removed. A pair of tip tops that matches the following
requirements are selected as two tibial spine feature points:
(a) they are far away enough from each other, (b) they do not
pass the up-left and up-right feature points in the horizontal
direction, and (c) they are approximately symmetrical about
the axis of the femur. The result of finding the tibial spine is
demonstrated in Figure 4(g).

(®)

POFB edge will be found, and the POFB edge will be nat-
urally considered the upper boundary of the knee joint.

After the upper boundary of the knee joint is found, two
local minimum points of the boundary will be marked as the
up-left and up-right feature points. The result of finding the
femoral condyle boundary and up-left and up-right feature
points is demonstrated in Figure 4(f).

Next, two tibial spines were identified. Again, a re-
quirement-matching strategy was used. First, all tip tops in
the image were identified. A tip top is defined as a local
maximum point of an edge. Consider a single edge (X, Y) asa
pair of coordinates of a point on this edge, and for all the
points on this edge, y = F (x). A point (X, Y) was considered
as the tip top if

.F(X),...,F(X+K-1),F(X+K)}, (1)

Finally, the baseline of the tibial plateau was identified.
From an anteroposterior view, the baseline of the tibial
plateau can be defined as a line between the left border of the
tibial plateau and the right border of the tibial plateau.
Consider a single edge (X, Y) as a pair of coordinates of a
point on this edge, the set of all x values on this edge is S, and
y=F (x). A point (X, Y) is considered likely to be a border
point of the tibial plateau if it is defined as follows:

B(x)=F(x)* cos 08— x* sin 6,

(2)
B(X) = max{B(X), X € S},
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FIGURE 4: (a) Original image. (b) Image after applying the BM3D filter.

(c) Image after applying a median filter. (d) Image after histogram

equalization. (e) Satisfactory result of edge detection. (f) Result of finding the femoral condyle boundary and up-left and up-right feature
points. (g) Result of finding the tibial spine. (h) The baseline of the tibial plateau (8> 70°). In this case, shifting is visible on the right border
point, as it differs from the right tangent point. (i) Putting everything together. The LJSD and HLTS are drawn on the image. In this case,

LJSD/HLTS =1.325.

where 6 stands for a specific angle. Imagine putting a ruler on
the image and moving the ruler toward the border of the tibial
plateau until it finally has a tangent point with the border. This
tangent point is recognized as the border point, and 6 stands for
the degree of incline of the ruler. When finding the left edge of
the tibial plateau, 6 can be set as 45°. When finding the right
one, it can be set as 135°. Tangent points that go above the
femoral condyle baseline are removed, and two tangent points
are identified, each corresponding to a value of 6. Then, we
needed to shift the two tangent points on their original edges to
fix deviation. The gradient of the original edge at the tangent
point was checked. If the slope is too steep at the border point, it
will be shifted inward to find the inflection point where the
vertical edge of the tibial boundary connects with the hori-
zontal edge of the tibial plateau and vice versa. After shifting on
its original edge, two feature points of the tibial plateau can be
determined, and the baseline of the tibial plateau can be drawn.
The baseline of the tibial plateau is shown in Figure 4(h).

Now, we have all the necessary information for calculating
the parameters. The LJSD is defined as the distance from the
upper lateral femoral condyle feature point to the baseline of
the tibial plateau. The HLTS is defined as the distance from the
lateral tibial spine tip top point to the baseline of the tibial
plateau. The ratio of LJSD to HLTS is also calculated auto-
matically as it is a simple division, and this ratio is provided by
the software output as the final result of the software-based
automatic diagnosis, shown in Figure 4(i).

2.4. Statistical Analysis. Differences between groups were
evaluated with paired samples ¢ test. A P value <0.05 (two-tailed)
was considered statistically significant. All data were analyzed
with SPSS (SPSS 24.0, IBM Inc., Somers, NY, USA).

3. Results

In Table 1, YOLOV3 training parameters and results are
listed. The first four parameters are specific to the neural
network. Prediction rate means the ratio of knee images

correctly recognized and segmented, and misprediction rate
represents the proportion of images for which YOLOv3
successfully provided a result, but the region of the result was
incorrect.

Seventy radiographs of patients who were diagnosed
with discoid lateral menisci and ninety radiographs from
persons without the diagnosis were included in manual or
automatic measurement groups. There was no significant
difference between manual and automatic measurements in
both the discoid group (P =0.28) and control group
(P =0.15). The mean and standard deviations of LJSD/
HLTS were compared with the results of manual mea-
surement, as shown in Table 2.

As mentioned previously, the algorithm was divided into
two phases, image segmentation and parameter calculation.
Table 3 shows the success rate of each phase. Of the test
images, 99.65% were segmented correctly. Furthermore,
97.5% of the tested images were segmented correctly, and the
parameters were measured successfully, thus providing
necessary information and a software result for the
diagnosis.

4. Discussion

The most important findings of our previous study are high
sensitivity, specificity, and receiver operating characteristic
curve area of the LJSD/HLTS and HFH/LJSD between plain
radiographic findings from discoid lateral meniscus patients
and normal controls [2]. The results of the HFH/LJSD and the
LJSD/HLTS showed a positive impact on the diagnosis of the
discoid lateral meniscus in this research, which demonstrates
that the diagnosis of discoid lateral meniscus using radiographs
is feasible and that MRI can be partly replaced by plain ra-
diographs without influencing the final diagnostic results. For
patients with the discoid lateral meniscus, diagnosis using
radiography is feasible, especially using the HFH/LJSD or the
LJSD/HLTS. In this study, we choose LJSD/HLTS for the
automatic calculation using a series of software.
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TABLE 2: Mean, range, and standard deviations (SD) of LJSD/HLTS.

Control group (N=90), mean +SD (95% CI)

Discoid group (N="70), mean+ SD (95% CI)

1.1+0.2
1.0+£0.3
P =0.15

Manual measurement 0.7+£0.2

Automating measurement 0.7+0.2

P value P =028
TABLE 3: Success rate of each phase.

Phase Success rate (%)

Image segmentation 99.65

Parameter calculation 97.5

Abnormal situations of radiograph images need to be
taken into consideration. Some of these situations were
solved in our implementation, such as disconnected edges
and overall low contrast. Nonetheless, other situations are
worthy of attention, such as the situation in which the tibial
spine crosses over the femur on the radiograph image, which
our algorithm is unable to address. However, the crossing
over of the tibial spine and femur can be a sign that the
possibility of having discoid lateral menisci is very low,
which relieves us from addressing such sophisticated
crossover situations. Another situation that should be
addressed is the disturbance of the patella.

The BM3D filter performed well in removing noises
while keeping details in the image. BM3D is a nonlocal filter
for image denoising, which searches for similar blocks in the
whole image and builds a 3D data array to distinguish shared
details from random noises inside the group [8, 16, 17]. To
estimate and rebuild a single block in the group, all similar
blocks in the group were used. BM3D has a relatively high
computational cost, but it is one of the best tools for image
denoising. A median filter is known as one of the basic image
processing tools, which simply blurs the whole image to
remove pixel values with excessive variation (named salt and
pepper noise) when compared locally with other pixels
around it. Histogram equalization augmented the whole
image by making light areas lighter and dim areas dimmer.
BM3D filter recognized shared patterns in the image (e.g.,
veins on the bone) and augmented these patterns collabo-
ratively to make these image-specific features clearer. Thus,
BM3D is very effective in removing stripes and veins on the
femur condyle and tibia [16-18]. We have mentioned above
that the loss of detail is an unsatisfactory result of image
enhancement. However, BM3D performs well in keeping
details in the image. It primarily removes large-scale random
noises from the image, which are not of concern.

As mentioned in related work, there are several other
technical options to achieve a similar goal of automatic di-
agnosis of certain disease from radiograph images, including
feature point, active shape model, and full machine learning,
which not only recognizes region of interest but also performs
the measurements automatically [11, 12, 18]. We used a two-
phase algorithm, which separated machine-learning-based
region of interest recognition and parameter measurement
because doing so has several advantages compared with the
other options. Generally, feature point or other traditional CV

(Computer Vision) algorithms are fixed-step structural tools,
which are likely to introduce manual operations from software
users, which is what we aim to avoid. Also, structural algo-
rithms are not robust against variation of images such as
position and rotation of the knee. The active shape model has
been proved feasible for radiograph image analysis, but it is too
costly to be used and tune. In contrast, a full machine-learning
method sounds promising, but it will require an amount of
data, which is much larger than what we can currently obtain.
Moreover, the internal phases of a neural network are a black
box, so the process of measurement and calculation will not be
as clear and convincing as that of the two-phase algorithm.
Other parameters mentioned in previous work [2] can also be
calculated based on our algorithm, although this has not been
addressed in this article. To locate the fiber head and measure
the inclination of certain edges of the bone and to build a spatial
model of the knee joint, more artificial intelligence (AI) tools
may be included in future research.

In conclusion, we believe that this is the first study where
machine learning was used to diagnose discoid lateral menisci
using radiograph images. This new method can be automated,
as tests on its software implementation had acceptable results.
As a result, it might be possible to diagnose discoid lateral
menisci on radiographs with the help of radiograph-image-
analyzing software and Al-related tools. Noticeably, machine
learning had been used in this study and had satisfactory re-
sults. Therefore, this study can become the basis of future
research that aims at Al-assisted knee and other joint disease
diagnoses. In addition, the results of this study can help build a
joint database that contains data from patients and thus can
play a role in the diagnosis of discoid lateral menisci and other
knee joint diseases in the future.
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