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Abstract

Lattice degeneration of the retina is a vitreoretinal disorder characterized by a visible fundus lesion predisposing the patient
to retinal tears and detachment. The etiology of this degeneration is still uncertain, but it is likely that both genetic and
environmental factors play important roles in its development. To identify genetic susceptibility regions for lattice
degeneration of the retina, we performed a genome-wide association study (GWAS) using a dense panel of 23,465
microsatellite markers covering the entire human genome. This GWAS in a Japanese cohort (294 patients with lattice
degeneration and 294 controls) led to the identification of one microsatellite locus, D2S0276i, in the collagen type IV alpha 4
(COL4A4) gene on chromosome 2q36.3. To validate the significance of this observation, we evaluated the D2S0276i region
in the GWAS cohort and in an independent Japanese cohort (280 patients and 314 controls) using D2S0276i and 47 single
nucleotide polymorphisms covering the region. The strong associations were observed in D2S0276i and rs7558081 in the
COL4A4 gene (Pc = 5.861026, OR= 0.63 and Pc = 1.061025, OR = 0.69 in a total of 574 patients and 608 controls,
respectively). Our findings suggest that variants in the COL4A4 gene may contribute to the development of lattice
degeneration of the retina.
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Introduction

Lattice degeneration of the retina is a vitreoretinal disorder

characterized by a visible fundus lesion that predisposes the patient

to retinal tears and detachment. The prevalence of lattice

degeneration of the retina in the fellow eye of patients with retinal

detachments is estimated to be 35% [1]. Lattice degeneration is

characterized by sharply demarcated oval or round areas that are

oriented circumferentially and are associated with liquefaction of

the overlying vitreous gel and with firm vitreoretinal adhesions

along the edges of the lesions. Vitreous traction on these areas after

posterior vitreous detachment is often responsible for retinal tears.

Lesions clinically and histopathologically indistinguishable from

isolated lattice degeneration of the retina have been observed in

various hereditary disorders associated with retinal detachment.

The prevalence of lattice degeneration ranges from 6% to

nearly 11% in the general populations and reaches a maximum

during the second decade of life [2–4]. There is no statistically

significant difference in prevalence between men and women, and

left and right eyes are involved with equal frequency [2,3]. The

prevalence of lattice degeneration of the retina is not related to

race, and it has been reported to be common in Caucasians [2],

Asians [5,6], and Africans [7]. Although the etiology of familial

retinal detachment associated with lattice degeneration is thought

to be polygenic and/or multifactorial [8], the pathophysiological

mechanism and underlying genetic factors remain unknown.

In this study, we performed a genome-wide association study

(GWAS) using 23,465 microsatellite (MS) markers covering the

entire human genome to detect regions associated with suscepti-

bility to lattice degeneration of the retina. This MS set has

exhibited great detection power in case-control association studies

[9–14].

Results

Genome-wide MS Genotyping
In order to reduce the type I error rate of this study, we carried

out three rounds of pooled DNA screening using three in-

dependent case-control populations containing the same number

of patients with essential lattice degeneration and normotensive

healthy individuals (stage 1, 100; stage 2, 100; stage 3, 94). In the

first screen, 2,898 markers had significantly different frequencies

between cases and controls; these 2,898 markers were further

analyzed in the second and third screenings using different sets of

cases and controls. After the second and third screenings, 173

markers remained positive with seven markers ascribed to six
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distinct loci exhibiting similar peak patterns in the first, second,

and third case and control pools (Figure 1).

To confirm the associations detected for these seven markers,

we individually genotyped each marker in the same set of 588

screened individuals. Six of these seven markers showed statisti-

cally significant differences (P,0.05) after this individual screening

step; however, only one marker, D2S0276i, remained statistically

significant after correcting for multiple comparisons and displayed

a strong association with lattice degeneration of the retina

(P,2.161026, corrected P (Pc) ,1.961025; Table S1). We

validated this association in an independent Japanese cohort of

280 patients and 314 controls. Combined analysis in the two

cohorts revealed the strongest association (P,6.561027, Pc

,5.861026), and the allelic frequency of the 330-bp amplicon

of D2S0276i with 12 AAT repeats ([AAT]12) was decreased in

patients compared to controls (odds ratio (OR) = 0.63; Table 1).

Single Nucleotide Polymorphism (SNP) Genotyping of
the D2S0276i Region
D2S0276i is located in the collagen type IV alpha 4 (COL4A4)

gene on chromosome 2q36.3 and its linkage disequilibrium. (LD)

appears to extend to the next gene, rhomboid domain containing 1

(RHBDD1). To dissect this region further, we selected a collection

of evenly spaced SNPs (coding and non-coding) covering 350 kb

around COL4A4 and RHBDD1. We genotyped samples from 1182

individuals (588 for the GWAS and 594 for replication) using

47 SNPs (Table 1, Table S2, Figure 2). Of these SNPs, 34 were

genotyped successfully, whereas 12 missense and 1 nonsense SNPs

turned out to be monomorphic. Among these 34 SNPs, nine

(rs4675115, rs4675124, rs4129886, rs3769641, rs3923084,

rs2229814, rs4389330, rs7558081, and rs6718820) exhibited an

association with lattice degeneration of the retina at P,0.05 in the

GWAS cohort. rs2229814, rs4389330 and rs7558081 showed

evidence of replication in the independent cohort. The strongest

association was observed at rs7558081 in the combined cohort

(P,6.961025, Pc,1.061025), and minor allele C of rs7558081

was decreased in patients compared to controls (OR=0.69).

Linkage Disequilibrium and Haplotype Analysis
Figure 2 shows the overall LD patterns for D2S0276i and the

34 SNPs genotyped successfully in 1182 individuals. Strong LD

was observed throughout the ,200-kb region including D2S0276i

and rs7558081 (from rs6752707 to rs7558081), and we therefore

identified this region as a candidate region for susceptibility to

lattice degeneration of the retina. D2S0276i exhibited a strong LD

with rs4389330 (D’ = 0.80), rs2229814 (D’ = 0.79) whereas LD

between D6S0276i and rs7558081 was a moderate level

(D’ = 0.44). rs7558081, rs4389330 and rs2229814 were in high

LD (D’.0.80).

To elucidate whether association of rs7558081, rs4389330 and

rs2229814 with the disease was due to LD with D2S0276i, we

stratified the patient and control populations according to the

presence of allele [AAT]12 of D2S0276i (Table 2). In 343 patients

and 301 controls lacking [AAT]12, only rs7558081 showed a weak

association with the disease (P=0.021, OR=0.77) whereas

rs4389330 and rs2229814 did not display significant associations

with the disease. Eleven haplotypes consisting of D2S0276i,

rs2229814, rs4389330 and rs7558081 were observed, and the

Figure 1. Flowchart of this genome-wide association study (GWAS) of lattice degeneration of the retina, with 23,465 microsatellite
(MS) markers.
doi:10.1371/journal.pone.0039300.g001

GWAS of Lattice Degeneration of the Retina
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frequencies of the haplotypes including [AAT]12 of D2S0276i

decreased in patients independent of the status of the rs2229814,

rs4389330 and rs7558081 alleles (Table 3).

Expression Analysis of COL4A4
D2S0276i is located in intron 41 of COL4A4. Since intronic

polymorphisms may significantly affect COL4A4 expression, we

investigated the association between the presence of D2S0276i

[AAT]12 and the level of COL4A4 expression using real-time

quantitative RT-PCR. The expression of COL4A4 mRNA

changed dependent on the presence of [AAT]12, but not

significantly, suggesting that [AAT]12 may affect expression levels

(Figure S1).

Discussion

Here we performed a GWAS of lattice degeneration of the

retina by multistep screening with 23,465 well-characterized MS

Figure 2. Association analysis of single nucleotide polymorphisms (SNPs) across the COL4A4 and RHBDD1 gene regions in 574
patients and 608 controls. The upper panels depict distribution of association results of D2S0276i and SNPs in COL4A4 and RHBDD1. The results of
monomorphic SNPs are not shown. The lower panels show the linkage disequilibrium structure in the COL4A4 and RHBDD1 regions; brighter red
indicates higher D’.
doi:10.1371/journal.pone.0039300.g002

Table 2. Allele frequencies of rs2229814, rs4389330 and
rs7558081 in carriers and non-carriers of [AAT]12 allele of
D2S0276i.

[AAT]12 non-carriers,
allele frequency, %

SNP Allele
Cases
(n =343)

Controls
(n =301) P OR

rs2229814 A 65.8 63.6 0.40 1.10

rs4389330 C 63.6 59.1 0.094 1.21

rs7558081 C 37.3 43.8 0.021 0.77

OR, odds ratio.
P values were calculated by x2 test 262 contingency table.
doi:10.1371/journal.pone.0039300.t002

GWAS of Lattice Degeneration of the Retina
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markers to cover the euchromatic area (,90%) of the human

genome at average intervals of 115.1 kb; this investigation

identified COL4A4 as a novel candidate gene for lattice de-

generation of the retina. COL4A4 encodes the alpha 4 (IV) chain of

type IV collagen, a flexible protein. This chain combines with the

alpha 3 and alpha 5 chains to make a complete type IV collagen

molecule. Type IV collagen molecules attach to each other to form

complex protein networks that make up a large portion of the

basement membranes, thin sheet-like structures that separate and

support cells in many tissues.

Pathogenic features of lattice degeneration of retina include

liquefaction of the adjacent vitreous humor, absence of vitreor-

etinal attachments, absence of the internal limiting membrane

over the lesions, and vitreous condensation with a firm vitreor-

etinal attachment at the lesion margins. Pathogenesis may be due

to a developmental abnormality involving the internal limiting

membrane of the retina [15], which consists of the basal lamina of

Müller’s cells and their basement membrane. Type IV collagen

alpha 3–5 networks play an especially important role in the

basement membranes of the kidney, inner ear, and eye [16];

COL4A4 mutations have been found to cause Alport syndrome

and thin basement membrane nephropathy [17–22]. Although the

pathogenesis of lattice degeneration of the retina remains poorly

understood, the basement membrane makes up a major retinal

structure. Vitreoretinal degeneration is complicated by retinal

detachment in Alport syndrome [23], leading us to speculate that

aberrations in COL4A4may be involved in retinal thinning in cases

of lattice degeneration of the retina.

The strongest associations with the disease that we detected

occurred at D2S0276i in intron 41 and rs7558081 intron 20 of

COL4A4, and secondary signals were observed at rs4389330

(intron 20) and rs2229814 (exon 21), with the stratification and

haplotype analyses suggesting that the association with rs7558081,

rs4389330 and rs2229814 was due to LD with D2S0276i and was

not a primary association. Therefore, D2S0276i or its neighboring

polymorphism may be a causative factor for lattice degeneration of

the retina. To clarify the primary association, it will be necessary

to further explore the LD region of D2S0276i by a re-sequencing

analysis with D2S0276i [AAT]12-positive patients. Since intronic

polymorphisms can significantly affect gene expression, we

surmised that the disease-associated allele of D2S0276i [AAT]12
may regulate COL4A4 expression. However, we detected no

distinct association between [AAT]12 and gene expression in this

study although the expression levels observed in whole blood may

not reflect the levels in eye tissues.

This study is the first to comprehensively investigate suscepti-

bility genes for lattice degeneration of the retina. COL4A4 on

chromosome 2q36.3 was strongly associated with disease suscep-

tibility in the Japanese population, with allele [AAT]12 of

D2S0276i exhibiting the strongest association. To confirm our

findings, future validation studies with other ethnic populations are

needed and if the validation succeeds, [AAT]12 may serve as

a useful genetic marker for the diagnosis of lattice degeneration of

the retina. In addition, we could not demonstrate any functional

roles of COL4A4 polymorphisms in disease development. Thus,

functional studies are also required to clarify how COL4A4

polymorphisms contribute to the pathogenesis of lattice de-

generation of the retina.

Materials and Methods

Participants
A total of 574 unrelated patients with lattice degeneration of the

retina and 608 unrelated healthy controls, all of Japanese descent,

were enrolled in this study. The subjects were recruited from

Yokohama City University, Ideta Eye Hospital, Yonemoto Eye

Clinic, Nanbu Hospital, and Tokai University. Blood samples

were collected from the patients who were scheduled for surgery

for retinal detachment caused by lattice degeneration. Diagnosis of

lattice degeneration was made with indirect ophthalmoscopy and

scleral indentation by retina specialists via one or a combination of

the following inclusion criteria: the observation of lattice-like white

line changes in the crossing retinal vessels; the presence of snail-

track variations; alteration in pigmentation; the presence of ovoid

or linear reddish craters; localized round, oval, or linear retinal

thinning; attachment of condensed vitreous fibers to the edges of

the lesion. In spite of variations in pigmentation or other

morphological features, the lesion was regarded as lattice de-

generation when the examiner encountered an abrupt, discrete

irregularity of the otherwise smooth retinal surface at the borders

of the lesion. All control participants were healthy volunteers

unrelated to each other or to the patients. This study methodology

complied with the guidelines of the Declaration of Helsinki and

was approved by the ethics committees of Yokohama City

University, Ideta Eye Hospital, Yonemoto Eye Clinic, Nanbu

Hospital, and Tokai University. We obtained informed written

consent from all participants who donated DNA samples for this

analysis. Personal identities associated with medical information

and blood samples were eliminated and replaced with anonymous

identities at each recruiting institution.

Pooled DNA Construction
DNA pooling was performed as previously [24] with a slight

modification [25]. Genomic DNA was extracted from peripheral

blood lymphocytes using the QIAamp DNA Blood Maxi Kit

(QIAGEN) under standardized conditions. Following extraction,

DNA degradation and RNA contamination were assessed via

0.8% agarose gel electrophoresis; DNA was quantified using

a double-standard DNA quantification kit (PicoGreen, Molecular

Probes) as previously described [9,26]. To minimize pipetting

Table 3. Haplotype frequencies of D2S0276i, rs2229814,
rs4389330 and rs7558081 of the COL4A4 gene.

Haplotype frequency,
%

Haplotype
Cases
(n =574)

Controls
(n =608) P OR

(D20276i, rs2229814, rs4389330 and rs7558081)

[AAT]10 : A : C : T 0.244 0.187 0.0011 1.39

[AAT]12 : G : G : C 0.164 0.231 2.6E-05 0.64

[AAT]14 : A : C : T 0.180 0.139 0.010 1.34

[AAT]10 : G : G : C 0.127 0.154 0.047 0.79

[AAT]13 : G : G : C 0.095 0.061 0.0024 1.60

[AAT]12 : G : G : T 0.047 0.056 0.30 0.82

[AAT]13 : A : C : T 0.048 0.039 0.32 1.23

[AAT]12 : A : C : T 0.019 0.029 0.11 0.65

[AAT]10 : A : G : C 0.014 0.029 0.012 0.47

[AAT]14 : G : G : C 0.014 0.015 0.77 0.90

[AAT]13 : A : C : C 0.009 0.011 0.50 0.76

OR, odds ratio.
Haplotypes with frequency less than 1% are not listed. P values were calculated
by x2 test 262 contingency table.
doi:10.1371/journal.pone.0039300.t003
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error, all DNA samples were measured side by side by the same

technician using one set of calibrated pipettes. The concentration

of the genomic DNA samples was adjusted to 8 ng/ml and the

samples were divided equally into three case pools and three

control pools, with each pool containing equal numbers of men

and women. The pooled DNA template for MS typing was

prepared immediately by mixing equal numbers of patient and

control DNAs (100 at the first stage, 100 at the second stage, and

94 at the third stage). Multiple peak patterns from the pooled

DNA sample mirrored the distribution of allele frequencies in the

subject samples [24]. To confirm the suitability of pool DNA as

a time- and cost-saving alternative to individual DNA typing, we

compared the allelic distribution of three MS markers typed using

pooled vs. individual DNA (n= 100). Allelic distributions were

assessed using Fisher’s exact test. No significant differences in allele

frequencies were found between pooled and individual DNAs,

thus validating this technique for large-scale use.

Genome-wide MS Genotyping
All MS markers and methods for MS genotyping used in this

study have been previously described [9]. PCR primers were

designed with a homogenous annealing temperature of 57uC.
Forward primers were labeled at the 59 end with the fluorescent

reagents 6-FAM or HEX (Applied Biosystems). PCRs of pooled

DNAs were performed in 20-ml reactions containing 24 ng of

pooled DNA, 0.5 U AmpliTaq Gold DNA polymerase (Applied

Biosystems), 2 ml 106 reaction buffer (100 mM Tris-HCl

[pH 8.3], 500 mM KCl, 15 mM MgCl2), 2 ml dNTPs (2.5 mM

each), and 20 pmol of forward and reverse primers. The

amplification conditions consisted of initial denaturation at 96uC
for 9 min, annealing at 57uC for 1 min, and extension at 72uC for

1 min, followed by 30 cycles of denaturation at 96uC for 45 sec,

annealing at 57uC for 45 sec, and extension at 72uC for 1 min in

a GeneAmp PCR system 9700 thermal cycler (Applied Biosys-

tems). PCR of individual DNA was carried out in 20-ml reactions
containing 1 ng of genomic DNA, 0.5 U AmpliTaq Gold DNA

polymerase, 2 ml 106reaction buffer, 2 ml dNTPs (2.5 mM each),

and 20 pmol of each primer. The amplification conditions were

essentially the same as described above except that 40 cycles were

used and a final extension of 5 min at 72uC was carried out after

40 cycles. The amplified products were denatured in formamide

(Hi-Di, Applied Biosystems) at 95uC for 3 min and separated on

a 3700 DNA analyzer (Applied Biosystems). Various data about

the markers, such as amplified peak positions and heights, were

manually extracted by the PickPeak and MultiPeaks programs

developed by Applied Biosystems Japan.

In the first screen with 100 cases and 100 controls, we employed

a total of 23,465 MS markers. Markers demonstrating a significant

association (P,0.05) with lattice degeneration of the retina were

subjected to a second screen of another set of 100 cases and 100

controls. Markers exhibiting a significant association in the second

screen were subjected to a third screen with another distinct 94

cases and 94 controls. The markers that tested positive in all three

screens were assessed for similar peak patterns in the first, second,

and third case and control pools; the identified markers were

subjected to the individual DNA screen and were genotyped in

588 individuals (the same 294 cases and 294 controls as mentioned

above). After the individual DNA screen, we tested the MS

D2S0276i, which showed a strong association with lattice de-

generation of the retina, in an independent Japanese cohort of 280

patients and 314 controls (Figure 1).

SNP Genotyping of the COL4A4 and RHBDD1 Gene
Regions
SNPs in the COL4A4 and RHBDD1 gene regions were selected

from HapMap Japanese data (MAF $20%, pairwise r2$0.7,

PHWE $0.05). In addition, known non-synonymous SNPs in the

COL4A4 and RHBDD1 gene regions were also selected. Forty-

seven SNPs were selected and used to detect significant differences

between case and control samples (Table S2).

In this SNP genotyping to validate the MS-based GWAS results,

the GWAS cohort (the same 294 cases and 294 controls) and an

independent Japanese cohort (280 patients and 314 controls) were

used. SNP genotyping was performed using TaqManH SNP

Genotyping Assays according to the manufacturer’s instructions.

Reactions were carried out with the ABI GeneAmpH System 9700

thermal cycler and the ABI PRISMH 7900HT Sequence De-

tection System (Applied Biosystems) using a 384-well block module

for measuring fluorescence. SDS software version 2.0 was used for

allelic discrimination (Applied Biosystems). Ten nanograms of

genomic DNA were used as template for PCR amplification.

Real-time Quantitative RT-PCR
Whole blood (2.5 mL) was collected in PAXgene Blood RNA

tubes (Becton Dickinson) and gently mixed; tubes were incubated

at room temperature for 2 hours, and total RNA was extracted

using the PAXgene Blood RNA Kit (QIAGEN) according to the

manufacturer’s protocol. cDNA was synthesized using the Super-

ScriptTM II Reverse Transcriptase (Invitrogen). Quantitative RT-

PCR of the COL4A4 gene was performed using the StepOne-

PlusTM Real-Time PCR System (Applied Biosystems) with Taq-

Man gene expression assays (Assay ID: Hs01011885_m1, Applied

Biosystems), the THUNDERBIRDTM Probe qPCR mix

(Toyobo), and ROX reference dye (Toyobo). COL4A4 expression

levels were normalized to those of 18S ribosomal RNA (Assay ID:

Hs99999901_s1, Applied Biosystems) for each individual.

Statistical Analysis
For MS genotyping, statistical significance of differences was

assessed by Fisher’s exact test using the 262 and 26m (where m is

the number of alleles) contingency tables for each allele. Allele

frequencies in pooled DNA stages were estimated from the height

of the peaks; each allele frequency was determined by dividing the

height of each allele peak by the summed height of all allele peaks.

For the exact probability test, the Markov chain/Monte Carlo

simulation method was employed to execute the Fisher’s exact test

for the 26m contingency table. The smallest P value for each

marker was selected. In the individual MS genotyping stage, the

probability of association was corrected by the Bonferroni’s

method, i.e. by multiplying the obtained P values with the number

of observed alleles at the locus (corrected P [Pc] value). Association

analyses for the SNP genotyping stage were carried out using

Haploview 4.1 [27] and obtained P values were corrected for

multiple testing by a permutation test (10,000 iterations) using

Haploview. Haploview 4.1 was also used to compute pairwise LD

statistics. Haplotype frequencies in the multi-locus analyses were

calculated using PyPop 0.7.0 [28]. Haplotype frequencies were

estimated using the iterative Expectation-Maximization algorithm.

LD was measured using Hedrick’s multiallelic D’ statistic [29].

Differences in COL4A4 mRNA expression levels were analyzed via

the Mann-Whitney U test.
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Supporting Information

Figure S1 Expression analysis of COL4A4 mRNA strat-
ified by presence of D2S0276i [AAT]12. Bars represent mean

values and standard deviations of mRNA levels.

(PPT)

Table S1 Seven microsatellite markers used in the
individual DNA screening. OR, odds ratio. *Each allele was

named by the size of its amplification. P values were calculated by

x2 test 262 contingency table. These P values were corrected by

multiplying by the number of observed alleles at the locus (Pc

value).

(XLS)

Table S2 Allelic association results for D2S0276i and
47 SNPs in the COL4A4 and RHBDD1 gene regions. 1,

major allele; 2, minor allele; OR, odds ratio; SNP, single

nucleotide polymorphism. Position is distance from short arm

telomere. P values were calculated by x2 test 262 contingency

table. We corrected P values (Pc) of D2S0276i and 47 SNPs in the

combined stage for multiple testing by Bonferroni’s method and

Haploview program using 10,000 permutations, respectively.

(XLS)

Acknowledgments

We sincerely thank all the participants for their participation in this study

and all the medical staff involved in sample collection and diagnosis.

Author Contributions

Conceived and designed the experiments: AM H. Ideta RI AO H. Inoko

NM. Performed the experiments: AM MO NI MT RU TN TK TS YH

YI. Analyzed the data: AM YH AO H. Inoko. Contributed reagents/

materials/analysis tools: H. Ideta RI JY EO H. Inoko NM. Wrote the

paper: AM H. Ideta MO RI YH H. Inoko NM.

References

1. Madjarov B, Hilton GF, Brinton DA, Lee SS (1995) A new classification of the

retinoschises. Retina 15: 282–285.

2. Staatsma BR, Zeegen PD, Foos RY, Feman SS, Shabo AL (1974) XXX Edward

Jackson Memorial Lecture. Lattice degeneration of the retina. Trans Am Acad

Ophthalmol Otolaryngol 78: 87–113.

3. Byer NE (1979) Lattice degeneration of the retina. Surv Ophthalmol 23: 213–

248.

4. Byer NE (1965) Clinical study of lattice degeneration of the retina. Trans Am

Acad Ophthalmol Otolaryngol 69: 1065–1081.

5. Sato K (1972) Shunt formation in lattice degeneration and retinal detachment.

Mod Probl Ophthalmol 10: 133–134.

6. Sato K, Tsunakawa N, Inaba K, Yanagisawa Y (1971) Fluorescein angiography

on retinal detachment and lattice degeneration. Nippon Ganka Gakkai Zasshi

75: 635–642.

7. Av-shalom A, Berson D, Gombos GM, Landau L, Michaelson IC, et al. (1967)

The vitreoretinopathy associated with retinal detachment among Africans.

Am J Ophthalmol 64: 387–391.

8. Murakami F, Ohba N (1982) Genetics of lattice degeneration of the retina.

Ophthalmologica 185: 136–140.

9. Tamiya G, Shinya M, Imanishi T, Ikuta T, Makino S, et al. (2005) Whole

genome association study of rheumatoid arthritis using 27 039 microsatellites.

Hum Mol Genet 14: 2305–2321.

10. Kawashima M, Tamiya G, Oka A, Hohjoh H, Juji T, et al. (2006) Genomewide

association analysis of human narcolepsy and a new resistance gene. Am J Hum

Genet 79: 252–263.

11. Yatsu K, Mizuki N, Hirawa N, Oka A, Itoh N, et al. (2007) High-resolution

mapping for essential hypertension using microsatellite markers. Hypertension

49: 446–452.

12. Hui J, Oka A, James A, Palmer LJ, Musk AW, et al. (2008) A genome-wide

association scan for asthma in a general Australian population. Hum Genet 123:

297–306.

13. Meguro A, Inoko H, Ota M, Katsuyama Y, Oka A, et al. (2010) Genetics of
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