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Abstract: A novel structure of a subwavelength surface optical antenna for optical phased array is
proposed in this paper. An asymmetric vertical grating structure is applied to achieve high emission
efficiency (73% at 1550 nm). Optical antennas with large fabrication tolerances can also maintain a
wide working bandwidth of 1 dB between 1350 and 1850 nm. The far-field scanning characteristics of
16-channel optical phased array are investigated in this study by employing the proposed antenna.
The results show that the background suppression without considering side lobes caused by the
antenna arrangement is −24.5 dB when the phase difference is 0 and when the scan range is as large
as ±14.8◦ × 73.6◦.

Keywords: nano-optics; integrated optics; optical antenna; optical phased array

1. Introduction

OPAs have attracted great attention with the application of light detection and ranging
(LIDAR) in remote sensing imagery and autonomous vehicles. Optical phased arrays
(OPAs) based on a silicon platform are considered the primary solution for LIDAR because
of their low manufacturing cost, high integration, and compatibility with CMOS technology.
As application requirements have increased, OPAs have evolved toward small-sized, low
power consumption and large-scale on-chip electrical/thermal–optical subsystem arrays.
However, the ensuing difficulties are high power consumption and control complexity.
A considerable amount of excellent work has been conducted by researchers for these
concerns [1–3]. One approach is to combine beam wavelength modulation in one dimension
with phase modulation in the other dimension, thus reducing the number of phase shifters
from N2 to N to achieve reduced power consumption and simplified control. However,
according to the literature [4–10], the antenna of this kind is limited by the fact that the
working bandwidth is not wide enough to achieve beam modulation in short wavelength
ranges only.

In most silicon on insulator (SOI) OPAs, grating couplers are used as optical antennas,
and their low output power limits the performance of OPAs due to the low transmission
efficiency of grating couplers [9–13]. Many efforts have been made to improve the trans-
mitting efficiency of OPA antennas [14–18]. This includes some excellent optical antenna
arrays that achieved good performance with low loss and a high side-lobe level (SLL). The
optical antenna in the SOI OPA LIDAR is a grating coupler fabricated on a waveguide
(periodically etched waveguide), a method that slightly avoids diffraction of light toward
the substrate, resulting in an optical antenna whose emission efficiency barely exceeds 55%,
according to a seminal published report [13]. High optical antenna emission efficiency of
more than 90% has been obtained by increasing the antenna size to 3 mm while significantly
increasing the antenna pitch size. However, the structural complexity of the antenna OPA
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system of this design, especially the highly complex electrical/thermal–optical part, leads
to small fabrication tolerances and a narrow working wavelength bandwidth [16]. In
addition, researchers also proposed the combination of dual-etch and apodization design
approaches that a grating based on such a structure can achieve a very high fiber coupling
efficiency of 85% [19].

In general, large OPA systems usually use thermal/electrical–optical hybrid mod-
ulation and wavelength modulation, which requires a wide 3 dB bandwidth or even a
1 dB bandwidth under certain conditions. How to optimize the optical antenna in order
to improve the transmitting efficiency, scanning performance, and working bandwidth,
thereby improving the far-field of OPA, is an important issue. To date, the existence of
unidirectional guided resonances (UGRs)—resonances radiating to only one side of the
photonic crystal plate, with no mirror layer placed on the other side—has been demon-
strated [20]. This has inspired the study of asymmetric vertically etched grating couplers.
Single angle tilt-etched waveguide grating couplers have also been studied, and many
outstanding works have been verified and demonstrated that tilt-etched waveguide grating
couplers can provide high efficiency [21–23].

In this paper, a novel optical antenna with a double-angle, tilt-etched grooved asym-
metric vertical structure and subwavelength surface grating on SOI substrate is proposed,
which can provide a wide working bandwidth. By optimizing the structural parameters
of the antenna, the diffraction to the substrate is effectively suppressed, and the emission
efficiency is improved. In addition, we discuss the fabrication tolerance of the proposed
optical antenna in detail, and according to the analysis of the calculation results, the OPA
composing this antenna has better far-field scanning characteristics.

2. Structure

Figure 1a shows a side view of the optical antenna on the SOI substrate, from bottom
to top from the vertical direction. The dark green area is the Si substrate; the light green
area is the 2 or 3 µM buried SiO2 layer; and the yellow and orange areas are the 0.22 µM
Si and SiN layers, respectively, both covered with SiO2 layers, which are not drawn for
easy observation. This design also makes the proposed optical antenna surface grating,
which can increase the length of the grating, improve the emission efficiency of the optical
antenna, reduce the full width at half maximum (FWHM) of the Gaussian-like light emitted
by the optical antenna, and thus improve the spatial resolution [24].
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Figure 1. Schematic diagram of the structure and processing process of the proposed antenna. (a) Side view of the antenna;
(b) top view of the antenna; (c) schematic of the antenna for optical phased arrays of integrated light detection and ranging
(LIDAR) on silicon on insulator (SOI) substrate; (d) the essential step-by-step flow chart of the fabrication process. EBL,
electron-beam lithography; PECVD, plasma-enhanced chemical vapor deposition; CMP, chemical–mechanical polishing [20].

The optical antenna element consists of three parts, as shown in Figure 1b. The first
part is the input waveguide, which has a width of 0.5 µM. A silicon waveguide with this
width can transmit transverse electric (TE) fundamental mode light in the wavelength
range of 1350–1850 nm [25]. The guided mode passes through it into the tapered mode
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converter before its phase or wavelength is adjusted by a phase modulator or a tunable laser.
The second part is the tapered mode converter, which helps to reduce the transmission loss
caused by the difference in the effective refractive index between the first and third parts.
The transmitting region (grating coupler) is the third part, which is used to couple out
the optical energy, where the SiN low refractive index layer is made into a surface grating
structure, unlike the conventional SOI optical grating antenna.

Our aim was to achieve a larger scale aperture antenna, as this would reduce the
beam width of the far-field main flap, thereby providing higher spatial resolution. How-
ever, due to the high refractive index contrast of typical silicon waveguides formed by Si
(n = 3.48) and SiO2 (n = 1.44), large-scale gratings require very shallow etched Si surfaces
(5–15 nm). Therefore, the emitting region is obtained from strip-line surface gratings, and a
CMOS-compatible alternative is the introduction of the low-index dielectric material SiNx
(n = 1.875) to form the gratings [24,26]. According to the phase matching condition, the
grating diffraction is governed

k0ne f f = k0nc sin θ + q
2π

Λ
(1)

where k0 = 2 π/λ, nc is the refractive index of the air (equal to 1), neff is the effective index
for the optical mode in the grating, θ is the diffraction angle, q is an integer representing
the diffraction order (equal to 1 in our discussion), and Λ is the period of the waveguide
grating. Let λ = λi, θ = θi; Equation (1) becomes:

sin θi = ne f f −
λi
Λ

(2)

where λi is the input waveguide mode working wavelength. From Equation (2), the
ne f f − λi

Λ calculation result of the equation is between −1 and 1, which can be considered
as the wavelength that can be emitted. The bandwidth of the grating coupler will increase
as the neff decreases, a conclusion that has been demonstrated in previous studies [27].
Therefore, in addition to the increase in antenna size, we can expect that the bandwidth
will increase if the surface grating coupler efficiency can be greatly increased.

A vertically asymmetric grating structure is used in the antenna to achieve higher
coupling efficiency and reduce transmit power losses. Tilt etching has not yet been used for
optical antennas but has been well studied in fabrication processes [20–23,28–32]. We refer
in detail to the fabrication steps provided in [20] and give a schematic step-by-step process
flow diagram of our proposed antenna structure in Figure 1d. To improve the emission
efficiency of the optical antenna, the SiN and Si layers are placed very close to each other,
which means that the etching time needs to be precisely controlled during the fabrication
process. Although the method poses significant processing challenges, it is worthwhile if
the performance of optical antennas based on this asymmetric structure can be improved.

3. Simulation and Discussion

Simulations were performed to study the pattern profile, field propagation, emission
efficiency, and working bandwidth by using a three-dimensional finite-difference time-
domain (3D FDTD) method [33]. The emission efficiency is defined as the ratio of the energy
emitted into the antenna free space to the energy entering the antenna. With the help of
the FDTD solution, the structural parameters of this optical antenna are optimized, and its
performance in terms of working bandwidth and emission efficiency is demonstrated in
this section. In addition, the scanning characteristics of the array this antenna is composed
of are investigated in this section.

3.1. Antenna Element

To ensure a clear representation of the optical antenna, the refractive index distribution
of the antenna cross-section is shown in Figure 2, which shows part of the grating structure.
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Figure 2. The partial refractive index profile of the antenna.

A TE polarized beam is set as input, and two power monitors are employed to measure
the proportion of emission and leakage part of the total input power. The parameters to
be optimized and their specific meanings are shown in Table 1, and these parameters are
additionally given in Figure 1b. In addition, in Table 1, we also list the symbols and the
meanings of these parameters.

Table 1. Parameters optimization results of the optical antenna.

Name Meaning Result

Lgc (µM) Grating area length 150
Wgc (µM) Grating area width 2

α◦ Inclination1 55
β◦ Inclination2 110

Λ (µM) Grating period 1.04
Dc Grating duty cycle 0.4

SiN thickness (µM) SiN layer thickness 0.35
LTaper (µM) Taper length 11

The period Λ of the grating is simulated and optimized according to Equation (1), and
the results are shown in Figure 3a. The emission of the antenna is highest at 1550 nm when
Λ is 1.04 µM. The duty cycle of the etched period is optimized to 0.4 at Λ of 1.04 µM, as
shown in Figure 3b. We further investigated the effect of the thickness of the SiN layer
on the emission efficiency, as shown in Figure 3c, and the results show that the highest
emission efficiency is achieved at a SiN thickness of 0.35 µM. In particular, the two angles of
the grating slot are optimized as shown in Figure 3d,e, respectively. The emission efficiency
of the antenna is highest at 1550 nm when α is 55◦ and β is 110◦. After completing the
optimization of the above structural parameters, the length and width of the antenna were
investigated.

As can be seen in Figure 3f, the curve of the emission efficiency saturates after the
waveguide width increases to 2 µM, and there is almost no growth in the emission efficiency
during the change in width from 2 to 5.5 µM. Taking into consideration the width of the
antenna and the transmitting efficiency, the antenna width of 2 µM was chosen. The effect
of the length of the antenna on the transmitting efficiency was then studied, comparing
the red curve representing the tilted etching method with the black curve representing
the vertical etching in Figure 3g,h. It can be observed that the designed antenna has a
slightly lower transmitting efficiency than that of the conventional antenna at a shorter
transmission distance, but as its length grows, its transmitting efficiency grows with a
slight decrease, but it keeps growing continuously compared with when the conventional
antenna transmitting efficiency has leveled off. This means that the downward leakage
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of the conventional transmitting antenna is larger, and the designed transmitting antenna
effectively reduces the leakage loss.
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Figure 3. Optimization results of parameters affecting the emission efficiency of the proposed antenna. (a) The emission
efficiency in relation to grating coupler period length; (b) the emission efficiency in relation to grating coupler duty cycle; (c)
the emission efficiency in relation to SiN layer distance with Si waveguide; (d) the emission efficiency in relation to grating
coupler etch α angle; (e) the emission efficiency in relation to grating coupler etch β angle; (f) the emission efficiency in
relation to grating area width Wgc; (g) curve of grating area length Lgc versus emission efficiency and its comparison with
the emission efficiency of vertically etched antenna; (h) curve of grating area length Lgc versus leakage efficiency and its
comparison with the emission efficiency of vertically etched antenna.

Subsequently, we investigated the effect of the taper length of the grating region and
input waveguide used to connect the antenna on the transmission efficiency of the antenna
and set its length to 11 µM.

Based on the optimized structure parameters listed in Table 1, we calculated the
emission bandwidth of the optical antenna, as shown in Figure 4a. It can be observed that
the 1 dB working bandwidth of the designed antenna is 500 nm from 1350 to 1850 nm. The
leakage efficiency is also shown in Figure 4a, and it can be noted that the proportion of
energy leaked at the central wavelength is significantly reduced, which also shows that
this waveguide structure can effectively suppress the downward light energy leakage and
improve the emission efficiency. In addition, the remaining efficiency is also shown in
Figure 4a, which indicates that there is energy remaining in the emission area with Lgc at
150 µM, and the transmitting efficiency can be improved by increasing the antenna length
(this is consistent with the results in Figure 3g).

The far-field characteristics of an optical antenna element or array are obtained by
monitoring the near-field to far-field transformation [34]. Monitoring the power monitor
in the near-field gives the near-field emission, and by using the near-field to far-field
transformation, the swept FOV can be obtained. Due to the need to simulate the far-field
effect for the antenna of 16 arrays, the length of the antenna coupling area Lgc is reduced to
40 µM in this part of the simulation. However, this result affects the half-height width of
the beam of the antenna emitting far-field and the emission efficiency. The effect of light
field scanning can be clearly demonstrated.

For a wavelength of 1550 nm, the diffraction angle θ of a single optical antenna is
9.53◦, as shown in Figure 4b. The FWHM is directly related to the length of the antenna.
A longer antenna corresponds to more grooves. As the Lgc of the antenna increases, the
FWHM can be effectively reduced, as the transmitting efficiency of the antenna increases.
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By using the proposed surface grating antenna, OPA with higher spatial resolution can be
obtained.
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radiation simulation result by considering each channel keeps ideal phase difference controlled by phase shifters; (d)
Normalized optical output profile in the far-field as the beam was swept in the θ axis by changing the working wavelength
from 1350 to 1850 nm.

Owing to the same wavelength waveguide mode, adjacent elements keep the same
phase difference by controlling the phase of the input source (which equals to being
controlled by phase shifters), coupling to each antenna. The scanning angle δ is given by

sin δ =
λ∆ϕ

2πd
(3)

where d is the distance between adjacent elements and is set to be 1.6 µM by considering
all factors. It can be observed that the antenna array can sweep ±14.8◦ when the additional
phase ∆ϕ changes from −180◦ to 180◦.

We further investigates the longitudinal sweeping characteristics of the array. In this
case, steering of the emission angles is achieved by adjusting the working wavelengths, with
the same phase of each element then set to 0. The emission angle θ is given by Equation (2),
which can help to achieve a wide sweeping angel range of 73.6◦ from −32.5◦ to 41.1◦ in
the longitudinal direction, as shown in Figure 4d. In the case of wavelength modulation
without considering the side-lobe brought by the antenna arrangement, according to the
simulation results, the antenna can achieve a background rejection rate of −24.5 dB.

3.2. Fabrication Tolerance Analysis and Comparison with Other Work

In contrast to previous work [21–23,28–32], the proposed antenna design incorporates
double-angled grooves, which makes it difficult to manufacture. In this section, we analyze
the fabrication tolerance of the oblique angle groove in detail. The most critical point is
to study the effect on the emission efficiency in the case of errors in the two tilt angles.
Figure 5a shows the transmitting efficiency for an error of ±10◦ in α, and we observed
that if the remaining parameters are accurate, the emission efficiency of the antenna is in
fact very little affected by α. When there is an error of ±10◦ in the design value of β, the
reduction in emission efficiency is minimal. This means that the proposed antenna has a
very good tolerance for the fabrication of double-angled grooves.

In addition, the proposed antenna structure may also be affected by over-etching, for
which an investigation was carried out. The results are shown in Figure 5c, which illustrates
that the transmitting efficiency of the antenna increases when the over-etching value is
small (less than 0.02 µM, error of less than 5% of the total etch depth of 0.35 µM). When
the over-etching value is too large, the transmitting efficiency of the antenna decreases;
it can be considered that the increase in the over-etching value will lead to the antenna
transmitting efficiency to reach the saturation value corresponding to the smaller antenna
length. Based on the design concept of surface grating, the etching accuracy needs to be
improved to avoid the surface antenna being affected by over-etching.
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Figure 5. The fabrication tolerance in relation to grating coupler etches at α and β angle. (a) The emission efficiency of
the proposed antenna under the condition that α has 5–10% error with the exact value; (b) the emission efficiency of the
proposed antenna under the condition that β has 5–10% error with the exact value; (c) transmitting efficiency of the proposed
antenna for different over-etching depths.

By comparing the data listed in Table 2, it can be seen that the antenna proposed in
this paper is able to significantly increase the working bandwidth of the antenna. Although
the energy emission efficiency is slightly less, as the length of the antenna increases, it is
able to have higher emission efficiency according to Figure 3g.

Table 2. Performance comparison table for optical antennas.

Element Size Working Bandwidth Emission Efficiency (At Center Working Wavelength)

This work 2 µM × 150 µM 500 nm (1 dB) 73%
CN (2021) [18] 7.6 µM × 4.5 µM 230 nm (1 dB) 89%

NRCS (2020) [17] 3.65 mm N.A. 72%
UCAS (2019) [15] 1.5 µM × 80 µM 140 nm (3 dB) 94%
MIT (2017) [16] 3 mm N.A. 93%
MIT (2013) [13] 9 µM × 9 µM N.A. 51%

4. Conclusions

In this work, we proposed a new type of surface optical antenna for OPA and opti-
mized its emission efficiency through simulation. The optical antenna achieved a high
emission efficiency of up to 73% at 1550 nm due to its up–down asymmetric structure and
a wide working wavelength 1 dB bandwidth from 1350 to 1850 nm.

In addition, we discussed the far-field overview of a 16-channel OPA by employing an
optical antenna. It was able to achieve a scanning range of ±14.8◦ × 73.6◦, and the antenna
allowed the OPA to achieve better scanning far-field characteristics. This approach shows
promise as a means of achieving high emission efficiency for other applications, such as
imaging sensors, OPA LIDAR, and free-space communications.
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