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Abstract

Effectively representing Medical Subject Headings (MeSH) headings (terms) such as disease and drug as discriminative
vectors could greatly improve the performance of downstream computational prediction models. However, these terms are
often abstract and difficult to quantify. In this paper, we converted the MeSH tree structure into a relationship network and
applied several graph embedding algorithms on it to represent these terms. Specifically, the relationship network consisting
of nodes (MeSH headings) and edges (relationships), which can be constructed by the tree num. Then, five graph embedding
algorithms including DeepWalk, LINE, SDNE, LAP and HOPE were implemented on the relationship network to represent
MeSH headings as vectors. In order to evaluate the performance of the proposed methods, we carried out the node
classification and relationship prediction tasks. The results show that the MeSH headings characterized by graph
embedding algorithms can not only be treated as an independent carrier for representation, but also can be utilized as
additional information to enhance the representation ability of vectors. Thus, it can serve as an input and continue to play a
significant role in any computational models related to disease, drug, microbe, etc. Besides, our method holds great hope to
inspire relevant researchers to study the representation of terms in this network perspective.
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Introduction
Technological advances over the past few decades, from high-
throughput sequencing technologies to omics, have dramatically
changed the paradigm of medicine and biology [1, 2]. In partic-
ular, since the official launch of the Human Genome Project in
the 1990s, the large-scale genomic, chemical and pathological
data has brought novel insights for humans to re-recognize
life processes [3]. However, the information overload caused by
tremendous growth of data makes it difficult to take full use
of existing knowledge and literature. For instance, a premier
database called MEDLINE contains about 26 million records from
more than 5600 selected publications covering biomedical and
life sciences to the present. So how to efficiently organize and
manage the literature and explore the implicit value becomes a
formidable challenge.

In response to this situation, the literature-based discovery
(LBD) method was firstly proposed by Don R. Swanson which
logically combines independent pieces of information to infer
new interesting discoveries [4]. Many models were continuously
developed to provide efficient and stable support for researchers
such as co-occurrence-based approaches [5], semantic relation-
based approaches [6], graph-based approaches [7] and hybrid
approaches [8].

For the traditional LBD method, such as MeSH, Unified
Medical Language System (UMLS), emMedDB and etc. are
often treated as auxiliary knowledge sources to improve the
performance of the model. Although significant progress has
been made in this domain, most of them ignored the potential
value behind the MeSH headings that itself is carefully designed.
In addition, terms such as disease, drug and microbe are abstract
entities that are difficult to be represented as concrete vectors
as input for computational methods. In fact, models that predict
potential relationships based on known experimental data are
ubiquitous [9–11] and can be experimentally validated [12]. In
this paper, we focus on analyzing MeSH to mine the hidden
information. It is believed that this expert knowledge can be
utilized to precisely quantify these terms.

MeSH is a kind of controlled and comprehensive vocabulary
for subject indexing and searching books or journals in life
sciences [13]. It was produced by National Library of Medicine
(NLM) since 1960 and widely used around the world. More than
half a century of heavy application has made MeSH increasingly
perfect and made significant contributions to various fields. The
MeSH consists of three parts including Main Headings, Qualifiers
and Supplementary Concepts. Main Headings as the trunk of
MeSH are used to describe the content or theme of the article.
Qualifiers is the refinement of MeSH headings, i.e. how to be
processed when it is in a specific area. Supplementary Concept
is a complementary addition that is mostly related to drugs
and chemistry. Some new substances have not yet become the
main subject and will be included in Supplementary Concept
to promote the integrity of MeSH. Here, we focus on discussing
Main Headings which consists of MeSH headings (descriptors),
corresponding entry term and tree num.

MeSH headings can be divided into 16 categories such as
category A for anatomy, category B for organisms, category C for
diseases, category D for Chemicals and Drugs, etc. Entry term
is a kind of synonym or similar vocabulary for MeSH headings.
Tree num is the tag of MeSH heading in tree structure. In MeSH
tree structure, MeSH headings are organized as a ‘tree’ with 16
top categories in which the higher hierarchy has the broader
meaning and the lower hierarchy has the specific meaning,
considering that MeSH headings usually have many tree nums

or can be defined from different perspectives. Compared with
the tree structure, network (graph) is a more flexible data type
which widely spreads in the real world and has been deeply
researched [14]. In fact, many biological and medical research
signal pathways exist in the form of unstructured networks
[15,16]. Effective analysis of the Network not only can deeply
understand the original data, but also facilitate downstream
tasks such as node classification and relationship prediction.
Hence, we construct the MeSH heading relationship network
from tree structure through hierarchical tree num rules.

Graph embedding (network representation) is a kind of
method to process the network problem which aims at trans-
forming the node into low-dimensional vectors. In this process,
it maximumly preserves both the local and global structure of
the network. The mainstream graph embedding algorithms can
be roughly divided into three categories: factorization-based
methods, random walk-based methods and deep learning-
based methods [17]. The random walk-based graph embedding
method is to use the random walk on the network to obtain
a series of node paths to mimic the sentences or text. Then,
the Word2vec model can be applied to transform the node
into vectors. The method of factorization takes the adjacency
matrix as the structure of the graph and obtains the node
representation vectors by the method of matrix decomposition.
Explosive research on deep learning has rapidly expanded its
field to the network. The deep learning-based method is to carry
out the feature capture and dimensional reduction tasks on
node original representation to get the new low-dimensional
vectors.

In this paper, the mainstream idea of using MeSH as a dic-
tionary for indexing is abandoned; we transform the MeSH tree
structure into a relationship network and implement five com-
mon graph embedding algorithms on it to represent the MeSH
headings as vectors. In general, the whole process can be divided
into three steps. Firstly, MeSH headings, tree num and entry
terms were downloaded from National Library of Medicine (NLM)
in 22 September 2019. Then we connected different Mesh head-
ings through the rules of tree num to convert the tree structure
to the relationship network. The label (category) of each node
(Mesh heading) in the relationship network can be defined by
the mode of its corresponding tree num. Secondly, the network
has been briefly analyzed, including the number of nodes and
edges, the distribution of node degrees and labels. Thirdly, we
applied five network representation (graph embedding) algo-
rithms including DeepWalk [18], LINE [19], SDNE [20], LAP [21] and
HOPE [22] to map the nodes into low-dimensional dense vectors
which maximumly preserves the original network structure and
the node relationship information. Then, we performed two
types of tasks including node classification and relationship
prediction. The node classification and relationship prediction
tasks are used to assess the distinguishability of vectors between
and within categories. In relationship prediction task, we per-
formed drug–target interaction and miRNA-disease association
prediction tasks to display that the term representation vectors
can be as input for machine learning model. All competitive
results achieved by our method implied that the representation
vectors generated by MeSH relationship network are efficient
and reliable. High quality MeSH heading representation will
definitely improve the prediction performance of existing com-
putational models. At the same time, we hope that this work can
provide novel insight to inspire relevant medical and life science
researchers to mine the semantic information in MeSH through
the network method. The flowchart is shown in Figure 1.
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Figure 1. The flowchart of the proposed method includes three steps: construction, analysis and applications.

Materials & methods
MeSH headings, tree numbers and entry terms

The Medical Subject Headings (MeSH) is a controlled and hierar-
chically organized vocabulary directed by the National Library
of Medicine (NLM), which is utilized for indexing, searching,
and etc. in medical and life sciences. We downloaded MeSH
headings, tree num and entry terms from NLM in 22 September
2019 and arranged them by routine standardized pretreatments
including identifier unification and redundancy removal. After
above operations, 29 349 MeSH headings including their corre-
sponding tree num and entry terms are congregated together for
network construction.

Each MeSH heading can be described by one or more
tree nums to reflect its hierarchy in the tree structure and
relationships with other MeSH headings. Tree num consists
of letters and numbers, the first of which is uppercase letter
representing category and the rest are made up of numbers.
The first two digits are fixed design following the first capital
letter and can be seen the top category except capital letter.
Each three digits represent a hierarchy in the tree structure.
There are some MeSH headings such as Lung Neoplasms
(C04.588.894.797.520, C08.381.540, and C08.785.520) that are
described by a single type of tree num, while others such as
Reflex (E01.370.376.550.650, E01.370.600.550.650, F02.830.702
and G11.561.731) can be represented by different kinds of tree
num.

Whenever the last hierarchy of tree num is removed, a new
tree num and corresponding MeSH heading can be generated
and contacted. The details can be seen in Figure 2. Through the
formation of this kind of relationship, a MeSH heading network
consisting of 29 349 nodes and 39 784 edges can be constructed.
For the sake of simplicity, we treat the mode of the tree num
category of MeSH heading as its label.

In order to unify identifiers and eliminate ambiguity, we
create a MeSH Heading Term Correspondence Table to convert
the entry terms to standard MeSH headings. All available data
are uploaded in github: https://github.com/CocoGzh/MeSHHea
ding2vec.

Known drug-target interactions

A total of 28 211 known drug-target interactions were down-
loaded from DrugBank in 8 May 2019 [23]. After standardiz-
ing the identifiers via the Correspondence Table and STRING
database, we got 7739 different drugs and 4975 different proteins.
In order to avoid sparsity of associations, we selected drugs
and proteins that are associated with more than five corre-
sponding objects similar to the article described by Zhang et al.
[24]. Finally, we obtained 7318 experimental valid drug-target
interactions containing 641 different drugs and 317 different
proteins.

The experimental-validated drug-target interaction pairs are
regarded as the positive samples and the randomly selected
equal unlabeled pairs are treated as negative samples. This is
a typical strategy that equalizes training samples and is widely
used in bioinformatics [25]. Each positive and negative sample is
given a label 1 and 0, respectively.

Known miRNA-disease associations

A total of 35 547 known human miRNA-disease associations,
which consist of 1206 different miRNAs and 894 different dis-
eases, were downloaded from HMDD in 8 May 2019 [26]. Con-
sidering that the name of disease and miRNA in the original
database are nonstandard such as ‘breast neoplasms’ and ‘car-
cinoma, breast’ are the same type of disease. After standardiz-
ing the identifiers via miRBase and the Correspondence Table
described above, we obtained 11 109 experimental valid miRNA-
disease associations containing 843 different miRNAs and 531
different diseases.

Negative sample selection is the same as the strategy men-
tioned in the section “Known drug-target interactions”.

k-mer method

For a long time, how to transform sequences efficiently and reli-
ably into numerical representations is a formidable challenge.
In this article, a widely used bassline method called k-mer is
applied, and the details of the algorithm are shown as follows.

https://github.com/CocoGzh/MeSHHeading2vec
https://github.com/CocoGzh/MeSHHeading2vec
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Figure 2. The construction of the MeSH relationship network. Reflex has four tree num including E01.370.376.550.650, E01.370.600.550.650, F02.830.702 and

G11.561.731. The Neurologic Examination (E01.370.376.550, E01.370.600.550) can be obtained when the last three digits (.650 and .650) of Ref lex (E01.370.376 .550.650,

E01.370.600.550.650) are removed. . The category (label) of each MeSH heading is the mode of its corresponding tree num.

For protein and miRNA, the sequences of them were down-
loaded from STRING [27] and miRBase [28], respectively. Inspired
by Shen et al. [29], we represent proteins and miRNAs as vectors
by analyzing and normalizing their components. For proteins,
we classified 20 amino acids into four groups according to the
polarity of the side chain, including (Ala, Val, Leu, Ile, Met, Phe,
Trp and Pro), (Gly, Ser, Thr, Cys, Asn, Gln and Tyr), (Arg, Lys
and His) and (Asp and Glu). For miRNA, there naturally exist
four types of nucleotides including adenine (A), cytosine (C),
guanine (G) and uracil (U) in the sequence. Then, each miRNA
or protein can be abstracted into a vector by the method k-
mer, in which all dimensions represent the full permutation of
k nucleotide combinations and the value of each dimension is
the normalized frequency of the corresponding k-mer appearing
in the sequence. Here, we set k to 3, and the dimension of the
representation vector is 64 (43).

Drug molecular fingerprint method

Molecular Fingerprint is one of the most popular methods to
represent drugs by describing the structure of compounds. The
basic idea is to segment the drug molecule and obtain struc-
ture fragments one after another. Then, these substructures are
encoded into numbers according to certain rules, which can
correspond to each of the binary strings. The whole binary string
is used as the characterization of drug molecular structure. In
this paper, the fingerprint method is chosen as the baseline to
represent the drug.

The drug SMILES was downloaded from DrugBank and trans-
formed into fingerprints by python package called RDKit [30].

Disease similarity-based method

Disease is an abnormal life activity process that occurs when
a living organism is destructively affected by a certain cause.
The semantic similarity of disease is a common method of
abstracting disease into vectors [31]. For each disease, a Directed
Acyclic Graph (DAG) can be constructed by the MeSH heading
relationship in Section “MeSH headings, tree numbers and entry
terms”. Specifically, disease D’s ancestor nodes can be obtained
by continuously removing the last hierarchy of its tree num.
D and its ancestor nodes together constitute a DAG. Then the
similarity between two diseases can be calculated according
to the generalized Jaccard formula, i.e. the larger the intersec-
tion, the more similar it is. According to the previous literature
[32], the specific calculation process is as follows:

For disease D, DAG(D) = (D, N(D), E(D)), N(D) is the point set that
includes all DAG(D)‘s diseases. E(D) is the edge set that includes
all DAG(D)‘s relationships. The semantic value contribution of
disease d in the set N(D) to disease D can be defined as:

{
DD(d) = 1 if d = D
DD(d) = max

{
� ∗ DD

(
d′) |d′ ∈ children of d

}
if d �= D

(1)

where � denotes a decline factor. In the DAG(D), D can be seen as
the disease that contributes the most to its own semantic value
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and equals to 1, and the remaining diseases will contribute less
and less to disease D as the distance increases. Then, the sum of
the contributions of diseases which are in the set N(D) to D can
be calculated as follows:

DV(D) = Σd∈N(D)DD(d) (2)

Finally, the similarity between diseases m and n can be calcu-
lated by the following formula:

Similarity (m, n) =
∑

d∈N(m)∩N(n)

(
Dm(d) + Dn(d)

)
DV(m) + DV(n)

(3)

The disease similarity matrix of k rows and k columns con-
taining k different diseases can be constructed, and the i-th row
can be regarded as a representation vector of the i-th disease.

Autoencoder

In order to unify the dimensions of the vector and obtain a
higher quality representation, autoencoder is applied to map the
drug fingerprint and disease similarity from original space to
the low-dimensional space. Hidden layer representation h and
output layer representation y can be calculated by the following
formula:

h = f
(
Wx + b

)
(4)

y = g
(
W′h + b′) (5)

where x is input, W and b are weights and thresholds, respec-
tively, and f and g are the activation functions. Loss function can
be obtained by minimizing the error between input and output:

L = Σ
∥∥y − x

∥∥2 (6)

Finally, all drug fingerprint and disease similarity can be
normalized to 64-dimensional vectors.

Graph embedding methods

Mesh heading relationship network is a complex heterogeneous
attribute network. Analysis of network can better help us under-
stand this kind of unstructured data and benefit the exploration
of the underlying knowledge. Graph embedding is an effective
method to provide new insights on how to make good use
the hidden information behind the graph. In this chapter, we
first give a graph embedding formal definition, and then briefly
introduce several algorithms used in this paper.

A graph G(V, E) is a collection of vertices (node) set V =
{v1, . . . , vn} and edge set E = {ei,j}n

i,j=1. The aim of graph embedding

is to find a mapping function f : vi → xi ∈ Rd, where d � |V|,
and Xi = {x1, x2, · · · , xd} is the embedded vector that captures the
structural of vertex vi.

In this paper, we apply five kinds of graph embedded meth-
ods on the network to perform downstream tasks including node
classification and relationship prediction.

Deepwalk obtains a series of node sequences through ran-
dom walks of vertexes in the network and inspired by the Skip-
Gram model to analogize these paths to sentences for represen-
tation learning. The goal is to learn a latent representation and

the mapping function is:

Φ : v ∈ V 	→ R|V|×d (7)

The problem then, is to estimate the likelihood:

Pr ( vi| (Φ (v1) , Φ (v2) , . . . , Φ (vi−1))) (8)

The recent relaxation in language modeling turns the predic-
tion problem and this yields the optimization problem:

minimize
Φ

= −logPr ({vi−w, . . . , vi+w} \vi|Φ (vi)) (9)

Large-scale Information Network Embedding (LINE) is an effi-
cient network representation learning algorithm that is quite
different from random walk-based method. Low-dimensional
dense vectors can be obtained by LINE by preserving first-order
and second-order proximity. For first-order, the objective func-
tion can be defined as follows:

O1 = d
(
p̂1 (· , · ) , p1 (· , · )) (10)

For the edge ei,j which from vertex vi to vertex vj, p̂1(· , · )and
p1(· , · ) are the empirical and joint distribution, respectively,
between the latent embeddings rvi

and rvj
. d(· , · ) is the distance

between the above two distributions.
For second-order, the objective function can be defined as

follows:

O2 =
∑
vi∈V

λid
(
p̂2 (· |vi) , p1 (· |vi)

)
(11)

where p̂2(· |vi) and p1(· |vi) are empirical and context conditional
distribution for each vi ∈ V under the model by vertex embed-
dings. For the sake of simplicity, λi is set to the degree of the
vertex i.

Structural Deep Network Embedding (SDNE) is a semi-
supervised deep autoencoder consisting of supervised and
unsupervised component that can capture the nonlinear
structure from the network. For the supervised part, the
objective function can be defined as follows:

L1 =
|V|∑

i,j=1

Sij

∥∥∥r(K)
vi

− r(K)
vj

∥∥∥2

2
(12)

where r(K)
vi

is the K-th layer representation of vi.
For the unsupervised part, the objective function can be

defined as follows:

L2 =
|V|∑
i=1

Sij

∥∥∥r(0)
vi

− r(0)
vi


 bi

∥∥∥2

2
(13)

where r(0)
vi

is the representation of vi and bi is a weight vector.
Finally, the joint objective function can be defined as follows:

L = L1 + L2 + Lreg (14)

where Lreg is a regularization term to prevent overfitting.
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Figure 3. Distribution of node type and node degree in the relationship network.

High-order Proximity Preserved Embedding (HOPE) captures
high order proximity of asymmetric transitivity in direct graph
and symmetric transitivity in undirect graph. To achieve this
goal, HOPE can obtain two vertex representation vectors Us, Ut ∈
R|V|×d, where Us and Ut are called source and target vectors. The
objective function can be defined as follows:

min
Us ,Ut

∥∥S − Us · Ut
∥∥2

F (15)

The structure of the reserved graph can be considered as
the similarity of the reserved nodes. Laplacian Eigenmaps is
an embedding algorithm that obtains the representation vector
when the similarity parameter Wij is high. The objective function
can be defined as follows:

φ(Y) = 1
2

∑
i,j

(
Yi − Yj

)
Wij = YTLY (16)

Results
Evaluation criteria

The MeSH relationship network consisting of nodes and the
edges contains a wealth of medical and biological knowledge.
After mining the potential content by embedding algorithms,
low-dimensional dense representation vectors can be used for
downstream tasks such as visualization, node classification and
relationship prediction. How to evaluate the merits and demer-
its of the proposed method in a fair and comprehensive way
becomes a formidable challenge.

Firstly, we briefly analyzed the MeSH relationship network.
Secondly, we not only perform the node classification in the
whole network, but also extract drug and disease representation
vectors to carry out the relationship prediction tasks. Both of
them aim at evaluating the distinguishability of vectors. High-
quality representation vectors make it easier to construct the
classifier to make prediction results more accurate. The results
can be seen in the following section.

Meanwhile, we applied a wide range of evaluation criteria
to effectively assess the performance of our method [33]. Cross
validation is a widely used method to measure model ability
[34, 35]. For 5-fold cross-validation, the whole dataset is divided
into 5 mutually exclusive subsets of roughly size, each subset
is treated as the test set for evaluation in turn and the others
are treated as the training sets for the model construction. At
the same time, we draw ROC (receiver operating characteristic
curve) and PR (precision-recall) to calculate AUC (area under
ROC) and AUPR (area under PR), respectively, in order to visualize

experimental results and facilitate comparison with other meth-
ods. In addition, a wide range of evaluation criteria including
accuracy (Acc.), sensitivity (Sen.), specificity (Spec.), precision
(Prec.) and MCC have been adopted to evaluate our approach
more generally.

Network analysis

The MeSH heading relationship network is a heterogeneous
network consisting of 29 349 nodes and 39 784 edges, where the
nodes are included by 16 different kinds of descriptors. Node
degree refers to the number of edges associated with the node,
also known as correlation degree. The occurrence number of the
node and degree can be statistics and visualized as the Figure 3.

Application 1: MeSH headings classification

As mentioned above, each node (MeSH heading) can be repre-
sented as a low-dimensional dense vector by graph embedding
algorithm and can be labeled by the mode of its tree num. We
want to verify the pros and cons of different graph embedding
algorithms through the node classification experiment.

Specifically, five graph embedding algorithms including
DeepWalk, LINE, SDAE, LAP and HOPE are applied on the rela-
tionship network to represent the nodes as 64-dimenson vectors
and the labels can be labeled by the mode of the node’s tree
num. For example, reflex characterized by E01.370.376.550.650,
E01.370.600.550.650, F02.830.702 and G11.561.731 will be given
a label E. Then, 80% of the nodes and the corresponding labels
are utilized to construct the multi-classifier, and the remaining
20% of the nodes and the corresponding labels are used for
testing. Although there exist some noises and errors in labels,
the accuracy of the classifier can reflect the quality of the
representation vectors to some extent.

The keras library was applied to construct this multi-
classifier. An artificial neural network with two layers was
built where each layer consists of 512 neurons. The parameters
including loss, optimizer, batch_size and epochs are set to
categorical_crossentropy, RMSprop, 1024 and 100, respectively.
The results including ACC and LOSS are shown in Figure 4 and
Table 1.

The node classification task reflects the distinguishability
between different type of term representation, such as anatomy
and organisms. Compared with other method, DeepWalk
obviously achieved the most competitive performance, which
demonstrates that DeepWalk can indeed capture global
structure and differences between various labels in the whole
network.
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Table 1. The test performance of different graph embedding methods on the node classification task

Test Performance SDNE HOPE LINE LAP DeepWalk

Acc. 0.5056 0.7003 0.9068 0.9284 0.9824
Loss 1.7108 0.9164 0.4130 0.2105 0.0722

Figure 4. The performance of node classification task achieved by different graph embedding methods.

Figure 5. ROCs, AUCs, PRs and AUPRs of drug-target interaction prediction achieved by different graph embedding and drug Morgan molecular fingerprint methods.

Application 2: drug representation for drug-target
interaction prediction

In this section, we choose drug-target interaction prediction as
a specific research subject to evaluate the quality of the drug
representation vector. Specifically, each drug and protein can
be represented as a 64-dimenonal vector by graph embedding
and k-mer method. We also treated drug Morgan molecular
fingerprint method as a baseline for comparison. Then, each
drug-target interaction pair is a 128-dimensional vector by con-
catenating drug and target. 5-fold cross validation was applied
to evaluate the performance of each method. Random forest is
chosen as the classifier to carry out the interaction prediction
task. To evaluate the proposed method, we draw ROC and PR to
calculate the AUC and AUPR, respectively. In addition, extensive
evaluation criteria including Acc., Sen., Spec., Prec. and MCC are
adopted. The results can be seen in Figure 5 and Table 2.

Compared with the node classification, the association pre-
diction task reflects the distinguishability between the same
type of term representation, such as drug.

In general, DeepWalk and LAP achieved pretty prediction
effects. Considering the traditional method of analyzing the
chemical structure of drugs, the satisfactory results prove that
the proposed representation is novel and can adequate charac-
terize the drug by semantic. We believe it will open up a new
paradigm for semantic representation of drugs.

Application 3: disease representation for
miRNA-disease association prediction

In this section, we choose miRNA-disease association prediction
as a specific research subject to evaluate the quality of the
disease representation vector. Specifically, each miRNA and
disease can be represented as a 64-dimenonal vector by
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Table 2. The performance of different graph embedding methods under 5-fold cross validation on the drug-target interaction prediction

Method Acc. (%) Sen. (%) Spec. (%) Prec. (%) MCC (%) AUC (%)

FingerPrint 77.49 ± 0.32 72.45 ± 0.85 82.53 ± 0.59 80.58 ± 0.43 55.27 ± 0.60 84.20 ± 0.37
HOPE 76.33 ± 0.84 72.63 ± 1.29 80.04 ± 1.02 78.44 ± 0.94 52.82 ± 1.69 82.91 ± 0.85
LAP 77.78 ± 1.00 73.07 ± 1.18 82.48 ± 1.10 80.66 ± 1.13 55.80 ± 2.00 84.62 ± 1.19
LINE 76.08 ± 0.46 69.88 ± 1.05 82.29 ± 0.80 79.79 ± 0.63 52.59 ± 0.90 82.80 ± 0.39
SDNE 75.63 ± 0.41 70.37 ± 0.57 80.88 ± 0.84 78.64 ± 0.70 51.54 ± 0.86 82.00 ± 0.27
DeepWalk 78.61 ± 0.55 73.24 ± 0.87 83.97 ± 1.02 82.06 ± 0.89 57.55 ± 1.13 85.58 ± 0.63

Table 3. The performance of different graph embedding methods under 5-fold cross validation on the miRNA-disease association prediction

Method Acc. (%) Sen. (%) Spec. (%) Prec. (%) MCC (%) AUC (%)

DAG 82.42 ± 0.28 79.01 ± 0.75 85.84 ± 0.92 84.81 ± 0.74 65.01 ± 0.59 89.95 ± 0.25
HOPE 78.12 ± 0.82 76.13 ± 0.96 80.11 ± 1.34 79.29 ± 1.13 56.28 ± 1.66 85.36 ± 0.80
LAP 81.53 ± 0.46 78.07 ± 0.49 84.99 ± 0.61 83.88 ± 0.59 63.22 ± 0.93 89.06 ± 0.52
SDNE 81.89 ± 0.46 78.69 ± 0.99 85.07 ± 0.96 84.07 ± 0.78 63.91 ± 0.93 89.53 ± 0.33
DeepWalk 82.68 + 0.62 79.17 + 1.61 86.18 + 1.42 85.16 + 1.16 65.53 + 1.22 90.15 + 0.52
LINE 83.02 ± 0.53 79.95 ± 0.24 86.09 ± 0.97 85.19 ± 0.88 66.17 ± 1.09 90.28 ± 0.27

Figure 6. ROCs, AUCs, PRs and AUPRs of miRNA-disease association prediction achieved by different graph embedding and DAG methods.

k-mer and graph embedding method. We also performed disease
semantics similarity method as a baseline for comparison.
Then, each miRNA-disease association pair is a 128-dimensional
vector by concatenating miRNA and disease. 5-fold cross
validation was chosen to evaluate the performance. Random
forest is applied as the classifier to carry out the association
prediction task. To visualize the proposed method, we draw ROC
and PR to calculate the AUC and AUPR, respectively. The results
of all methods can be seen in Figure 6 and Table 3.

Briefly, the LINE method achieved the most remarkable with
average Acc., Sen., Spec., Prec. and MCC of 83.02, 79.95, 86.09,
85.19, 66.17 and 90.28. The corresponding standard deviations of
above evaluation criteria are 0.53, 0.24, 0.97, 0.88 and 1.09. The
brilliant performance of the proposed method indicates that the
representation vector generated by MeSH relationship network
can be used as an independent carrier to characterize disease.
Meanwhile, the lower standard deviation implied that the novel
model was robust and stable.

Although the performance improvement relative to the dis-
ease semantics similarity is weak, the disease graph embedding
representation has three obvious advantages. Firstly, compared

with the similarity-based method, the graph-based method has
faster calculation speed and less resource occupation. Secondly,
the similarity-based method only calculates the similarity
between the diseases in the current sample set. For example,
the number of diseases in the miRNA-disease association
benchmark data set proposed in this paper is 531. Based on
graph representation algorithm, 29 349 MeSH heading vectors in
network can be obtained at one time. Similarity-based method
needs to be recalculated when facing a new sample, but the
graph-based method can be generated once for permanent use.

Application 4: as addition information to enhance the
ability of disease representation

In this section, we choose miRNA-disease association prediction
as a specific research subject to prove that our representation
method of disease can be utilized as the additional information.
Specifically, inspired by Guo et al. [36], each miRNA and disease
can be represented by two kinds of information including the
behavior and the attribute feature. The behavior feature is the
main information that is proposed by the idea of collaborative
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Table 4. The performance of different features under 5-fold cross validation on the miRNA-disease association prediction

Method Acc. (%) Sen. (%) Spec. (%) Prec. (%) MCC (%) AUC (%)

Attribute 83.19 ± 0.48 79.75 ± 1.05 86.63 ± 0.36 85.65 ± 0.30 66.55 ± 0.91 90.33 ± 0.33
Behavior 83.56 ± 0.82 77.23 ± 1.30 89.89 ± 0.92 88.43 ± 0.97 67.67 ± 1.62 90.31 ± 0.39
Both 83.98 ± 0.59 78.57 ± 1.63 89.39 ± 0.73 88.11 ± 0.59 68.38 ± 1.05 91.40 ± 0.42

Figure 7. ROCs, AUCs, PRs and AUPRs achieved by different features.

filtering or similarity theory. It is known that miRNAs with
similar functions are often associated with similar diseases and
vice versa. Then, each miRNA and disease can be represented
as a 64-dimensonal vector by known miRNA-disease associa-
tions through the LINE method. The attribute feature is the
additional information including the RNA sequence, disease
semantics, drug chemical structure and etc. The attribute feature
of each node can be represented as a 64-dimensonal vector
by miRNA sequence learned by k-mer and disease semantics
learned by LINE. Then, each miRNA and disease can be viewed
as a 128-dimensonal vector by connecting behavior and attribute
feature. Finally, each miRNA-disease association pair is a 256-
dimensional vector by concatenating miRNA and disease. 5-fold
cross validation was applied to evaluate the proposed method.
Random Forest classifier is chosen to carry out the association
prediction task. The details of the results can be seen in the
following Figure 7 and Table 4.

The results demonstrated that the attribute feature (disease
semantics graph embedding representation) can play an aux-
iliary role. The representation vector combining the two fea-
ture is easier to distinguish, which can improve the prediction
performance of the computational model.

Conclusion
Obtaining distinguishable vectors as the input of the computa-
tional prediction model has always been a hot topic of concern.
Existing methods which manually define and measure similarity
are limited considering the time and space complexity. In this
paper, we constructed a MeSH heading relationship network
and implemented five kinds of graph embedding algorithms on
it. Then, the qualities of the vectors were evaluated based on
the relationship network itself and the two benchmark datasets
including drug-target interaction and miRNA-disease associa-
tion. Obviously, the results of relationship prediction prove that

the semantic representation of terms such as disease can not
only be used as independent carrier for input, but also as addi-
tional information to enhance the distinguishability of vectors.
Despite the limited performance of the upgrade, compared with
the previous feature generation approach such as similarity-
based or chemical structure method, the proposed method is
a fully automatic and pure semantic way, which will bring new
enlightenment to relevant researchers. Predictably, MeSHHead-
ing2vec can be viewed as a foundation to establish interesting
connections between network and semantic in both computer
and life sciences. Briefly, our method will establish valuable
insights in MeSH heading representation and disease-, drug- and
etc.-related computational prediction model, bring beneficial
inspiration to relevant scholars and expand the computational
omics research paradigm.

Key Points
• Considering wet experiments are labor-intensive and

time-consuming, computational prediction models
are widely used to accelerate the process of biolog-
ical experiments, boost diagnosis and treatment of
diseases as well as new drug development.

• However, Medical Subject Headings (MeSH) terms such
as diseases and drugs are abstract entities that are
difficult to be quantified as input for machine learning
model.

• In this paper, we converted the MeSH tree structure
to a relationship network and proposed a new pure
semantic approach to represent arbitrary terms as
vectors.

• Compared with traditional methods such as drug
chemical structure and disease similarity, experiment
results have shown that the pure semantic method
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still has definitely advantages. In addition, we con-
structed two benchmark data sets including drug-
target interaction and miRNA-disease association for
subsequent test and evaluation.

• Briefly, it can act as input and continue to play a
significant role in any disease-, drug-, microbe- and
etc.-related computational models in bioinformatics.
Besides, it can inspire relevant researchers to study the
representation of terms in this network perspective.
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