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Pparg promotes differentiation and regulates
mitochondrial gene expression in bladder
epithelial cells
Chang Liu1,9, Tiffany Tate 1,9, Ekatherina Batourina1, Steven T. Truschel2, Steven Potter 3, Mike Adam3,

Tina Xiang1, Martin Picard4, Maia Reiley1,6, Kerry Schneider1,7, Manuel Tamargo1, Chao Lu 5, Xiao Chen5,

Jing He8, Hyunwoo Kim 1 & Cathy Lee Mendelsohn 1

The urothelium is an epithelial barrier lining the bladder that protects against infection, fluid

exchange and damage from toxins. The nuclear receptor Pparg promotes urothelial differ-

entiation in vitro, and Pparg mutations are associated with bladder cancer. However, the

function of Pparg in the healthy urothelium is unknown. Here we show that Pparg is critical in

urothelial cells for mitochondrial biogenesis, cellular differentiation and regulation of

inflammation in response to urinary tract infection (UTI). Superficial cells, which are critical

for maintaining the urothelial barrier, fail to mature in Pparg mutants and basal cells undergo

squamous-like differentiation. Pparg mutants display persistent inflammation after UTI, and

Nf-KB, which is transiently activated in response to infection in the wild type urothelium,

persists for months. Our observations suggest that in addition to its known roles in adipo-

gegnesis and macrophage differentiation, that Pparg-dependent transcription plays a role in

the urothelium controlling mitochondrial function development and regeneration.
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The urothelium is a stratified epithelium that extends from
the renal pelvis to the bladder neck, serving as a barrier
between urine and blood. The bladder urothelium has a

number of unique features; it is a long-lived epithelium, with a
half-life estimated to be 40 weeks or more1, and functions as a
waterproof barrier that prevents leakage during voiding, thereby
protecting underlying tissue from damage and water loss. In a full
bladder, luminal superficial cells (S cells) can expand to 250 μm in
length and are interconnected by high-resistance tight junctions
that prevent leakage under pressure2. S cells are long-lived, post-
mitotic cells that are critical for maintaining the urothelial barrier.
They are specialized for synthesis and transport of uroplakins
(Upks), a family of membrane proteins that assemble into crystals
that line the apical surface of the urothelium. When the bladder
expands, the S cell surface area increases, mediated by specialized
vesicles that transport newly formed uroplakin crystals from the
Golgi to the apical membrane3. During voiding, the S cell surface
area is reduced by endocytic vesicles that transport apical mem-
brane to lysosomes for degradation3.

In addition to S cells, the urothelium contains mononucleated
and binucleated intermediate cells (I cells). The mononucleated
progenitor population can self-renew, or undergo incomplete
cytokinesis to produce a binucleated I cell with 2n/2n ploidy4.
These binucleated I cells undergo a second round of endor-
eplication, differentiating into S cells with 4n/4n ploidy4. There
are two known sub-populations of basal cells in the urothelium.
The majority (80%) are K5-basal cells that reside in the basal and
suprabasal layers and are K5+/P63+/K14−. A second popula-
tion, K14-basal cells (K14+/K5+/P63+), are found exclusively in
the basal layer. The adult urothelium is largely quiescent, but
undergoes a rapid sequence of exfoliation and regeneration in
response to injury from toxic chemicals or urinary tract infection
(UTI) with uropathogenic Escherichia coli (UPEC). When S cells
die during homeostasis or after acute injury, they are replaced by
I cells5; however, I cells are depleted after serial injury, after which
K14-basal cells expand and function as a progenitor population6.

Peroxisome proliferator-activated receptor-γ (Pparg) is a
nuclear hormone receptor that regulates numerous cellular
functions, including adipogenesis, lipid biosynthesis, energy
expenditure and storage, inflammation, and differentiation7.
Pparg acts in a number of tissues and cell types, including liver,
adipose tissue, and macrophages8. In addition, Pparg agonists and
antagonists have an effect on the ureteral urothelium differ-
entiation in vitro9 and in vivo10. Heterodimers composed of
Pparg and nuclear receptor family member Rxra regulate tran-
scription by binding to peroxisome proliferator response elements
present in regulatory regions of target genes. Pparg can be acti-
vated by binding of natural ligands, including fatty acid meta-
bolites, unsaturated fatty acids such as eicosanoids, and
prostaglandins11. A number of metabolic functions are controlled
by Pparg in association with the co-factor Ppargc1a, a master
regulator of mitochondrial biogenesis12. Pparg also serves as an
important regulator of anti-inflammatory activity, acting in part
by antagonizing the nuclear factor-κB (NF-κB) pathway13.

Mapping of the mutational landscape of muscle-invasive blad-
der cancers (MIBCs) together with unsupervised clustering ana-
lysis of the whole-genome expression data revealed that MIBC can
be sub-categorized into luminal and basal subtypes. These subtypes
are histologically distinct and display discrete sets of mutations and
gene expression signatures14–19. These analyses reveal alterations
in PPARG expression and signaling, suggesting that PPARG-
dependent transcriptional regulation may be important in the
etiology of urothelial carcinoma. PPARG copy number expansion
and increased expression of FABP4, a direct PPARG transcrip-
tional target, were detected in luminal tumors20–22. Activating
mutations in PPARG and RXRA, a PPARG-binding partner, were

also observed in luminal MIBCs23,24. In addition, genetic path-
ways important for lipid metabolism and adipogenesis were up-
regulated in patients that harbor PPARG gain-of-function
mutations, suggesting that PPARG may be an important reg-
ulator of lipid metabolism in the luminal subtype of MIBCs.

The exact contribution of PPARG to the etiology of the basal
subtype of urothelial carcinoma is less clear. PPARG expression is
low in basal subtype tumors compared to healthy urothelium, and
PPARG is down-regulated in Claudin-low tumors, which have
basal-like features. Interestingly, genes encoding cytokines and
chemokines are up-regulated in Claudin-low basal-like tumors,
which may reflect unregulated NF-κB signaling due to low
levels of PPARG25. Expression of PPARG and its binding partner
RXRA are reduced in the squamous cell carcinoma-like (SCCL)
subtype of MIBCs, which shares many features with the basal
subtype, including gene expression signatures and common
mutations. Transcriptional analysis of these tumors revealed
down-regulation of a large cluster of genes important for
lipid metabolism, many of which have PPARG binding sites
in their regulatory regions based on in silico chromatin
immunoprecipitation-sequencing analysis26.

In this study, we use constitutive and inducible cell-type-
specific Cre mouse models to study the role of Pparg in distinct
urothelial sub-populations. We find that Pparg is critical in I cells
and in S cells for mitochondrial biogenesis, controlling specifi-
cation and differentiation of I cells and S cells during develop-
ment and homeostasis. Pparg plays an independent role in basal
cells, preventing squamous differentiation. Pparg is also critical
during regeneration for resolving NF-κB signaling, which is
transiently increased in the wild-type urothelium in response to
UPEC infection, but persists in mutants for months after UTI.
Together, these findings suggest that Pparg is essential for normal
differentiation, maintenance, and regeneration of the urothelium.
Understanding the link between Pparg, metabolic dysfunction,
chronic inflammation, and aberrant urothelial differentiation may
help define strategies for urothelial generation, and could improve
our understanding of the molecular changes that occur during
urothelial carcinoma.

Results
Pparg is required for urothelial development and homeostasis.
The urothelium contains sub-populations that can be identified
based on combinatorial marker expression (Fig. 1a). In adults,
Pparg is expressed throughout the urothelium, at highest levels in
S cells (Fig. 1b, c; yellow arrows). Fabp4, a direct transcriptional
target of Pparg, is enriched in S cells, suggesting that Pparg sig-
naling is most active in the S cell sub-population (Fig. 1d; yellow
arrow). In the embryonic urothelium, Pparg expression is first
observed in I cells at E13 (Fig. 1e, purple arrow), and between E14
and E16, is present in I cells and in maturing S cells (Fig. 1f, g,
purple and yellow arrows, respectively). We did not observe
detectable levels of Pparg in basal cells during development
(Fig. 1g, green arrow).

To identify Pparg functions in urothelial differentiation and
homeostasis, we generated B6.Cg-Shhtm1(EGFP/cre)Cjt/J;
Ppargtm1.1Gonz mice27,28; hereafter referred to as ShhCre;Ppargfl/fl

mutants), using the ShhCre driver to delete Pparg in basal cells, I
cells, and their daughters. Analysis of ShhCre;Ppargfl/fl mutants at
post-natal stages revealed abnormal urothelial differentiation.
Krt20 and Upk are highly expressed in S cells lining the
superficial layer in controls (Fig. 2a, b), but expression is low or
undetectable in S cells of ShhCre;Ppargfl/fl mutants (Fig. 2e, f). In
addition, mutant S cells were about half the size of wild-type S
cells (S cells are denoted by dotted white circles in Fig. 2b, c, f, g).
S cells in both controls and ShhCre;Ppargfl/fl mutants were positive
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for the tight junction protein ZO1 (Fig. 2c, g); however I cells
(P63+, Upk+) were not detectable in mutants at post-natal stages
(Fig. 2e, f; Supplementary Fig. 1a–j), suggesting that the I cell
population either failed to self-renew or regressed.

The K14-basal population, which makes up around 10% of the
basal population in controls, was doubled in ShhCre;Ppargfl/fl

mutants, and K5-basal cells (P63+ Krt5+ Krt14−), which
populate most of the basal and suprabasal layers in controls,
were reduced in number (Fig. 2d, h–k). The expanded K14-basal
cell population persisted in mutants; however, we did not observe
signs of tumor formation after a year or more (Supplementary
Fig. 1k–n). Taken together, these observations suggest that Pparg

signaling is critical for specification and differentiation of
multiple urothelial sub-populations.

To learn more about the causes of urothelial abnormalities in
adult ShhCre;Ppargfl/fl mutants, we compared urothelial develop-
ment in mutants and controls. Analysis at E13, when the
urothelium in wild-type embryos is composed mainly of I cells,
did not reveal any detectable differences in mutants compared to
controls (Fig. 3a, b). At E14, the urothelium of both wild-type and
mutants contains I cells (Upk+ P63+) and immature S cells (Upk+
P63-); Fig. 3b, e; I cells, purple arrows, immature S cells, yellow
arrows). Analysis at E16 revealed robust Upk3a expression in S
cells and I cells of controls (Fig. 3c), while in the mutants, Upk3a
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Fig. 1 Pparg expression and signaling in the adult and embryonic urothelium. a A table showing urothelial cell types and combinatorial markers that
distinguish different sub-populations. b, c Sections from a wild-type adult bladder stained for the expression of Pparg, Krt5, and P63. d–f Fabp4, Pparg, and
p63 expression in the developing urothelium at e E13; f E14, g E16. Yellow arrows denote S cells, purple arrows denote I cells, and green arrows denote
basal cells. Scale bar: 20 μm. Samples used in the experiments: adult wild-type urothelium, n= 5; E13 wild-type urothelium, n= 4; E14 wild-type urothelium,
n= 6; E16 wild-type urothelium, n= 5
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was down-regulated, suggesting that Pparg is important for
maintaining S cell specification (Fig. 3f; white arrow). We did not
observe abnormalities in the basal population during develop-
ment (Fig. 3b, c, e, f). Taken together, these observations suggest
that Pparg is important for differentiation of I cells and S cells
during development, and in adults, it regulates differentiation and
maintenance of I cells, S cells, and basal cells.

Pparg regulates a diverse set of urothelial genes. To determine
the transcriptional pathways regulated by Pparg in the adult
urothelium, we performed RNA-sequencing (RNA-Seq) analysis
comparing gene expression in urothelial cells isolated from con-
trol (Ppargfl/fl) mice and ShhCre;Ppargfl/fl mutants during home-
ostasis (Fig. 4a–c). In addition to Pparg, we observed down-
regulation of a number of transcription factors, including Fabp4,
a direct Pparg target, Ppara, a major regulator of mitochondrial
biogenesis, as well as Grhl3, a transcription factor that has been
shown to regulate S cell differentiation9 (Fig. 4c).

Gene set enrichment analysis identified up-regulated pathways
in ShhCre;Ppargfl/fl mutants (Fig. 5a). These include innate
immune functions (p= 10−9), response to Pertussis toxin (p=
10−10), virus infection (p= 10−6), Toll/IL-1R-domain-containing

adaptor-inducing interferon-β (TRIF)-mediated signaling (p=
10−5), and the complement and coagulation cascade (p= 10−7).
Interestingly, numerous pathways that mediate mitochondrial
functions were under-represented in ShhCre;Ppargfl/fl mutants
compared to controls (Figs. 4a and 5; Supplementary Table 1
contains individual p values). Pathways most affected were those
related to lipid and amino acid metabolism (p= 10−10), β-
oxidation (p= 10−8), fatty acid metabolism (p= 10−9), and
pyruvate and propanoate metabolism (p= 10−6 and p= 10−7,
respectively). In particular, pathways important for synthesis of
cholesterol and unsaturated fatty acids, which include Ppara and
Pparg ligands, were also down-regulated (p= 10−6 and p= 10−8,
respectively).

Fatty acids are mainly metabolized in the mitochondrial matrix
through β-oxidation and the tricarboxylic acid (TCA) cycle.
However, the mitochondrial membrane is impermeable to fatty
acids and a specialized carnitine carrier system consisting of Cpt1,
Slc25a20, and Cpt2 control fatty acid transport29. We observed
down-regulation of all three genes in ShhCre;Ppargfl/fl mutants
(Fig. 4a, Cpt2 immunostaining is shown in Fig. 6a, c). In addition,
15 genes that encode members of complex 1 NADH ubiquinone
oxidoreductase were down-regulated, including Nd4, Nd5, and
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Fig. 2 Urothelial abnormalities in adult ShhCre;Ppargfl/fl mutants. a, e Expression of Krt20, Krt14, and Krt5 in an adult Ppargfl/fl control mouse (a) and in a
ShhCre;Ppargfl/fl mutant (e). b, f Expression of Upk3a, Krt5, and p63 in a Ppargfl/fl control mouse (b) and in a ShhCre;Ppargfl/fl mutant (f). c, g)Expression of
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Ppargfl/fl mutant (h). Gray arrows denote abnormal S cells; yellow arrows denote S cells; purple arrows denote I cells; and green arrows denote basal cells.
i, j A schematic representation showing cell types in the adult urothelium of a Ppargfl/fl control mouse (i) and in a ShhCre;Ppargfl/fl mutant (j).
k Quantification of numbers of Krt14 and Krt5 expressing basal cells in the urothelium of adult Ppargfl/fl control mice and ShhCre;Ppargfl/fl mutants.
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Nd6 that are transcribed from mitochondrial DNA (Fig. 4a).
Furthermore, down-regulated were genes encoding members of
the complex IV, cytochrome c oxidase complex (Cox1, Cox7b,
Cpx7r, Cox16, and Cox17; Fig. 4a, Cox1 immunostaining is shown
in Fig. 6b, d; white arrow in Fig. 6d points to an immune cell in
the mutant urothelium that is Cox1 positive). Antioxidant
proteins that protect against oxidative stress Sod1 and Sod2 were
also down-regulated in mutants compared to controls (Fig. 4a;
immunostaining is shown in Fig. 6e–h).

RNA-Seq analysis reveals down-regulation of genes normally
expressed in mature S cells including Krt20, Uchl1, Sprr1a, and
Upks (Fig. 4c; immunostaining is shown in Fig. 6i–m and
Supplementary Fig. 1a–j). We also observed changes in genes
important for formation of junctional complexes including Cldn8
(Fig. 6k, n) and genes involved in vesicle transport (Supplemen-
tary Fig. 2a). Electron microscopy (EM) of mutants and controls
reveals an abnormal membrane in S cells of ShhCre;Ppargfl/fl

mutants that lacks the characteristic plaques that line the apical
membrane in controls, and vesicles that normally transport Upks
to and from the apical membrane were small and abnormally
shaped in mutants compared to controls (Supplementary Fig. 2b,
c: green-white arrowheads point to morphologically normal
fusiform vesicles in controls; pink-white arrowheads point to
abnormal vesicles in mutants; the red arrow in Supplementary
Fig. 2c points to an abnormal junctional complex in the mutant).

Consistent with the observed expansion of the K14-basal cell
population in ShhCre;Ppargfl/fl mutants, RNA-Seq analysis
revealed up-regulation of Krt14, as well as a number of genes
expressed in squamous epithelia, including Krt10, Krt13, Krt6a,
and Krt6b (Fig. 4b). Immunostaining (Fig. 6o, q) shows
expression of Krt6a, which marks the basal layers in controls,
was present throughout the urothelium in mutants; and Krt10, a

marker of cornified epithelia not detectable in the healthy
urothelium, was expressed in cells scattered throughout the
mutant urothelium (Fig. 6p, r). These findings suggest that Pparg
is essential in the urothelium for transcriptional control of
mitochondrial biogenesis and fatty acid transport, as well as for
maintaining proper differentiation of the basal cell, I, and S cell
populations.

Pparg regulates mitochondrial functions in S cells. Analysis of
ShhCre;Ppargfl/fl mutants in which Pparg is deleted throughout the
urothelium revealed abnormalities affecting S cells, I cells, and
basal cells. An interesting question is whether Pparg plays distinct
roles in different epithelial compartments. To begin to address
this, we used the tamoxifen-inducible Upk2CreERT2 line30 to
selectively delete Pparg in S and I cells in adults, and then we
analyzed the effects on urothelial homeostasis. Analysis of
Upk2CreERT2;Ppargfl/fl mutants by immunostaining 7 days after
tamoxifen induction revealed down-regulation of Pparg and
Fabp4, a direct Pparg transcriptional target, indicating that both
Pparg expression and signaling were decreased in mutants com-
pared to controls (Fig. 7a, b, e, f). This analysis also revealed that
Upk1a, Upk3a, which are highly enriched in S cells, and Krt20,
which labels mature S cells, were both down-regulated (Fig. 7a–h;
Supplementary Fig. 3a–f), suggesting that Pparg-dependent
transcription regulates S cell differentiation in a cell-autonomous
manner. Interestingly, we observed Ki67 expression in 15% of S
cells and 10% of I cells in Upk2CreERT2;Ppargfl/fl mutants during
homeostasis (Fig. 7c, g, i). These findings are surprising, since the
adult urothelium is largely quiescent during homeostasis. We
also observed exfoliated S cells in urine collected from mutants
after tamoxifen induction, but not in controls, suggesting that S
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cells in the mutants were dying off and being replaced by Ki67-
positive I cells and S cells (Fig. 7j, l, black arrowheads in Fig. 7l
point to a cluster of S cells). Exfoliated S cells were surrounded by
neutrophils (Fig. 7l, black arrow), suggesting that they are in the
process of being cleared by the immune system.

To follow the fate of mutant S cells, we pre-labeled S cells of
mutants and controls with wheat germ agglutinin (WGA), which
binds to the S cell membrane31. Animals were then exposed to
tamoxifen to induce Cre-dependent recombination, and urine
was analyzed each day to determine whether WGA-positive
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c A heatmap showing changes in expression of S cell markers in ShhCre;Ppargfl/fl mutants compared to controls. P values for gene expression changes are
listed in Supplementary Table 1. RNA-Seq analysis was performed on RNA isolated from four ShhCre;Ppargfl/fl mutants and four Ppargfl/fl controls
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S cells were present. This analysis revealed few if any WGA-
stained (green fluorescent-positive (GFP+)) S cells in urine from
control mice; however, urine collected from Upk2CreERT2;
Ppargfl/fl mutants contained large numbers of WGA+ S cells
(Fig. 7k, m), suggesting that Pparg function during homeostasis is
essential for the survival of S cells.

Based on the large number of mitochondrial pathways
disrupted in ShhCre;Ppargfl/fl mutants including the complement
cascade (Fig. 5a), it would not be surprising if defective S cell
differentiation and lethality were linked to mitochondrial defects.
To begin to address this, we analyzed ultracellular structure by
EM, comparing Up2CreERT2;Ppargfl/fl mutants and controls.
Analysis of urothelium in control (Ppargfl/fl mice) revealed
normal mitochondria with regularly formed cristae surrounded
by the characteristic double membrane (Fig. 7n, o, p; green-white
arrowheads point to the double mitochondrial membrane).
However, mitochondria in S cells of Up2CreERT2;Ppargfl/fl

mutants contained electron-dense inclusions that varied in size
(Fig. 7s, t; red-white arrowheads point to inclusions). Higher
magnification revealed that the inclusions were located in the
intermembrane space in mutants (Fig. 7u, red-white arrowheads
designate the position of the inclusion body), suggesting that
these are composed of materials that accumulate and fail to enter
the mitochondrial matrix, where lipid oxidation takes place.

Cpt1, Cpt2, and Sl25a20 are carnitine palmitoyl transferases
that shuttle fatty acids across the mitochondrial membrane to the
matrix to initiate β-oxidation32. All three genes are down-

regulated in Pparg mutants, suggesting that the inclusions may be
composed of fatty acids that accumulate due to impaired
mitochondrial transport. To directly address this question, we
stained urothelial cells from Upk2CreERT2;Ppargfl/fl mutants and
controls with Bodipy, which marks neutral lipids, along with
Mitotracker and TOM20, a component of the mitochondrial
outer membrane. Bodipy staining, which was undetectable in
controls, was clearly visible in mutant mitochondria, labeling
large spherical structures (Fig. 7q, r, v, w), indicating that the
cargo in mutant inclusions is neutral lipid. These neutral lipids
are likely to be fatty acids that are transported across the
mitochondrial outer membrane, but fail to reach the mitochon-
drial matrix, a defect that would severely affect energy
metabolism and biomass synthesis.

Pparg prevents squamous differentiation. In ShhCre;Ppargfl/fl

mutants, the K5-basal population decreases, the K14-basal
population expands and squamous markers are up-regulated.
EM reveals that the basal population in ShhCre;Ppargfl/fl mutants
also displays severe mitochondrial abnormalities, including
mitochondrial inclusions (Fig. 8a–d), similar to those observed in
S cells. These defects may be secondary to inflammation, loss of
barrier function, or could reflect a direct role of Pparg as a reg-
ulator of basal cell differentiation. To address this question, we
used the tamoxifen-inducible Tg(Krt5-Cre/ERT2)2Ipc/J [ref. 33;
hereafter referred to as Krt5CreERT2 mice] to selectively inactivate
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Pparg in basal cells and their daughters. Analysis of adult
Krt5CreERT2;Ppargfl/fl mutants 14 days after tamoxifen induction
revealed down-regulation of Pparg in basal cells, while the
expression level remained the same in S cells and I cells (Fig. 8e,
h). Immunostaining revealed basal cell abnormalities in
Krt5CreERT2;Ppargfl/fl mutants similar to those observed in

ShhCre;Ppargfl/fl mice, including an expanded K14-basal popula-
tion and up-regulation of Krt10 (Fig. 8f, g, h, i). Consistent with
these observations, RNA-Seq analysis of urothelium from
mutants and controls revealed up-regulation of squamous mar-
kers (Fig. 8k), and over-representation analysis revealed altera-
tions in many of the same pathways as those observed in ShhCre;
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Fig. 6 Validation of gene expression changes from RNA-Seq experiments. a, c Expression of Cpt2 and Krt5 in the urothelium of Ppargfl/fl controls (a) and
ShhCre;Ppargfl/fl mutants (c). b, d Cox1 and Krt5 expression in a control (b) and in the ShhCre;Ppargfl/fl mutant urothelium (d). e, g Sod1 and Krt5 expression
in a Ppargfl/fl control urothelium (e) and in the urothelium of an ShhCre;Ppargfl/fl mutant (g). f, h Sod2 and Krt5 expression in the urothelium of a Ppargfl/fl

control (f) and in a ShhCre;Ppargfl/fl mutant urothelium (h). i, l Uchl1 and Krt5 expression in the urothelium of a wild-type adult tongue (i) and in the
urothelium of a ShhCre;Ppargfl/fl mutant (l). j, m Expression of Sprr1a and Krt5 in the urothelium of a control (j) and in a urothelium of a ShhCre;Ppargfl/fl

mutant (m). k, n Cldn8 and Krt5 expression in a control urothelium (k) and in a ShhCre;Ppargfl/fl mutant (n). o, q)Krt6 and Krt5 expression in a control
urothelium (o) and in a ShhCre;Ppargfl/fl mutant (q). p, r Uchl1 and Krt5 expression in a control urothelium (p) and in a ShhCre;Ppargfl/fl mutant (r)
urothelium. Scale bars: 50 μm. Adult wild type, n= 6; adult mutant, n= 5
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and a Up2CreERT;Ppargfl/fl mutant (u). Green-white arrowheads in (o, p) denote mitochondria. Red-white arrowheads in (s, t) denote mitochondria with
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Ppargfl/fl controls and Up2CreERT;Ppargfl/fl mutants stained with BODIPY and TOM20. r, w Cytospin prep of urothelial cells from an adult Ppargfl/fl control
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from mutants and controls. Scale bar: q, r 5 μm, v, w 20 μm. Source data are provided as a Source Data file
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Ppargfl/fl mutants (Fig. 8l, m). Down-regulated pathways include
cholesterol biosynthesis (p= 10−9), metabolism (p= 10−5), lipid
metabolism (p= 10−3), fatty acid metabolism and biosynthesis
(p= 10−3), and Pparg signaling (p= 10−6). Up-regulated path-
ways include programmed cell death (p= 10−7), immune
response (p= 10−6), cytokine production (p= 10−5), and stress
response (p= 10−4). Taken together, these observations suggest
that Pparg is important in basal cells for regulating differentia-
tion, as well as for controlling immune and metabolic pathways.

Pparg controls NF-κB signaling in the urothelium. During
homeostasis, about 90% of basal cells are K5-basal cells, while
K14-basal cells make up the remaining 10% of the population in
the wild-type urothelium. We observed expansion of the K14-
basal population in adult ShhCre;Ppargfl/fl mutants during
homeostasis that persists for as long as 1 year; however, we did
not observe evidence of squamous metaplasia or tumor formation
during homeostasis (Supplementary Fig. 1k–n). The urothelium
is largely quiescent during homeostasis, but can rapidly
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regenerate in response to toxins or bacterial infection. We
therefore investigated whether phenotypes observed in mutants
during homeostasis would be exacerbated during regeneration,
using a mouse model of UTI. Animals were infected by intra-
urethral catheterization with UTI 89, a UPEC isolated from a
patient with cystitis34. UPEC infects and multiplies within S cells,
inducing cell death and exfoliation (Supplementary Fig. 4).
During normal regeneration in wild-type controls, we observed
activation of NF-κB signaling, evidenced by nuclear expression of
p65/Rela, which is detected within 3 h post infection (Supple-
mentary Fig. 4a). Proliferation based on expression of Ki67
reaches highest levels in basal cells and I cells 24 h post infection
(Supplementary Fig. 4c, d). Newly formed S cells are observed at
72 h post infection (Supplementary Fig. 4e), a stage when pro-
liferation decreases to near-homeostatic levels in the I cell and B
cell compartments. Mature Krt20+ S cells are observed about
2 weeks after infection (Supplementary Fig. 4f).

Analysis of wild-type mice 24 h post infection revealed extensive
proliferation throughout the basal and I cell compartments (Fig. 9a)
and the number of Krt14-expressing cells dramatically increased
compared to uninfected animals (Fig. 9b, c). Analysis of ShhCre;
Ppargfl/fl mutants 24 h post infection revealed extensive prolifera-
tion (Fig. 9e) and the kinetics of bacterial infection were similar in
mutants compared to controls, indicating that the ShhCre;Ppargfl/fl

mutant urothelium responds to infection (Fig. 9i). The Krt14-
expressing basal cell population, which was increased during
homeostasis in ShhCre;Ppargfl/fl mutants compared to controls
(Fig. 9f; Supplementary Fig. 5a–h), was further expanded after
UTI, occupying all layers of the mutant urothelium (Fig. 9g;
Supplementary Fig. 5i–v). Intriguingly, in controls, the number of
K14-basal cells transiently increased at 24 h and decreased to
homeostatic levels by 72 h, but in mutants, the expanded
population persisted long for months, long after infection was
cleared (Fig. 9d, h; Supplementary Fig. 5i–v). Analysis of ShhCre;
Ppargfl/fl mutants 6 weeks after infection revealed severe edema
(Fig. 9r), which was not present in controls (Fig. 9j). We
also observed up-regulated expression of squamous markers
Krt14, Krt5, and Krt10 by immunostaining (Fig. 9k, l, m, s, t, u)
results also observed in RNA-Seq analysis (Fig. 9z). In addition,
we detected increased expression of Ki67 in mutants, which was
not observed in Ppargfl/fl controls (Fig. 9n, v).

Interestingly, analysis 6 weeks post infection revealed altera-
tions in the mutant urothelium that are associated with invasion.
Slug, which labels cells undergoing epithelial–mesenchymal
transition, was up-regulated in the mutants compared to controls
(Fig. 9o, w), and laminin staining, which revealed an intact
basement membrane in controls, was patchy or absent in
mutants, suggesting that the basement membrane was compro-
mised (Fig. 9p, x). We also observed up-regulation of Smooth
muscle α-actin, a marker of fibrosis, in mutants, which is low or
barely detectable in controls (Fig. 9q, y).The persistent inflam-
mation and abnormal differentiation of the basal population was
not due to re-infection, since the animals were treated with
antibiotics at 30 h post infection, and the bacterial load followed a
similar pattern of kinetics in mutants and controls, where colony-
forming unit (CFU/ml) was highest 24 h post infection, and low
by 4 weeks post infection (Fig. 9i).

To begin to elucidate how Pparg loss-of-function leads to
squamous-like differentiation and other changes in the mutant
urothelium, we performed RNA-Seq analysis of urothelium
isolated from ShhCre;Ppargfl/fl mutants and controls 4 weeks after
infection. These analyses revealed up-regulation of a number of
genes in the NF-κB signaling pathway compared to controls
(Fig. 10a). To confirm that NF-κB signaling was aberrantly
induced in mutants, we performed immunostaining with p65/
Rela. Immunostaining analysis reveals nuclear p65/Rela

expression both in mutants and controls at 24 h, as expected
(Fig. 10a, e). In controls, NF-κB signaling was down-regulated by
72 h based on the absence of nuclear p65/Rela expression
(Fig. 10c, d). In ShhCre;Ppargfl/fl mutants, however, nuclear p65/
Rela expression persisted throughout the urothelium for months
post infection (Fig. 10f, g), which would be likely to result in
persistent inflammation. Consistent with this, we observed
massive edema in ShhCre;Ppargfl/fl mutants weeks after UTI
(Fig. 10h, m), and extensive infiltration of leukocytes revealed by
CD45 staining in the mutant urothelium and stroma, which was
not observed in controls. (Fig. 10i, n). Phenotyping the immune
cells by macrophage marker F4/80, T cell marker CD3 and B cell
marker CD19 revealed that the infiltrating cells are largely
composed of macrophage (Fig. 10j, o) and T cells (Fig. 10k, p) in
mutants, but few if any B cells. (Fig. 10l q). The persistent
inflammation in Pparg mutants was unlikely to reflect a direct
role for Pparg in immune cells, since flow cytometry confirmed
that the ShhCre promoter used to delete Pparg was active in
urothelial cells, but not in leukocytes (Supplementary Fig. 6).
Persistent inflammation can induce squamous or abnormal
differentiation in the urothelium, for example, in patients with
indwelling catheters35. Whether the persistent activation of the
NF-κB signaling pathway underlies the abnormal urothelial
differentiation in ShhCre;Ppargfl/fl mutants is an interesting
possibility.

Taken together, our observations indicate that Pparg plays
critical and distinct roles in development, homeostasis and
regeneration of the urothelium. Pparg signaling controls S cell
differentiation and survival during development and homeostasis,
prevents squamous differentiation in the basal compartment and
regulates immune responses during regeneration after UTI. We
did not observe tumor formation in mutants, but we did observe
a number of changes that are associated with the basal subtype of
urothelial carcinoma, including squamous differentiation and
expression of EMT markers.

Discussion
In this study, we show that Pparg plays an essential role as a
regulator of urothelial development in vivo, controlling differ-
entiation and/or survival of basal cells, I cells and S cells. Our
findings suggest that Pparg is an important transcriptional reg-
ulator of mitochondrial biogenesis and fatty acid transport in
urothelial cells, functions required for β-oxidation. Our studies
also suggest that Pparg plays a critical role in suppressing squa-
mous differentiation and resolving the innate immune response
in the urothelium after injury.

Pparg is a lipid sensor and is known to regulate energy meta-
bolism in many cell types, including adipocytes, endothelial cells,
hepatocytes, and macrophages36, and has also been suggested to
be a regulator of lipid metabolism in basal/SCCL tumors26. There
are three Ppar family members, Ppara, Pparb/d, and Pparg, and it
is generally accepted that these transcription factors have distinct
roles in metabolic regulation of liver, muscle, and adipose tissue.
A number of studies suggest that Ppara controls fatty acid oxi-
dation and mitochondrial biogenesis, while Pparg regulates the
adipogenesis program and controls insulin sensitivity in patients
with type 2 diabetes36,37. However, Pparg has been shown to
regulate a wide range of mitochondrial functions in epithelial cells
of the renal proximal tubule and in neurons38,39. Our studies
suggest that a similar situation may exist in the urothelium, where
Pparg regulates expression of genes important for lipid and amino
acid metabolism, β-oxidation and fatty acid metabolism. We
observe down-regulation of Cpt1, Cpt2, and Slc25a20 in mutants,
transporters that shuttle fatty acids into the mitochondria matrix,
a rate-limiting step in fatty acid oxidation29. The presence of
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fl mutant mice at 12 h, 24 h, and 4 weeks post infection. j–y Analysis of Ppargfl/fl control and ShhCre;Ppargfl/fl mutants 4 weeks post-UTI. Hematoxylin and
eosin staining of a urothelium from an adult control Ppargfl/fl mouse (j) and a ShhCre;Ppargfl/fl mutant mouse (r). Expression of Krt14 and Krt15 in the
urothelium of an adult control Ppargfl/fl mouse (k, l) and a ShhCre;Ppargfl/fl mutant mouse (s, t). Expression of Krt10 in the urothelium of an adult control
Ppargfl/fl mouse (m) and a ShhCre;Ppargfl/fl mutant mouse (u). Expression of Ki67 in the urothelium of an adult control Ppargfl/fl mouse (n) and a ShhCre;
Ppargfl/fl mutant mouse (v). Expression of Slug in the urothelium of an adult control Ppargfl/fl mouse (o) and a ShhCre;Ppargfl/fl mutant mouse (w).
Expression of laminin in the of a urothelium of an adult control Ppargfl/fl mouse (p) and a ShhCre;Ppargfl/fl mutant mouse (x). Expression of SMA in the
urothelium of an adult control Ppargfl/fl mouse (q) and a ShhCre;Ppargfl/fl mutant mouse (y). (z) A heatmap based on RNA-Seq analysis of ShhCre;Ppargfl/fl

mutants vs. control mice 4 weeks after UTI showing expression of squamous markers. Scale bars: 50 μm. The number of mutants and controls was
analyzed: UTI 24 h Ppargfl/fl, n= 3; ShhCre;Ppargfl/fl, n= 3; UTI 72 h Ppargfl/fl, n= 4; ShhCre;Ppargfl/fl, n= 4; UTI 4 weeks Ppargfl/fl, n= 8; ShhCre;Ppargfl/fl, n=
11; RNA-Seq UTI 4 weeks Ppargfl/fl, n= 5; ShhCre;Ppargfl/fl, n= 5. Source data are provided as a Source Data file
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lipid-containing inclusions in the intermembrane space of mito-
chondria in the mutants suggests that mutant urothelial cells have
a diminished ability to carry out fatty acid oxidation, which is
likely to reduce energy availability.

Our studies further revealed that Pparg is important for sur-
vival of S cells, which are progressively shed from the mutant
urothelium in adult Upk2CreERT2;Ppargfl/fl mutants after
tamoxifen induction. S cells normally maintain a complex vesicle
transport system that shuttles Upks crystals and apical membrane
to endosomes for degradation when the bladder contracts during
voiding. When the bladder fills, the length of the apical surface of
S cells expands dramatically3. This expansion depends on de novo
synthesis of Upks, which are assembled into crystals and trans-
ported by specialized vesicles from the Golgi to the apical
surface40,41, a process that occurs several times each day. S cells
are long-lived, enormous, and polyploid and are likely to require
a substantial amount of energy to produce and transport biomass,

and hence may be particularly sensitive to mitochondrial defects.
On the other hand, structural alterations and lipid accumulation
in the mitochondria may lead to cell death, as has been observed
in the aging bladder, where lipofuscin accumulation in S cells is
lethal due to a decreased antioxidant capacity42. Progressive
accumulation of lipid and reactive oxidative species could con-
tribute to various age-related defects in urothelial function as well
as cancer and other diseases.

Pparg is known to be an important regulator of inflammatory
response, in part by regulating transcriptional activity of NF-κB,
which among other things, controls the innate immune response
to UPEC infection. p65/Rela, one of five NF-κB family members,
is transiently up-regulated in the wild-type urothelium in
response to UPEC infection, but persists in ShhCre;Ppargfl/fl

mutants for months accompanied by edema and leukocyte infil-
tration (Fig. 5), suggesting that mutants fail to resolve the NF-κB
response. NF-κB regulates expression of immune genes, and also
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Fig. 10 Pparg is required for proper regulation of NF-κB. a Heatmap showing changes in NF-κB target genes in the urothelium of ShhCre;Ppargfl/fl mutants
compared to Ppargfl/fl controls 4 weeks after UTI. b–d Expression of NF-κB (Rela), in the urothelium of adult Ppargfl/fl control mice 24 h after UTI (b), 72 h
after UTI (c), and 4 weeks after UTI (d). e–g Expression of NF-κB (Rela) in the urothelium of a ShhCre;Ppargfl/fl mutant 24 h post UTI (e), 72 h post UTI (f),
and 4 weeks post infection (g). White arrows pointed to urothelial cells with nuclear Rela staining. Analysis of Ppargfl/fl controls (h–l) and ShhCre;Ppargfl/fl

mutants (m–q) 4 weeks after UTI. Hematoxylin and eosin staining of the urothelium of an adult Ppargfl/fl control mouse (h) and a ShhCre;Ppargfl/fl mutant
mouse (m). CD45 expression in the urothelium of an adult Ppargfl/fl control mouse (i) and a ShhCre;Ppargfl/fl mutant mouse (n). F480 expression in the
urothelium of an adult Ppargfl/fl control mouse (j) and a ShhCre;Ppargfl/fl mutant mouse (o). CD3/Ecad expression in the urothelium of an adult Ppargfl/fl

control mouse (k) and a ShhCre;Ppargfl/fl mutant mouse (p). CD19/Ecad expression in the urothelium of a Ppargfl/fl control mouse (l) and a ShhCre;Ppargfl/fl

mutant mouse (q). The black arrow in (m) denotes edema in the bladder of ShhCre;Ppargfl/fl mutants. White arrows in (b, e, f, g) point to cells expressing
leukocyte markers. Scale bars: 50 μm. Numbers of animals for experiments: n= 3 ShhCre;Ppargfl/fl mutants and three controls were analyzed at 24 h post
infection, n= 4 ShhCre;Ppargfl/fl mutants and n= 4 controls were analyzed at 72 h post infection, n= 8 controls and n= 11 ShhCre;Ppargfl/fl mutants were
analyzed at 4 weeks post infection. For RNA-Seq experiments, n= 5 ShhCre;Ppargfl/fl mutants and n= 5 controls were analyzed
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plays an important role in epithelial barriers such as the skin, gut,
and esophagus, controlling recognition and response to invading
pathogens43–45. NF-κB signaling, as evidenced by p65 expression,
is activated rapidly in the wild-type urothelium in response to
UPEC infection. Recent studies suggest that its initial activation
may be triggered by binding of the bacterial adhesin, Fimh, to
Upk1a, which is expressed on the surface of S cells. This inter-
action triggers Toll-like receptor 4-mediated pattern recogni-
tion46. Pparg regulates NF-κB signaling by transrepression, either
by binding directly to the NF-κB protein, which prevents its
interaction with promoter regions of target genes, or alternately,
SUMOylated Pparg can bind to the nuclear receptor corepressor
complex on the promoter region of NF-κB target genes to prevent
the dissociation of co-repressors, which is required in gene
activation47,48. While the direct mechanism by which Pparg
controls NF-κB in the urothelium is unclear, our studies pro-
vide strong evidence that Pparg regulates p65/Rela expression and
is required in urothelial cells to suppress the innate immune
response induced by UPEC infection.

Positive and negative Pparg signaling can have profound effects
on bladder cancer cells49 and on immune functions in MIBC50.
Pparg expression is down-regulated in the basal subtype of MIBC
compared to the healthy urothelium, and up-regulated in the
luminal subtype of MIBC. We observed a number of abnormal-
ities in Pparg mutants that are similar to those observed in MIBC
subtypes with low Pparg expression, including increased expres-
sion of basal/squamous markers (Krt14, Krt6, Krt5), persistent
NF-κB signaling25,51, and up-regulation of pathways activated
during invasion (Snail1, Slug, and vimentin) as well as a com-
promised basement membrane (Fig. 9). Despite these similarities,
we did not observe tumor formation in ShhCre;Ppargfl/fl mutants,
suggesting that Pparg mutations are unlikely to be primary dri-
vers of tumor formation. Whether mutations in Pparg mutations
promote tumorigenesis in cooperation with other mutations, or
contribute to dis-regulated differentiation and immune functions
after tumor initiation are interesting possibilities.

Methods
Mice. ShhCre mice (B6.Cg-Shhtm1(EGFP/cre)Cjt/J)28 and mTmGfl/fl (Gt(ROSA)
26Sortm4(ACTB-tdTomato,-EGFP)Luo/J)52 mice were obtained from Jackson
Laboratory (stock #005622, #007576). K5CreERT2 mice (FVB.Cg-Tg(KRT5-
cre/ERT2)2Ipc/JeldJ)3233 were obtained from D. Metzger and P. Chambon.
Upk2CreERT2 mice (B6;CBA-Tg(Upk2-icre/ERT2)1Ccc) were generated in the
Cordon-Cardo lab30. Ppargfl/fl mice27 were obtained from Dr. Ira Goldberg. All
work with mice was approved by and performed under the regulations of the
Columbia University Institutional Animal Care and Use Committee. Animals
were housed in the animal facility of Irving Cancer Research Center, Columbia
University.

Genotyping. Genotyping was by PCR analysis of tail DNA. Primers for genotyping
Ppargfl/fl were: 5′-CTCCAATGTTCTCAAACTTAC-3′ (forward) and 5′- GAT-
GAGTCATGTAAGTTGACC-3′ (reverse), generating a 285 bp product from
floxed allele and a 250 bp product from wild-type allele. Primers for genotyping
ShhCre mice were: 5′-TGATGAGGTTCGCAAGAACC-3′ (forward) and 5′-
CCATGAGTGAACGAACCTGG-3′ (reverse), generating a 400 bp product. Pri-
mers for genotyping Upk2CreERT2 mice were 5′-GCGGGAGTTCCAGAAAGAG-3′
(common), 5′-AGGACAGCCAGCAGA ATCAG-3′ (wild type), and 5′-
AGATCTCCTGTGCAGCATG-3′ (mutant), generating a 250 bp product from
wild-type allele and a 290 bp product from floxed allele. Primers for Krt5CreERT2
mice were 5′-ATTTGCCTGCATTACCGGTC-3′ (forward) and 5′-
ATCAACGTTTTGTTTTCGGA-3′ (reverse), generating a 350 bp product. Primers
for genotyping mTmG mice were: 5′-CTCTGCTGCCTCCTGGCTTCT-3′ (com-
mon), 5′-TCAATGGGCGGGGGTCGTT-3′ (mutant), and 5′-CGAGGCGGAT-
CACAAGCAATA-3′ (wild type), generating a 330 bp product from wild-type allele
and a 250 bp product from floxed allele.

Tamoxifen and 4-OHT administration. Male and female adult Upk2CreERT2;
Ppargfl/fl mice (8–12 weeks of age) were injected with tamoxifen (Sigma, cat#
T5648), intraperitoneally, at a dose of 5 mg per 30 g body weight three times over a
period of 7 days. Male and female Krt5CreER and Ppargfl/fl mice (8–12 weeks of age)

were injected with tamoxifen, intraperitoneally, at a dose of 5 mg per 30 g body
weight for five consecutive days.

UTI with UPEC. UPEC strain UTI 89 (a gift from the Hultgren Lab) was isolated
from a patient with an acute bladder infection53. Adult female mice (8–14 weeks)
were anesthetized with isoflurane, and inoculated via transurethral catheterization
with 75 μl of bacterial suspension (107 CFU/ml) in phosphate-buffered saline (PBS)
or 75 μl sterile PBS according. Urine was collected 12 and 24 h post infection,
assayed for bacterial counts, and analyzed using the Cytospin and Hema3 staining
Kit (Fisher Scientific). Titers of 106–107 CFU/ml were considered to be a robust
infection. Sulfatrim (240 mg/kg) was administered 30 h after inoculation with UTI
89 to avoid re-infection. At the indicated times, mice were sacrificed, their bladders
were aseptically removed, and processed for microscopy and histology.

Analysis of Cre-dependent recombination in leukocytes. ShhCre;Ppargfl/fl;
mTmG mice were generated by intercrossing ShhCre;Ppargfl/fl mice with mTmGfl/fl

(Gt(ROSA)26Sortm4(ACTB-tdTomato,-EGFP)Luo/J)52 mice. In this line, cells that
undergo Cre-dependent recombination will express membrane-bound Gfp, and
cells that do not undergo recombination will express membrane-bound Tomato.
Leukocytes: To obtain leukocytes, samples were collected from ShhCre;Ppargfl/fl ;
mTmG mice via cardiac puncture and red blood cells were lysed in ACK lysis
buffer at room temperature for 5 min. Immune cells were then collected by cen-
trifugation at 300 × g for 5 min in an Eppendorf centrifuge. Pellets were re-
suspended in 300 μl FACS buffer and then passed through a 35 μm filter. Urothelial
cells: Bladders were dissected into OPTI-MEM media, opened and transferred to a
solution of 20 mM EDTA solution in PBS, and incubated for 20 min to loosen the
urothelium from the stroma. Bladders were then transferred to fresh OPTI-MEM
media and the urothelium were manually removed from the stroma. Medium
containing urothelial cells was then centrifuged at 500 × g for 5 min at 4 °C, in an
Eppendorf centrifuge. The supernatant was discarded, and the pellets were re-
suspended in 500 μl of 0.25% Trypsin-EDTA (Thermo Fisher, #25200056) and
incubated on a heating block at 37 °C for 25 min with trituration every 5 min.
Trypsin was neutralized by adding 500 μl Dulbecco’s modified Eagle’s medium:
nutrient mixture F-12 to the cell suspension. Urothelial cells were collected by
centrifugation at 500 × g for 5 min at 4 °C. Supernatants were discarded and pellets
were re-suspended in 300 μl FACS buffer and then passed through a 35 μm filter.
Single-cell suspension was obtained by resuspending pellets in 300 μl FACS buffer,
after which the suspension was passed through a 35 μm filter. Cells were analyzed
by a BD Aria II Cell sorter using 30 psi pressure and 100 μm nozzle aperture.

RNA-sequencing. For ShhCre;Ppargfl/fl mice, bladders were dissected into OPTI-
MEM media, and then transferred to a solution of 20 mM EDTA solution in PBS
and incubated for 20 min Bladders were then transferred to fresh OPTI-MEM
media and the urothelium was manually separated from the stroma. The media
containing urothelial cells were centrifuged at 500 × g for 5 min at 4 °C in an
Eppendorf 5417C Centrifuge. The supernatant was discarded, and the pellet was
processed for total RNA extraction. For Krt5CreER;mTmG;Ppargfl/fl mice, pellets
were re-suspended in 300 μl FACS buffer to produce a single-cell suspension. The
cell suspension was filtered through a 35 μm filter and then sorted on a BD Aria II
Cell cell sorter using 30 psi pressure and a 100 μm nozzle aperture to collect GFP-
positive cells. Cells were then centrifuged at 500 × g for 10 min at 4 °C. The
supernatant was discarded, and the pellet was processed for total RNA extraction.
Samples containing 100 ng and a RIN (regulation identification number) >8 were
used for RNA-Seq. Messenger RNA were enriched using poly-A pulldown before
proceeding to library preparation using Illumina TruSeq RNA prep kit. Libraries
were then sequenced using Illumina HiSeq2500/HiSeq4000 at the Columbia
Genome Center. Thirty million single-end 100 bp reads were acquired per sample.

Sequencing data was processed by RTA (Illumina) for base calling and
bcl2fastq2 (version 2.17) for converting BCL to fastq format, coupled with adaptor
trimming. Then, the reads were mapped to mouse: UCSC/mm10 as the reference
genome using STAR (2.5.2b) and feature Counts (v1.5.0-p3). Differentially
expressed genes were identified using DESeq, an R package based on a negative
binomial distribution that models the number reads from RNA-Seq experiments
and tests for differential expression. Differentially expressed genes were filtered by
average expression level (fragments per kilobase of transcript per million mapped
reads) >10, differential expression >2-fold, and adjusted p value <0.05 by
Benjamini–Hochberg multiple testing correction. Gene ontology categories were
obtained with q values <0.05 by Benjamini–Hochberg multiple testing correction.
Over-representation analysis was performed on gene sets from RNA-Seq data
obtained from analysis of controls vs. ShhCre;Ppargfl/fl mice, Upk2CreERT2;Ppargfl/fl

mice, and Krt5CreERT2;Ppargfl/fl mice, respectively. We used gene set analysis with
the ConsensusPathDB (http://cpdb.molgen.mpg.de/MCPDB), p values were set at
0.01 for all over-representation analysis analyses.

Immunostaining. Bladders were embedded in paraffin and serial sections were
generated. For immunohistochemistry, paraffin sections were deparaffinized using
HistoClear and rehydrated through a series of ethanol and 1× PBS washes. Antigen
retrieval was performed by boiling slides for 15 min in pH 9 buffer or 30 min in pH
6 buffer. Primary antibodies in 1% horse serum were incubated overnight at 4 °C.
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The next day, slides were washed with PBST three times for 10 min each and
secondary antibodies were applied for 2 h at room temperature. The following
primary antibodies were used in these studies: p63 mouse IgG (clone 4A4, Santa
Cruz Biotechnology, sc8431, 1:100) or rabbit IgG (GenTex, GTX102425, 1:300),
CK5 rabbit IgG (Covance, AF-138, PRB-160P, 1:300), or chicken IgY (Covance,
SIG-3475, 1:300), Ck20 mouse IgG2a, kappa, clone Ks20.8 (Dako, M7019, 1:250),
Ki67 rabbit IgG (Abcam, ab15580, 1:300), Tom20 rabbit IgG (Santa Cruz, SC-
11415, 1:2000), E-cadherin goat IgG (R&D System, AF748, 1:300), PPARG rabbit
IgG (Cell Signaling Technology, #2435, 1:100), FABP4 goat IgG (R&D Systems,
AF1443, 1:1000), Krt14 chicken IgY (BioLegend, 906001, 1:500) or rabbit IgG
(BioLegend, 905301, 1:300), ZO1 rabbit IgG (Thermo Fisher Scientific, 40-2300,
1:100), Krt6a rabbit (LSbio, LS-B12036, 1:500), Krt10 mouse IgG1 (Santa Cruz, Sc-
53252, 1:500), CLDN8 rabbit IgG (GeneTex, GTX77832, 1:50), UCHL1 mouse
IgG1 (Santa Cruz, sc-271639, 1:200), SNAIL+SLUG rabbit IgG (Abcam, ab180714,
1:200), laminin rabbit (Sigma, L9393, 1:100), actin, a smooth muscle mouse (Sigma,
C6198, 1:300), NF-κB p65 rabbit IgG (Abcam, ab19870, 1:300), CD45 rat IgG2b
(BD Sciences, 550539, 1:50), F4/80 rat IgG2a (Thermo Fisher Scientific, 14-4801-
82, 1:100), CD3 rat IgG1 (Abcam, ab11089, 1:50), CD19 rat IgG2a (Thermo Fisher
Scientific, 14-0194-82, 1:500), SPRR1A rabbit IgG (Biorbit, orb1053, 1:200), COX1
rabbit (Novus, NBP1-85500, 1:200), SOD1 mouse IgG (Santa Cruz, sc-17767,
1:200), SOD2 rabbit IgG (Abcam, ab13533, 1:500), and CPT2 rabbit IgG (Genetex,
GTX33117, 1:50). UPK1A, UPK1B, and UPK2 antibodies are gifts kindly provided
by Dr. Tung-Tien Sun at NYU. The following secondary antibodies from Jackson
Immunoresearch were used in our studies: Alexa Fluor 488 donkey anti-rabbit IgG
(711-545-152; 1:600), Alexa Fluor 488 donkey anti-mouse (715-545-150;1:600),
CY3-conjugated donkey anti-rabbit IgG (711-165-152; 1:600), Alexa Fluor 594
donkey anti-mouse IgG (715-585-151; 1:500), Alexa Fluor 647-conjugated donkey
anti-mouse IgG (715-605-150; 1:300), Alexa Fluor 647-conjugated donkey anti-
rabbit IgG (711-605-152; 1:300), Alexa Fluor 488 donkey anti-chicken (703-545-
155, 1:500), Alexa Fluor 594 donkey anti-chicken (703-585-155, 1:500), BODIPY
493/593 (Thermo Fisher Scientific D-3921, 4 μg/ml), MitoTracker™ Red CMXRos
(Thermo Scientific M7512, working solution 25 nM), WGA, and Alexa Fluor™ 488
conjugate (Thermo Fisher Scientific W11261, 10 μg/ml). DAPI (4′,6-diamidino-2-
phenylindole) was either applied as part of the secondary antibodies cocktail or for
10 min, for nuclear staining, and then the slides were sealed with coverslips.

Representative images for figures. For adult samples, at least two slides (eight
sections) were analyzed from each marker or set of markers from at least three
bladder samples. Five images were generated per/section and representative images
were chosen. For adults, sections were separated by 50 μm. For embryonic samples,
each set instance of marker analysis was performed on six sections from three or
more bladder samples, and sections were separated by 35 μm. At least five images
were taken from each section and a representative image was chosen for the figure.

Statistical analysis. All quantitation was performed on at least three independent
biological samples, using the ImageJ software. Data presented are mean values ± s.e.
m. Statistical analysis was performed using the GraphPad Prism software v8. In two
group comparisons, statistical significance was determined using a two-tailed
Student’s t test, considering a value of p <0.05 as significant. Multiple comparisons
were performed using the Kruskal–Wallis statistical test. All sample sizes met the
minimum requirements of the respective statistical test used. The number of
samples used in the experiments is included in figure legends.

Fluorescent microscopy. Immunofluorescence images were collected using a Zeiss
Axiovert 200M microscope with an Apotome (Zeiss). Bright-field images were
collected using a Nikon Eclipse TE200 microscope. Confocal microscopy was
performed on an A1R MP confocal microscope (Nikon Instruments) and data were
analyzed and rendered using NIS Elements (Nikon) and the Fiji package of ImageJ.

Electron microscopy. Fixed samples were osmicated 1–2 h with 1.5% (w/v)
reduced OsO4 in 100 mm cacodylate, pH 7.4, washed several times with distilled
water, and then block stained overnight at 4 °C in 0.5% (w/v) aqueous uranyl
acetate (Electron Microscopy Sciences, Hatfield, PA). Tissues were dehydrated in a
graded series of ethanol, embedded in the epoxy resin LX-112 (Electron Micro-
scopy Sciences), and sections (pale gold in color) were cut with a Diatome diamond
knife (Electron Microscopy Sciences). Sections were counterstained with uranyl
acetate and lead citrate and viewed on a JEOL 1011 transmission EM with a side
mount AMT 2K digital camera (Advanced Microscopy Techniques, Danvers, MA).
Images were imported into Photoshop CC (Adobe, San Jose, CA), adjusted for
brightness and contrast, and then assembled in Adobe Illustrator CC. All of the EM
studies were performed using an n= 3 for experimental and control. While our
study does not permit the quantification of the frequency of each phenotype
(mitobodies, and junctional defects), these abnormalities were readily observed in
every mutant analyzed. None of these features were observed in any of the controls.
The degree to which each phenotype represents the displayed image in the figures
is described below for the specific image.

Data availability
Data that support the findings of this study have been deposited in Gene Expression
Omnibus database under the accession code GSE123779.
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