
From transistor to trapped-ion computers
for quantum chemistry
M.-H. Yung1,2*, J. Casanova3*, A. Mezzacapo3, J. McClean2, L. Lamata3, A. Aspuru-Guzik2 & E. Solano3,4

1Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing, 100084, P. R.
China, 2Department of Chemistry and Chemical Biology, Harvard University, Cambridge MA, 02138, USA, 3Department of
Physical Chemistry, University of the Basque Country UPV/EHU, Apartado 644, 48080 Bilbao, Spain, 4IKERBASQUE, Basque
Foundation for Science, Alameda Urquijo 36, 48011 Bilbao, Spain.

Over the last few decades, quantum chemistry has progressed through the development of computational
methods based on modern digital computers. However, these methods can hardly fulfill the
exponentially-growing resource requirements when applied to large quantum systems. As pointed out by
Feynman, this restriction is intrinsic to all computational models based on classical physics. Recently, the
rapid advancement of trapped-ion technologies has opened new possibilities for quantum control and
quantum simulations. Here, we present an efficient toolkit that exploits both the internal and motional
degrees of freedom of trapped ions for solving problems in quantum chemistry, including molecular
electronic structure, molecular dynamics, and vibronic coupling. We focus on applications that go beyond
the capacity of classical computers, but may be realizable on state-of-the-art trapped-ion systems. These
results allow us to envision a new paradigm of quantum chemistry that shifts from the current transistor to a
near-future trapped-ion-based technology.

Q
uantum chemistry represents one of the most successful applications of quantum mechanics. It provides
an excellent platform for understanding matter from atomic to molecular scales, and involves heavy
interplay of experimental and theoretical methods. In 1929, shortly after the completion of the basic

structure of the quantum theory, Dirac speculated1 that the fundamental laws for chemistry were completely
known, but the application of the fundamental laws led to equations that were too complex to be solved. About
ninety years later, with the help of transistor-based digital computers, the development of quantum chemistry
continues to flourish, and many powerful methods, such as Hartree-Fock, configuration interaction, density
functional theory, coupled-cluster, and quantum Monte Carlo, have been developed to tackle the complex
equations of quantum chemistry (see e.g. for a historical review2). However, as the system size scales up, all of
the methods known so far suffer from limitations that make them fail to maintain accuracy with a finite amount of
resources3. In other words, quantum chemistry remains a hard problem to be solved by the current computer
technology.

As envisioned by Feynman4, one should be able to efficiently solve problems of quantum systems with a
quantum computer. Instead of solving the complex equations, this approach, known as quantum simulation
(see the recent reviews in Refs. 5–7), aims to solve the problems by simulating target systems with another
controllable quantum system, or qubits. Indeed, simulating many-body systems beyond classical resources
will be a cornerstone of quantum computers. Quantum simulation is a very active field of study and various
methods have been developed. Quantum simulation methods have been proposed for preparing specific
states such as ground8–13 and thermal states14–20, simulating time evolution21–27, and the measurement of
physical observables28–31.

Trapped-ion systems (see Fig. 1) are currently one of the most sophisticated technologies developed for
quantum information processing32. These systems offer an unprecedented level of quantum control, which opens
new possibilities for obtaining physico-chemical information about quantum chemical problems. The power of
trapped ions for quantum simulation is manifested by the high-precision control over both the internal degrees of
freedom of the individual ions and the phonon degrees of freedom of the collective motions of the trapped ions,
and the high-fidelity initialization and measurement32,33. Up to 100 quantum logic gates have been realized for six
qubits with trapped ions22, and quantum simulators involving 300 ions have been demonstrated34.

In this work, we present an efficient toolkit for solving quantum chemistry problems based on the state-of-the-
art in trapped-ion technologies. The toolkit comprises two components i) First, we present a hybrid quantum-
classical variational optimization method, called quantum-assisted optimization, for approximating both
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ground-state energies and the ground-state eigenvectors for elec-
tronic problems. The optimized eigenvector can then be taken as
an input for the phase estimation algorithm to project out the
exact eigenstates and hence the potential-energy surfaces (see
Fig. 2). Furthermore, we extend the application of the unitary
coupled-cluster method35. This allows for the application of a
method developed for classical numerical computations in the
quantum domain. ii) The second main component of our toolkit
is the optimized use of trapped-ion phonon degrees of freedom
not only for quantum-gate construction, but also for simulating
molecular vibrations, representing a mixed digital-analog quan-
tum simulation. The phonon degrees of freedom in trapped-ion
systems provide a natural platform for addressing spin-boson or
fermion-boson-type problems through quantum simulation23,36–40.
It is noteworthy to mention that, contrary to the continuous of
modes required for full-fledged quantum field theories, quantum
simulations of quantum chemistry problems could reach realistic
conditions for finite bosonic and fermionic mode numbers.
Consequently, trapped ions can be exploited to solve dynamical
problems involving linearly or non-linearly coupled oscillators,
e.g., spin-boson models41,42, that are difficult to solve either ana-
lytically or numerically with a classical computer. Furthermore, we
have also developed a novel protocol to measure correlation func-
tions of observables in trapped ions that will be crucial for the
quantum simulation of quantum chemistry.

Results and Discussion
Trapped ions for quantum chemistry. Quantum chemistry deals
with the many-body problem involving electrons and nuclei.
Thus, it is very well suited for being simulated with trapped-ion
systems, as we will show below. The full quantum chemistry
Hamiltonian, H 5 Te 1 Ve 1 TN 1 VN 1 VeN, is a sum of the

kinetic energies of the electrons Te:{
�h2

2m
X

i+
2
e,i and nuclei

TN:{
X

i

�h2

2Mi
+2

N,i, and the electron-electron Ve ;
X

j.ie2/jri 2 rjj,

nuclei-nuclei VN ;
X

j.iZiZje2/jRi 2 Rjj, and electron-nuclei
VeN ; 2

X
i,jZje2/jri 2 Rjj potential energies, where r and R

respectively refer to the electronic and nuclear coordinates.
In many cases, it is more convenient to work on the second-quant-

ization representation for quantum chemistry. The advantage is that
one can choose a good fermionic basis set of molecular orbitals,
pj i~c{p vacj i, which can compactly capture the low-energy sector of

the chemical system. This kind of second quantized fermionic
Hamiltonians are efficiently simulatable in trapped ions23. To be more
specific, we will choose first M . N orbitals for an N-electron system.
Denote wp (r) ; Ærjpæ as the single-particle wavefunction correspond-
ing to mode p. The electronic part, He(R) ; Te 1 VeN (R) 1 Ve, of the
Hamiltonian H can be expressed as follows:

Figure 1 | Simulating quantum chemistry with trapped ions. (a) Scheme of a trapped-ion setup for quantum simulation, which contains a linear chain of

trapped ions confined by a harmonic potential, and external lasers that couple the motional and internal degrees of freedom. (b) Transitions between

internal and motional degrees of freedom of the ions in the trap. (c) The normal modes of the trapped ions can simulate the vibrational degrees of freedom

of molecules. (d) The internal states of two ions can simulate all four possible configurations of a molecular orbital.

Figure 2 | Outline of the quantum-assisted optimization method. (a) The key steps for quantum assisted optimization, which starts from classical

solutions. For each new set of parameters l’s, determined by a classical optimization algorithm, the expectation value ÆHæ is calculated. The potential

energy surface is then obtained by quantum phase estimation. (b) Quantum measurements are performed for the individual terms in H, and the sum is

obtained classically. (c) The same procedure is applied for each nuclear configuration R to probe the energy surface.
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He Rð Þ~
X

pq

hpqc{pcqz
1
2

X
pqrs

hpqrsc
{
pc{qcrcs, ð1Þ

where hpq is obtained from the single-electron integral hpq:

{

ð
drw�p rð Þ TezVeNð Þwq rð Þ, and hpqrs comes from the electron-electron

Coulomb interaction, hpqrs:
ð
dr1dr2w�p r1ð Þw�q r2ð ÞVe r1{r2j jð Þwr r2ð Þws r1ð Þ.

We note that the total number of terms in He is O(M4); typically M is
of the same order as N. Therefore, the number of terms in He scales
polynomially in N, and the integrals {hpq, hpqrs} can be numerically
calculated by a classical computer with polynomial resources9.

To implement the dynamics associated with the electronic
Hamiltonian in Eq. (1) with a trapped-ion quantum simulator,
one should take into account the fermionic nature of the operators
cp and c{q . We invoke the Jordan-Wigner transformation (JWT),
which is a method for mapping the occupation representation to
the spin (or qubit) representation43. Specifically, for each ferm-
ionic mode p, an unoccupied state j0æp is represented by the
spin-down state j#æp, and an occupied state j1æp is represented
by the spin-up state j"æp. The exchange symmetry is enforced by

the Jordan-Wigner transformation: c{p~ Pmvpsz
m

� �
sz

p and cp~

Pmvpsz
m

� �
s{

p , where s6 ; (sx 6 isy)/2. Consequently, the

electronic Hamiltonian in Eq. (1) becomes highly nonlocal in
terms of the Pauli operators {sx, sy, sz}, i.e.,

He
JWT
��! X

i,j,k...[ x,y,zf g
gijk... si

16s
j
26sk

3 . . .
� �

: ð2Þ

Nevertheless, the simulation can still be made efficient with
trapped ions, as we shall discuss below.

In trapped-ion physics two metastable internal levels of an ion are
typically employed as a qubit. Ions can be confined either in Penning
traps or radio frequency Paul traps33, and cooled down to form
crystals. Through sideband cooling the ions motional degrees of
freedom can reach the ground state of the quantum Harmonic oscil-
lator, that can be used as a quantum bus to perform gates among the
different ions. Using resonance fluorescence with a cycling transition
quantum non demolition measurements of the qubit can be per-
formed. The fidelities of state preparation, single- and two-qubit
gates, and detection, are all above 99%32.

The basic interaction of a two-level trapped ion with a single-mode
laser is given by32, H~�hVsze{i Dt{wð Þ exp ig ae{ivt tza{eivt t

� �� �
z

H:c:, where s6 are the atomic raising and lowering operators, a (a{)
is the annihilation (creation) operator of the considered motional
mode, and V is the Rabi frequency associated to the laser strength. g
5 kz0 is the Lamb-Dicke parameter, with k the wave vector of the

laser and z0~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�h= 2mvtð Þ

p
the ground state width of the motional

mode. w is a controllable laser phase and D the laser-atom detuning.

In the Lamb-Dicke regime where g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aza{ð Þ2

D Er
=1, the basic

interaction of a two-level trapped ion with a laser can be rewritten as

H~�hV sze{i Dt{wð Þzigsze{i Dt{wð Þ ae{ivt tza{eivt t
� �

zH:c:
h i

By adjusting the laser detuning D, one can generate the three basic
ion-phonon interactions, namely: the carrier interaction (D50)
Hc~�hV(szeiwzs{e{iw), the red sideband interaction (D 5 2vt)
Hr~i�hgV(szaeiw{s{a{e{iw), and the blue sideband interaction
(D 5 vt) Hb~i�hgV(sza{eiw{s{ae{iw). By combining detuned
red and blue sideband interactions, one obtains the Mølmer-
Sørensen gate44, which is the basic building block for our methods.
With combinations of this kind of gates, one can obtain dynamics as

the associated one to He in Eq. (2), that will allow one to simulate
arbitrary quantum chemistry systems.

Quantum-assisted optimization. Quantum-assisted optimization45

(see also Fig. 2) for obtaining ground-state energies aims to optimize
the use of quantum coherence by breaking down the quantum
simulation through the use of both quantum and classical
processors; the quantum processor is strategically employed for
expensive tasks only.

To be more specific, the first step of quantum-assisted optimiza-
tion is to prepare a set of quantum states {jylæ} that are characterized
by a set of parameters {l}. After the state is prepared, the expectation
value El ; Æylj H jylæ of the Hamiltonian H will be measured
directly, without any quantum evolution in between. Practically,
the quantum resources for the measurements can be significantly
reduced when we divide the measurement of the Hamiltonian H 5X

iHi into a polynomial number of small pieces ÆHiæ (cf Eq. (2)).
These measurements can be performed in a parallel fashion, and
no quantum coherence is needed to maintain between the measure-
ments (see Fig. 2a and 2b). Then, once a data point of El is obtained,
the whole procedure is repeated for a new state y0l



 �� 

with another

set of parameters {l9}. The choice of the new parameters is deter-
mined by a classical optimization algorithm that aims to minimize El

(see Methods). The optimization procedure is terminated after the
value of El converges to some fixed value.

Finally, for electronic Hamiltonians He(R), the optimized state can
then be sent to a quantum circuit of phase estimation algorithm to
produce a set of data point for some R on the potential energy
surfaces (Fig. 2c shows the 1D case). After locating the local minima
of the ground and excited states, vibronic coupling for the electronic
structure can be further studied (see Supplementary Material).

The performance of quantum-assisted optimization depends cru-
cially on (a) the choice of the variational states, and (b) efficient
measurement methods. We found that the unitary coupled-cluster
(UCC) states35 are particularly suitable for being the input state for
quantum-assisted optimization, where each quantum state jylæ can
be prepared efficiently with standard techniques in trapped ions.
Furthermore, efficient measurement methods for He are also avail-
able for trapped ion systems. We shall discuss these results in detail in
the following sections.

Unitary coupled-cluster (UCC) ansatz. The unitary coupled-cluster
(UCC) ansatz35 assumes electronic states jyæ have the following

form, yj i~eT{T{
Wj i, where jWæ is a reference state, which can be,

e.g., a Slater determinant constructed from Hartree-Fock molecular
orbitals. The particle-hole excitation operator, or cluster operator T,
creates a linear combination of excited Slater determinants from jWæ.
Usually, T is divided into subgroups based on the particle-hole rank.
More precisely, T 5 T1 1 T2 1 T3 1 … 1 TN for an N-electron
system, where T1~

X
i,ata

i c{aci, T2~
X

i,j,a,btab
ij c{ac{bcjci, and so on.

Here c{a creates an electron in the orbital a. The indices a, b label
unoccupied orbitals in the reference state jWæ, and i, j label occupied

orbitals. The energy obtained from UCC, namely E~ Wh jeT{{T

HeT{T{
Wj i is a variational upper bound of the exact ground-state

energy.
The key challenge for implementing UCC on a classical computer

is that the computational resource grows exponentially. It is because,

in principle, one has to expand the expression ~H:eT{{T HeT{T{

into an infinity series, using the Baker-Campbell-Hausdorff expan-
sion. Naturally, one has to rely on approximate methods35,46 to trun-
cate the series and keep track of finite numbers of terms. Therefore,
in order to make good approximations by perturbative methods, i.e.,
assuming T is small, one implicitly assumes that the reference state
jWæ is a good solution to the problem. However, in many cases, such
an assumption is not valid and the use of approximate UCC breaks
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down. We explain below how implementing UCC on a trapped-ion
quantum computer can overcome this problem.

Implementation of UCC through time evolution. We can generate
the UCC state by simulating a pseudo time evolution through

Suzuki-Trotter expansion on the evolution operator eT{T{ 21. To
proceed, we consider an N-electron system with M, where M . N,
molecular orbitals (including spins). We need totally M qubits; the
reference state is the Hartree-Fock state where N orbitals are filled,
and M 2 N orbitals are empty, i.e, jWæ 5 j000…0111…1æ. We also
define an effective Hamiltonian K ; i (T 2 T{), which means that we
should prepare the state e2iK jWæ.

We decompose K into subgroups K 5 K1 1 K2 1 K3 1 … 1 KP,

where P # N, and Ki:i Ti{T{
i

� �
. We now write e2iK 5 (e2iKd)1/d for

some dimensionless constant d. For small d, we have e{iKd<
e{iKPd . . . e{iK2de{iK1d. Since each Kj contains Nj(M 2 N)j terms
of the creation c{ and annihilation c operators, we will need to indi-

vidually simulate each term separately, e.g., e{i tc{aci{t�c{i cað Þ and

e{i tc{ac{b cjci{t�c{i c{j cbca

� �
, which can be implemented by transforming

into spin operators through Jordan-Wigner transformation. The
time evolution for each term can be simulated with a quantum circuit
involving many nonlocal controlled gates, which can be efficiently
implemented with trapped ions as we shall see below.

Implementation of UCC and simulation of time evolution with
trapped-ions. Our protocol for implementing the UCC ansatz
requires the simulation of the small-time t/n evolution of non-local
product of Pauli matrices of the form: e{iHlt=n, where Hl~gls

i
1

s
j
2sk

3 � � � for i, j, k g {x, y, z}. Note that for any N-spin interaction,
the e{iHlt=n terms are equivalent to eiwsz

1sx
2sx

3 ���sx
N through local spin rota-

tions, which are simple to implement on trapped ions. Such a non-local
operator can be implemented using the multi-particle Mølmer-
Sørensen gate23,39: UMS(h, Q) ; exp [2ih(cos QSx 1 sin QSy)2/4],
where Sx,y:

X
is

x,y
i is a collective spin operator. Explicitly,

eiwsz
1
sx

2sx
3 ���sx

N ~UMS
{p

2
,0

� �
RN wð ÞUMS

p

2
,0

� �
: ð3Þ

Here RN(w) is defined as follows: for any m [ N, RN wð Þ~e+iwsz
1 for N

5 4m 6 1, and (ii) RN wð Þ~eiws
y
1 for N 5 4m, and (iii) RN wð Þ~e{iws

y
1

for N 5 4m 2 2.
It is remarkable that the standard quantum-circuit treatment (e.g.

see Ref.47) for implementing each e{iHlt=n involves as many as 2N
two-qubit gates for simulating N fermionic modes; in our protocol
one needs only two Mølmer-Sørensen gates, which are straightfor-
wardly implementable with current trapped-ion technology.
Furthermore, the local rotation RN(w) can also include motional
degrees of freedom of the ions for simulating arbitrary fermionic
Hamiltonians coupled linearly to bosonic operators ak and a{k .

Measurement of arbitrarily-nonlocal spin operators. For any given
state jyæ, we show how to encode expectation value of products of

Pauli matrices si
16s

j
26sk

36 � � �
D E

: yh jsi
16s

j
26sk

36 � � � yj i,
where i, j, k g {x, y, z}, onto an expectation value of a single qubit.
The idea is to first apply the unitary evolution of the form:

e{ih si
16s

j
26���ð Þ, which as we have seen (cf Eq. 3) can be generated

by trapped ions efficiently, to the state jyæ before the measurement.

For example, defining yhj i:e{ih sx
16sx

26���ð Þ yj i, we have the relation

yhh jsz
1 yhj i~cos 2hð Þ sz

1

� �
zsin 2hð Þ s

y
16sx

26 � � �
� �

, ð4Þ

which equals yh j s
y
16sx

26 . . .
� �

yj i for h5p/4. Note that the
application of this method requires the measurement of one qubit

only, making this technique especially suited for trapped ion systems
where the fidelity of the measurement of one qubit is 99.99%48.

This method can be further extended to include bosonic operators
in the resulting expectation values. For example, re-define

yhj i:e{ih si
16s

j
26���ð Þ6 aza{ð Þ yj i and consider h R h (a 1 a{) in

Eq. (4). We can obtain the desired correlation through the deriva-
tive of the single-qubit measurement: Lh yhh jsz

1 yhj i h~0j ~

{2 s
y
16sx

26 � � �
� �

aza{
� �� �

. Note that the evolution operator of

the form e{ih si
16s

j
26���ð Þ6 aza{ð Þ can be generated by replacing the

local operation RN(w) in Eq. 3 with e+iwsi
1 aza{ð Þ. This technique

allows us to obtain a diverse range of correlations between bosonic
and internal degrees of freedom.

Probing potential energy surfaces. In the Born-Oppenheimer (BO)
picture, the potential energy surface Ek Rð ÞzVN Rð Þ associated with
each electronic eigenstate jwkæ is obtained by scanning the eigen-
values Ek Rð Þ for each configurations of the nuclear coordinates
{R}. Of course, we can apply the standard quantum phase estima-
tion algorithm49 that allows us to extract the eigenvalues. However,
this can require many ancilla qubits. In fact, locating these
eigenvalues can be achieved by the phase estimation method
utilizing one extra ancilla qubit12 corresponding, in our case, to
one additional ion.

This method works as follows: suppose we are given a certain
quantum state jyæ (which may be obtained from classical solutions
with quantum-assisted optimization) and an electronic Hamiltonian
He(R) (cf. Eq. (1)). Expanding the input state, jyæ 5

X
k ak jwkæ, by

the eigenstate vectors jwkæ of He(R), where He Rð Þ wkj i~Ek Rð Þ wkj i,
then for the input state j0æ jyæ, the quantum circuit of the quantum
phase estimation produces the following output state,

1
. ffiffiffi

2
p� �X

kak 0j ize{ivkt 1j i
� �

wkj i, where vk~Ek=�h. The corres-

ponding reduced density matrix,

1
2

1P
k akj j2e{ivkt

P
k akj j2eivkt

1

 !
, ð5Þ

of the ancilla qubit contains the information about the weight
(amplitude-square) jakj2 of the eigenvectors jwkæ in jyæ and the assoc-
iated eigenvalues vk in the off-diagonal matrix elements. All jakj2’s
and vk’s can be extracted by repeating the quantum circuit for a
range of values of t and performing a (classical) Fourier transform
to the measurement results. The potential energy surface is obtained
by repeating the procedure for different values of the nuclear coor-
dinates {R}.

Numerical investigation. In order to show the feasibility of our
protocol, we can estimate the trapped-ion resources needed to simu-
late, e.g., the prototypical electronic Hamiltonian He~

X
hpqa{paq

z 1=2ð Þ
X

hpqrsa
{
pa{qaras as described in Eq. (1), for the specific case

of the H2 molecule in a minimal STO-3G basis. This is a two-electron
system represented in a basis of four spin-orbitals. The hydrogen
atoms were separated by 0.75 Å, near the equilibrium bond dis-
tance of the molecule. The Hamiltonian is made up of 12 terms,
that include 4 local ion operations and 8 non-local interactions.
Each of the non-local terms can be done as a combination of two
Mølmer-Sørensen (MS) gates and local rotations, as described in
Table 1. Therefore, to implement the dynamics, one needs 16 MS
gates per Trotter step and a certain number of local rotations upon
the ions. Since p/2 MS gates can be done in , 50 ms, and local
rotations can be performed in negligible times (, 1 ms)22,32, the
total simulation time can be assumed of about 800 ms for the n51
protocol, 1.6 ms and 2.4 ms for the n52 and n53 protocols. Thus
total simulation times are within the decoherence times for trapped-
ion setups, of about 30 ms32. In a digital protocol performed on real

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 4 : 3589 | DOI: 10.1038/srep03589 4



quantum systems, each gate is affected by an error. Thus, increasing
the number of Trotter steps leads to an accumulation of the single
gate error. To implement an effective quantum simulation, on one
hand one has to increase the number of steps to reduce the error due
to the digital approximation, on the other hand one is limited by the
accumulation of the single gate error. We plot in Fig. 3a, 3b, 3c, the
fidelity loss 1 2 jÆYSjYEæj2 of the simulated state jYSæ versus
the exact one jYEæ, for the hydrogen Hamiltonian, starting from
the initial state with two electrons in the first two orbitals. We plot,
along with the digital error, three horizontal lines representing the
accumulated gate error, for n51, 2, 3 in each plot, considering a
protocol with an error per Trotter step of ~10{3 (a), ~10{4 (b)
and ~10{5 (c). To achieve a reasonable fidelity, one has to find a
number of steps that fits the simulation at a specific time. The vertical
lines and arrows in the figure mark the time regions in which the
error starts to be dominated by the digital error. Trapped-ion two-
qubit gates are predicted to achieve in the near future infidelities of
1024, thus making the use of these protocols feasible50. In Fig. 3d we
plot the behavior of the energy of the system for the initial state
j""##æ for the exact dynamics, versus the digitized one. Again, one
can observe how the energy can be retrieved with a small error within
a reduced number of digital steps.

Conclusions
Summarizing, we have proposed a quantum simulation toolkit for
quantum chemistry with trapped ions. This paradigm in quantum
simulations has several advantages: an efficient electronic simu-
lation, the possibility of interacting electronic and vibrational degrees
of freedom, and the increasing scalability provided by trapped-ion
systems. This approach for solving quantum chemistry problems
aims to combine the best of classical and quantum computation.

Methods
To implement the optimization with the UCC wavefunction ansatz on a trapped-ion
quantum simulator, our proposal is to first employ classical algorithms to obtain
approximate solutions35,46. Then, we can further improve the quality of the solution by
searching for the true minima with an ion trap. The idea is as follows: first we create a
UCC ansatz by the Suzuki-Trotter method described in the previous section. Denote
this choice of the cluster operator as T(0), and other choices as T(k) with k51, 2, 3, ….

The corresponding energy E0~ Wh jeT 0ð Þ{{T 0ð Þ
HeT 0ð Þ{T 0ð Þ{

Wj i of the initial state is
obtained by a classical computer.

Next, we choose another set of cluster operator T(1) which is a perturbation

around T(0). Define the new probe state wkj i:eT kð Þ{T kð Þ{
Wj i. Then, the expectation

value of the energy E1~ Wh jeT 1ð Þ{{T 1ð Þ
HeT 1ð Þ{T 1ð Þ{

Wj i~ w1h jH w1j i can be
obtained by measuring components of the second quantized Hamiltonian,
w1h jH w1j i~

X
pqrs

~hpqrs w1h jc{pc{qcrcs w1j i. Recall that the coefficients ~hpqrs are all

precomputed and known.
In order to obtain measurement results for the operators w1h jc{pc{qcr cs w1j i, we will

first convert the fermion operators into spin operators via Jordan-Wigner trans-
formation; the same procedure is applied for creating the state jw1æ. The quantum
measurement for the resulting products of Pauli matrices can be achieved efficiently
with trapped ions, using the method we described.

The following steps are determined through a classical optimization algorithm.
There can be many choices for such an algorithm, for example gradient descent
method, Nelder-Mead method, or quasi-Newton methods. For completeness, we
summarize below the application of gradient descent method to our optimization
problem.

First we define the vector T kð Þ~ ta kð Þ
i ,tab kð Þ

ij , . . .
� �T

to contain all coefficients in the

cluster operator T(k) at the k-th step. We can also write the expectation value E (T(k)) ;
Æwkj H jwkæ for each step as a function of T(k). The main idea of the gradient descent
method is that E (T(k)) decreases fastest along the direction of the negative gradient of
E (T(k)), 2=E (T(k)). Therefore, the (k 1 1)-th step is determined by the following
relation:

T kz1ð Þ~T kð Þ{ak+E T kð Þ
� �

, ð6Þ

where ak is an adjustable parameter; it can be different for each step. To obtain values
of the gradient =E (T(k)), one may use the finite-difference method to approximate the
gradient. However, numerical gradient techniques are often susceptible to numerical
instability. Alternatively, we can invoke the Hellman-Feynman theorem and get, e.g.,Ta
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L
�
Lta

i

� �
E T kð Þ
� �

~ wkh j H,c{aci
� �

wkj i, which can be obtained with a method similar to

that for obtaining E(T(k)).
Finally, as a valid assumption for general cases, we assume our parametrization

of UCC gives a smooth function for E (T(k)). Thus, it follows that E T 0ð Þ
� �

§

E T 1ð Þ� �
§E T 2ð Þ� �

§ � � � , and eventually E (T(k)) converges to a minimum value for
large k. Finally, we can also obtain the optimized UCC quantum state.
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