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Severe COVID-19 is associated with profound lymphopenia and an elevated neutrophil to
lymphocyte ratio. We applied a novel dimer avoidance multiplexed polymerase chain
reaction next-generation sequencing assay to analyze T (TCR) and B cell receptor (BCR)
repertoires. Surprisingly, TCR repertoires were markedly diminished during the early onset
of severe disease but recovered during the convalescent stage. Monitoring TCR
repertoires could serve as an indicative biomarker to predict disease progression and
recovery. Panoramic concurrent assessment of BCR repertoires demonstrated isotype
switching and a transient but dramatic early IgA expansion. Dominant B cell clonal
expansion with decreased diversity occurred following recovery from infection. Profound
changes in T cell homeostasis raise critical questions about the early events in COVID-19
infection and demonstrate that immune repertoire analysis is a promising method for
evaluating emergent host immunity to SARS-CoV-2 viral infection, with great implications
for assessing vaccination and other immunological therapies.
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INTRODUCTION

The current outbreak of coronavirus disease (COVID-19) was first reported in Wuhan, China (1, 2).
The virus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a virus closely related
to SARS-CoV, endemic in 2003 (3). The virus caused low respiratory tract pneumonia, but it also
affects multiple organs such as the kidney, liver, brain, gastrointestinal tract, and heart. The virus
spreads by respiratory droplets, urine, and feces (4, 5). Clinical symptoms of SARS-CoV-2 include
org September 2020 | Volume 11 | Article 5820101
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fever, cough, shortness of breath, and chest pain. The pneumonia
in those with this disease is characterized by bilateral ground-
glass opacities identified on chest CT scans (4, 5). The majority of
COVID-19 patients show mild or moderate symptoms and
recover after proper clinical care. However, some COVID-19
patients rapidly develop severe pneumonia, subsequent multi-
organ failure, and death (6). Pathologic examination reveals
diffuse alveolar damage, proteinaceous plugs, and a prominent
myeloid infiltrate and a paucity of lymphocytes (7–10).

Despite global pandemic threats of COVID-19 disease, the host
immune response against SARS-CoV-2 infection remains poorly
understood. Lymphopenia is common in SARS-CoV-2 infected
patients and was found as well as in SARS-CoV and Middle East
respiratory syndrome (MERS) patients (4, 6, 11). It has been
observed that the counts of total T cells, CD4+ and CD8+
subtype T cells, were dramatically reduced in severe COVID-19
cases with increased expression of programmed death-ligand 1
(PD-1) and T cell immunoglobulin mucin 3 (Tim-3), indicating
activation and T cell exhaustion (12). Monitoring the dynamics of
lymphocyte number and phenotype has been suggested as a means
topredict the severity ofCOVID-19 (13).OlderCOVID-19patients
with comorbidities are at a particularly high risk of severe
pneumonia and death. The diminished T cell repertoire and
progressive defects in T cell and B cell function in older patients
could limit viral clearance and prolong the innate proinflammatory
response (14, 15).

The human adaptive immune system consists of both naïve
and memory cells, which express either cell surface B cell
receptors (BCRs) or T cells receptors (TCRs), in aggregate
termed the adaptome (16). Recently, next-generation
sequencing (NGS) of BCRs and TCRs have been used widely
to evaluate immunity (17–21). Analyzing the full repertoires
could provide a better understanding of the immune response to
SARS-CoV-2 and other infections. Because all seven of the
immune repertoire chains, including IgH (all isotypes), IgK,
IgL, TCR-Alpha, Beta chains, and TCR – Gamma, Delta chains
are amplified under the same conditions in one PCR reaction
with our method, the expression level of these genes can be
directly compared with an inclusive and quantitative pattern
(16). Here, we deeply investigated the peripheral blood repertoire
from patients throughout their course of COVID-19 disease,
demonstrating dynamic changes over the disease course.
MATERIALS AND METHODS

Isolation of PBMCs and RNA Extraction
Six-eight milliliter PBMCs were isolated by density gradient
separation on a Ficoll-Hypaque gradient as previously
described (22) (GE Healthcare, Chicago, IL, USA). Initially 2
million cells were used to extract total RNAs using TRIzol™ LS
reagent according to the manufacturer’s protocol Invitrogen.

Unbiased Amplification of TCRs and BCRs
In this study, iR-RepSeq-plus 7-Chain Cassette (iRepertoire,
catalog no. iR+7chain-HLRI-C) was used to generate NGS
Frontiers in Immunology | www.frontiersin.org 2
libraries covering all TCR and BCR chains including TCR-beta,
-alpha, -delta, -gamma, and BCR-IgH, -IgK, -IgL. All seven
chains were amplified in a single assay using a strategy which
allows the incorporation of unique molecular identifiers (UMIs)
during the reverse transcription (RT) step. One disposable
cassette is for one sample’s library preparation; all necessary
reagents for amplification and purification are preloaded into the
cassette. Extracted RNA (1000 ng) with an appropriate volume of
RT mix and nuclease-free water were added into the cassette,
which was processed by the iR-Processor. The instrument can
automatically set up and carry out all amplification and
purification. Briefly, RT is performed using Qiagen OneStep
RT-PCR mix (Qiagen). First-strand cDNA was selected, and
remnant primers were removed by SPRIselect bead selection
(Beckman Coulter) followed by the second round of binding and
extension with the V-gene primer mix. After binding and extension,
SPRIselect beads were used to purify the first and second strand
synthesis products. Library amplification is performed with a pair of
primers that are specific for communal sites engineered onto the 5’
end of the C- and V- primers used in first and second-strand
synthesis, the detailed information would be found on iRepertoire
Inc website. The final constructed library includes Illumina dual
index sequencing adapters, a 10-nucleotide UMIs, and an 8-
nucleotide internal barcode associated with the C-gene primer.
Amplified libraries were multiplexed and pooled for sequencing
on the Illumina NovaSeq platform with a 500-cycle kit (250 paired-
end reads) through a commercial sequencing service lab (Personal
Biotechnology Co., Ltd, Shanghai, China). The output of the
immune receptor sequence covers within the first framework
region through the beginning of the constant region including
CDR1, CDR2, and CDR3.

Data Collection and Bioinformatics
Analysis
Raw data were analyzed using the previously described iRmap
program (17, 23). Briefly, sequence reads were de-multiplexed
according to barcode sequences at the 5’ end of reads from the
constant region. Reads were then trimmed according to their base
qualities with a 2-base sliding window. If either quality value in this
window is lower than 20, this sequence stretches from the window
to 3’ end was trimmed out from the original read. Trimmed pair-
end reads were joined together through overlapping alignment
with a modified Needleman-Wunsch algorithm. If paired forward
and reverse reads in the overlapping region were not perfectly
matched, both forward and reverse reads were thrown out without
further consideration. The merged reads were mapped using a
Smith-Waterman algorithm to germline V, D, J, and C reference
sequences downloaded from the IMGT website (http://www.imgt.
org/vquest/refseqh.html#VQUEST) (24). To define the CDR3
region, the position of CDR3 boundaries of reference sequences
from the IMGT database was migrated onto reads through
mapping results, and the resulting CDR3 regions were extracted
and translated into amino acids. The dataset was condensed by the
combination of UMIs and CDR3 regions to remove incorrect
CDR3s introduced by sequencing and amplification. Reads with
the same combination of CDR3 andUMI were condensed into one
September 2020 | Volume 11 | Article 582010
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UMI count. The effect of percentage of TCRs and BCRs was
analyzed by an unpaired two-tailed t-test. All the tests were
implemented in the GraphPad Prism 7.0 software (GraphPad
Software, La Jolla, California, USA).
RESULTS

Dynamic Repertoire Changes Over the
Disease Course of COVID-19
We collected 23 peripheral blood mononuclear cells (PBMCs)
samples from COVID-19 patients. Among them, three patients
each provided four samples at times that ranged from early stage
to recovery stage (Supplementary Figure 1). The cohort
includes 4 males and 6 females, with a median age of 57 years
old (ranging from 33 to 81 years) (Supplementary Table 1 and
Supplementary Figure 1). Peripheral blood samples from 15
Asian healthy donors were collected as normal controls, which
included 9 males and 6 females, with ages ranging from 22 to 67
years (Supplementary Table 1). The inclusion criteria for
healthy donors were: 1) no apparent chronic disease; and 2) no
diagnosis of acute diseases in the past three months. We used
Frontiers in Immunology | www.frontiersin.org 3
four sequential PBMC samples obtained from a 59-year-old
healthy seasonal influenza vaccinee as a longitudinal healthy
control. We amplified the immune repertoires including all TCR
chains (TCR-alpha, TRA; TCR-beta, TRB; TCR-delta, TRD;
TCR-gamma, TRG) and BCR chains (IgH, including the
various IgH isotypes; IgK; and IgL) in one PCR reaction in an
unbiased way, based on a strategy of using the first set of primer
pairs for each V-J to allow extension with tags that enabled a
second set of primers to be utilized for global amplification of all
seven chains. Each sample was allotted approximately 5 million
sequencing reads (Supplementary Table 2). The data were
further analyzed by iRepertoire’s data analysis pipeline (17, 23).

Previously, lymphopenia was observed in COVID-19
patients, with especially diminished T lymphocytes, but the
expression of individual TCRs and BCRs was not determined
(4, 5). Six of 21 samples (28.57%) found mild to moderate
lymphopenia (define as below 1 × 109 L) (Supplementary
Table 3). We found that unique TCR reads (n = 23) was
significantly lower than that of healthy donors (HD) (n = 15)
(Figure 1A). Compared with health donors, the average
percentage of TRA reads in the immune repertoire was
reduced from 28.3% to 4.9%, and that of TRB reads was
A

B

C D

FIGURE 1 | Immune repertoires of TRA, TRB, TRD, TRG, and IgH, IgK, IgL in PBMCs of COVID-19 patients at different disease stages. The proportion of reads for
each immune chain are presented as mean value ± SD in the boxplots. The box extends from the 25th to 75th percentiles. The whiskers go down to the smallest
value and up to the largest value. The samples from COVID-19 patients are divided into three groups based on time points after COVID-19 infection: (A) Samples of
4–7 days (D4-7) following symptom onset (n = 8); Samples of 8-15 days (D8-15) following symptom onset (n = 10); Samples of 17-22 days (D17-22) following
symptom onset (n = 5); Samples of Asian healthy donors (HD) (n = 15). (B) The proportion of reads of TRA, TRB, TRD and TRG at three groups were compared
along with HD group. (C) The proportion of IGH, IGK, and IGL reads at three groups were compared along with HD group. (D) The ratio of IgK/IgL at three groups
were compared along with HD group. The difference in proportion values was assessed by an unpaired two-tailed t-test.
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reduced from 18.7% to 5.2% (decreases of 5.8 times and 3.6
times, respectively). The proportions of IgH, IgK and IgL in
COVID-19 samples were higher than that in healthy donors
(Figure 1A), especially the increase of IgL from 8.5% to 23.5%.

We divided these samples into groups according to the course
of the disease: D4-7 group, samples from 4 to 7 days after
symptom onset (n = 8); D8–15 group, samples from 8 to 15
days after symptom onset (n = 10); and D17–22 group, samples
from 17 to 22 days after symptom onset (n = 5), which represents
as disease recovery for the time points the patients were SARS-
CoV-2 virus-negative and the samples were collected before
discharge. The analysis demonstrates low frequency of mRNA
expression of the TRA and TRB chains in samples in D4–7 group
and D8–15 group. In contrast, expression of these TCR chains
increases on Day17–22 group (convalescent stage). Surprisingly,
TRB reads in D17–22 group is similar to that of the normal
control group which showed no significant difference between
D17–22 and HD group, but the proportion of D17–22 group
showed significantly higher than D4–7 group and D8–15 group
(p < 0.001). This demonstrates that the TRB expression can be
used as a reference index for recovery from SARS-COV-2 viral
infection. TRA, TRD, and TRG percentage of D17–22 groups
were significantly lower than the HD group (Figure 1B),
suggesting dynamics changes of different TCRs following
SARS-CoV-2 infection. We notice that percentage of TCRs and
BCRs share nearly half of reads in the repertoire of HD group. In
contrast the inhibition of TCRs in COVID-19 infection, the IgH
and IgL proportion showed rapidly increased as early as day 3
onset of infection (D4–7 group, Figure 1C), and maintained as
long as 22 days after infection. The IgK showed much slower
increasing on D4–7 group and peaked on D8–15 group, then
Frontiers in Immunology | www.frontiersin.org 4
quickly dropped on D17–22 group. These aberrant IgK/IgL ratio
had been found in tumor BCR, which indicated selection events
in tumor and other B cell related disease (25). This indicated
selection events in COVID-19 infection especially on days 8–15
onset of syndrome. Further studies are needed to elaborate the
mechanism of this finding. Taken together, TCR expression was
markedly reduced in the early disease stage, and IgH/IgK/IgL
expression increased, likely as the result of the humoral immune
response to the viral infection.

BCR Repertoire Analysis Demonstrated
an Early IgM to IgG Isotype Switch
and a Transient IgA Surge Following
Disease Onset
In response to SARS-COV-2 infection, IgM expressing B cells are
first mobilized with T cell mediated class-switch to the IgG isotype.
The median percentage of IgM-expressing B cells is 19.5% in
samples (n = 8) on days 4–7 of COVID-19 patients and
maintained lower level in all COVID-19 infection, which showed
significantly lower than HD group (43.6%) (Figure 2A). The IgG
expression subsequently increased about 10% in the early stages of
infection (D4–7 group) as compared to theHDgroup, increasing to
nearly 40% of total IgH expression on D8–15 group, and IgH
percentage on all stages showed significantly higher than did ofHD
group (Figure 2B). Another notable change that we observed
consistently was that the IgA proportion during early infection
(days 4–7) increased significantly to 60.1% as compared to 42.6% in
the HD group, and significantly decreasing to 43.3% on D8–15
group (Figures 2A, B).

The transient IgA surge at early stage of infection mRNA
expression and IgA-plasmablasts expansion was detected but
A

B

FIGURE 2 | Immunoglobulin isotypes in BCR repertoires in PBMCs of COVID-19 patients at individual disease stages. The proportion of IgA, IgG, IgD, IgE, and IgM
isotype expressing B cells are presented as mean ± SD in the boxplots. The box extends from the 25th to 75th percentiles. The whiskers go down to the smallest
value and up to the largest value. (A) The proportion of IgA, IgD, IgE, IgM, and IgG in three groups based on time points following COVID-19 infection along with HD
group. (B) The proportion of IgA, IgD, IgM, and IgG was compared at three groups along with HD group. The difference in proportion values was assessed by an
unpaired two-tailed t-test.
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much late of serum level (26). These results indicate that IgM/
IgG/IgA are rapidly mobilized in response to coronavirus
infection. Previous studies showed that such mobilization
prevented viral-induced pathology in the upper respiratory
tract of mice infected with influenza (27).

Dynamic Changes in the Repertoires
Enable a Holistic View of COVID-19
Infection and Enable Close Monitoring of
Immunity During Disease Progression
To evaluate the dynamics of immune repertoire changes in
COVID-19 patients, we longitudinally tracked the immune
repertoires of three patients at four time points collected from
early onset to the convalescent stage. We found that TRB was
Frontiers in Immunology | www.frontiersin.org 5
extremely low in the early disease stage. TRB gradually increased
with the improvement throughout the disease, especially during
convalescence. The percentage of TRB expression based on the
number of reads increased to the same level as that observed in
healthy controls (Figures 1, 3). This result suggests that
measures of TRB return to normal number of reads is a critical
and readily available reference indicator of recovery. We also
found that the IgH expression within the repertoires gradually
reduced as the disease diminished. Thus, it was the highest on the
days 4–7 after symptom onset and returned to normal levels
(~20%) on the 19th or 20th day (Figure 3). The proportion of
IgL expression was highest on days 4–7 following symptom onset
with decreases during the course of the disease (Pt2 and Pt3).
Compared with the repertoires of a healthy seasonal influenza
A B

FIGURE 3 | Longitudinal analysis of TCR and BCR repertoires of four individuals. Samples were collected from three patients from early-mid stages after symptom
onset (days 3, 5, 7, 12, 14) to the convalescent stage (days 17, 19). Samples from a healthy seasonal quadrivalent influenza vaccinee before and after vaccination
(days 0, 4, 14, and 28) were used as a control. (A) The proportion of TCR-TRA, -TRB, -TRD, -TRG and BCR-IgH, -IgK, -IgL in the adaptive immune reservoirs. (B)
Treemap plots representing unique CDR3 clonotypes in each of the seven chains on the indicated time points after symptom onset. The seven treemap plots each
represent TCR-beta, -alpha, -delta, -gamma, and BCR-IgH, -IgK, -IgL. A rectangle in a treemap plot represents a unique clonotype. The size of a rectangle denotes
the relative frequency of an individual CDR3 sequence, and the varying square size reflects areas of clonal expansion within the immune repertoire sampled. The
color of the individual CDR3 sequence in each Treemap plot was randomly chosen, and thus, the colors do not precisely match between individual plots. From the
left upper plot clockwise to the bottom plots: IgH, IgK, IgL, TRB, TRA, TRD, and TRG.
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vaccinee, who received influenza vaccine yearly, the proportions
of TCR and BCR chains were relatively stable before vaccination
(day 0) and following vaccination over 28 days (Figure 3).

Longitudinal analysis of these three patients using treemap
analysis that determines the relative abundance of individual
clonotypes showed that TRB expression returned to normal
during the convalescent stage. Except for the presence of some
dominant clones in the TRB expression profile, the diversity and
frequency of individual clonotypes was significantly improved by
the time of convalescence (time point 4). A significant feature of
IgH/IgK/IgL expression is the presence of dominant clonal
expansion around two weeks after infection (the third time
point, day 12 for Pt1, day 14 for Pt2 and Pt3), suggesting that
selection events are drastically for BCRs on this stage. Studies on
these clonally expanded IgH sequences may use a source for
developing neutralizing antibodies.

Approximately 15% of COVID-19 patients develop severe
disease (4). We analyzed two samples obtained at day 4 and day 6
after symptom onset from two patients who were admitted to the
intensive care unit (ICU) due to the severity of their disease.
Similar to what we found in other samples of early infection,
IgH/IgK/IgL became largely dominant in the treemap plots,
whereas TRB expression was dramatically reduced as
compared to healthy individuals (Figure 4). Many dominant
clones were found on examination of IgK expression and the
diversity of this chain was lower than that in healthy
control individuals.
Frontiers in Immunology | www.frontiersin.org 6
DISCUSSION

Studies of TCR and BCR dynamics in COVID-19 patients provide
valuable insights into the natural history of the disease, the host
response, and providing insights enabling assessment of effective
clinical treatment. Here, we demonstrate that the evolving immune
system’s response to SARS-COV-2 infection involves clearly
delineated patterns during early infection through convalescence.
The recent availability of the seven chainDAM-PCR/NGS to assess
dynamic changes in individual TCRs and BCRs allowed
visualization of the full repertoires, demonstrating how adaptive
immunity and disease progress through to recovery. The abnormal
expression profile of TCRs and BCRs during early disease stage, in
particular, TRA and TRB expression, and the recovery of this
expression during the convalescence stage, is available as a
reference indicator of disease recovery. The initial absence of
TRA and TRB expression expands and elucidates previously
available clinical data demonstrating lymphopenia in COVID-19
patients. It implies thatT cells are either undergoing acute apoptotic
events or, alternatively, leave the circulation. Examination of
individuals early in infection or at autopsy suggests that there is
limited traffic of T cells to the lungs. Examination of lymphoid
organs early during infection has not been reported. T cells play an
important role in virus clearance and the subsequent establishment
of antibody-mediated protection against virus infection (28, 29). T
cell-deficient mice but not B-cell-deficient mice with MERS-CoV
infection resulted in persistence of the virus in the lung, indicating
A

B

FIGURE 4 | Treemap plots of TCR and BCR repertoires in PBMCs of ICU patients. (A) Treemap plots of the seven individual adaptive immune chains from patient 4
and patient 5 on day 4 following symptoms onsets. The control treemap plot was from the same healthy person before vaccination with a seasonal quadrivalent
influenza vaccine. (B) Treemap plots containing total TRB unique CDR3 clonotypes, each represents patients 4, patient 5, and a healthy control. A rectangle in a
treemap plot represents a unique clonotype. The size of a rectangle denotes the relative frequency of an individual CDR3 sequence. The color of the individual CDR3
sequence in each Treemap plot was randomly chosen, and thus, the colors do not match between the plots.
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the direct role of T cells to clear this virus (29).More recently, tissue
resident innate lymphoid cells (ILC2s) have been demonstrated to
be sufficient to promote IgA switch in viral-responsive B cells (30).
The decreased CD8+ T cells in COVID-19 patients associated with
markers of activation and exhaustion is an early indicator for
requiring ICU treatment (12). Consistent with prior evidence that
the lowest lymphocytes count was on day 4 following symptom
onset (6), we found that the expression of TCRs dramatically
decreased during the early stage of infection (days 4–7) of
patients in both moderate and severe cases. One possibility is that
virus-induced epithelial destruction and resultant pneumonia
increased vascular permeability and chemokine recruited T cells
nonselective leak out into the lung (31). Further studies are needed
to clarify if T cells are present in bronchoalveolar lavage fluid from
the lungs of severe patients and in lungs of people with mild
infections in the early stage of infection.

In our measurements of the repertoire, we found that IgM/IgG
and IgA B cell responses were mobilized early in response to viral
infection. Clonal expansion of the IgH chain was evident after two
weeks onset of symptoms. Although we cannot recognize antigen-
specific clones, the clone expansion would find on tree-map of
longitudinal samples (Figure 3). This implies the human adaptive
immune system could mounts a vigorous early B cell response to
this novel pathogenic virus. IgM-expressing B cells are believed to
be the first cell type to expand following exposure to antigen.
Measurement of SARS-CoV-2-specific IgM antibody can help
rapidly diagnose viral infection (32). Expanded transcript levels
of IgM and IgG expressing-B cells could be found as early as day 4
in SARS-CoV-2 infection in this study. Published studies
demonstrate with serologic assessment expanded titers of IgM/
IgG appear by days 7–14 following onset (33–35). Relative IgG
expression levels can be even higher following virus clearance,
increasing progressively for more than six months. This indicates
that virus-specific antibodies are under persistent affinity
maturation within the germinal center (22, 36, 37). Another
surprising finding to us was the predominance of B cells
expressing IgA very early following infection. To our knowledge,
this is the first report that IgA-expressing B cells can be rapidly
activated and be detectable in the peripheral blood upon infection
with a novel virus. To understand how such early B cell-expressing
IgA, and presumably IgA antibodies, are activated and increased
in the peripheral blood is potentially bypassing normal T cell
controls and utilizing ILCs within the lung to drive the switch (30).
Isolation of IgA-specific antibodies may be important for early
diagnosis and therapy. IgA plays an important role in mucosal
immunity (38). The increasing percentage of IgA expressing B
cells indicates that IgA may be synthesized and migrate widely to
the respiratory tract, the gastrointestinal tract, or other mucosal
sites to play an early immune function to clear virus (39).

Previous studies focused on the TCR-beta or IgH chain
repertoires individually to evaluate the adaptive immune
response to cancer immunotherapy, autoimmune disease, or
viral infection (22, 37, 40–42). The multiplex dimer avoided
multiplex-PCR (dam-PCR)/NGS method used here allows for
inclusive and quantitative amplification of the TCR-alpha, -beta,
-gamma, -delta chains and BCR-IgH, -IgK, -IgL simultaneously
Frontiers in Immunology | www.frontiersin.org 7
in one PCR reaction (16). To our knowledge, this is the first
report to systemically elucidate the BCR and TCR repertoires of
COVID-19 patients and should have broad applicability in
assessing emergent vaccines and therapies for this and other
viral and bacterial diseases.

Longitudinal analysis of B cells expressing each of the
individual IgH, Igk and Igl chains can provide a holistic view
of the antibody repertoire changes over time. Single-cell PCR of
SARS-CoV-2-specific B cells combined with BCR repertoire
analysis could accelerate the identification and cloning of
neutralizing antibodies by NGS and classical antibody cloning
(22, 43). By employing an integrated analysis of TCRs and BCRs,
we gave a panorama view of repertoire dynamics after COVID-
19 infection, but repertoires of each patients before infection
were not available. The samples were obtained from 6-8 mL
peripheral blood samples, which only represented a small
fraction of the total blood in the circulation, so some
clonotypes may be not included in the repertoire. SARS-CoV-2
specific repertoires of TCR and BCR were not examined, further
studies should expand the repertoire dynamics of T/B cell subsets
and give insight why lymphopenia occurs. One limitation of
present study is that the dynamics of frequency of TCRs/BCRs
could not be validated by lymphocytes number counting, C-
Reaction Protein value, or sera titers. Integrated of repertoire
sequencing and single-cell transcriptomics, antibody cloning
may give comprehensive explanation of adaptive immune
response against virus infection (44).

Taken together, the results of this study provide a much more
detailed view of the immune dynamics of COVID-19 patients.
Global and longitudinal analyses of adaptive immunity in
COVID-19 patients could provide insights onto the
mechanisms of virus infection, providing information for
assessment during clinical treatment and assisting in the
development of antiviral therapeutics and vaccines.
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