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Spectrum resolving power of hearing: measurements, baselines, 
and influence of maskers
Alexander Ya. Supin
Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russian Federation

Abstract

Contemporary methods of measurement of frequency resolving
power in the auditory system are reviewed. Majority of classical meth-
ods are based on the frequency-selective masking paradigm and
require multi-point measurements (a number of masked thresholds
should be measured to obtain a single frequency-tuning estimate).
Therefore, they are rarely used for practical needs. As an alternative
approach, frequency-selective properties of the auditory system may be
investigated using probes with complex frequency spectrum patterns,
in particular, rippled noise that is characterized by a spectrum with
periodically alternating maxima and minima. The maximal ripple den-
sity discriminated by the auditory system is a convenient measure of
the spectrum resolving power (SRP). To find the highest resolvable
ripple density, a phase-reversal test has been suggested. Using this
technique, normal SRP, its dependence on probe center frequency,
spectrum contrast, and probe level were measured. The results were
not entirely predictable by frequency-tuning data obtained by masking
methods. SRP is influenced by maskers, with on- and off-frequency
maskers influencing SRP very differently. Dichotic separation of the
probe and masker results in almost complete release of SRP from influ-
ence of maskers.

Introduction

The paper presents a review of both classical and some contemporary
methods of measurement of frequency tuning and frequency-spectrum
resolving power in the auditory system. The frequency-spectrum resolv-
ing power is the ability to discriminate (resolve) the fine pattern of the

frequency spectrum of acoustic signals. The spectrum patterns and
their variation in time, i.e., the spectral-temporal portraits characterize
all acoustic signals. The ability to discriminate the signals depends on
the ability to discriminate their frequency spectra, i.e., on the spectrum
resolving power of the auditory system. Degradation in frequency-spec-
trum resolution results in poor speech recognition.1-6 Since degradation
in frequency resolution accompanies sensorineural hearing loss7-11 and
hearing deterioration with age,4 measurement of frequency resolution
is very important for characterization of hearing abilities.
Measurements of frequency resolution may also be helpful in selecting
appropriate hearing-aid characteristics.12-14

Masking methods of measurements of frequency tuning
There is a variety of methods of measuring the frequency selectivi-

ty of hearing. Most of them are based on the frequency-dependent
masking paradigm. These methods allow assessment of the bandwidth
and quality of frequency-selective channels (filters) in the auditory
system or their psychophysical equivalent, the critical bands. 

The most demonstrative version of frequency-dependent masking is
tonal masking: measuring the masked thresholds of a tonal probe in
the presence of a background tonal masker. The masked threshold
depends on the frequency difference between the probe and masker, so
the threshold-vs-frequency function (frequency-tuning curve) directly
reflects the auditory filter form: the narrower the tuning curve, the
more acute the filter tuning.15-17 Disadvantages of these methods
include the influence of beats arising at small frequency spacing
between the probe and masker tones and the off-frequency listening
effect.18-20 Beats are absent, however, when forward, not simultaneous,
masking is used and the off-listening effect can be avoided by the use
of two-tone maskers that are symmetrical relative to the probe fre-
quency.20-22

Other widely used versions of frequency-dependent masking are: 
i) the use of a narrow-band noise masker of variable bandwidth cen-

tered at the probe frequency. Variation of the noise band width influ-
ences the masked threshold, and differentiation of the threshold-vs-
bandwidth function returns the auditory filter form. This method is the
basis of the critical band paradigm;23,24 ii) the use of comb-filtered
(rippled) noise with a spectrum featuring periodically alternating
peaks and valleys of spectral density, either a peak or valley centered
at the probe frequency.7,25-27 Variation of frequency spacing of ripples
influences the masked threshold, so deconvolution of the threshold-vs-
ripple spacing function allows for derivation of the auditory filter form;
iii) the use of a notch-noise masker with a spectrum featuring a stop
band (notch) centered at the probe frequency.28-30,4,31 The notch width
influences the masked threshold; therefore differentiation of the
threshold-vs-notch width function allows deriving the auditory filter
form.

Studies using the masking methods have yielded estimates of fre-
quency tuning in normal listeners. At relatively high frequencies, the
equivalent rectangular bandwidth (ERB) of the auditory frequency-
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tuned filters is around 10% of the center frequency, however the ERB
does not fall below 25 Hz at low frequencies. To describe ERB variation
with central frequency, several analytical expressions have been sug-
gested,23,30-32 for example, a simple equation given by Glasberg and
Moore:31

ERB = 24.7(4.37F+1),

where ERB is given in Hz, and F is the central frequency, kHz.
However, despite availability of a few well elaborated methods and

the obvious importance of frequency-resolution measurements, to date
their practical applications are rare. To a significant extent, it is
because these methods are rather time consuming. A common feature
of all the methods listed above is that they use multi-point measures,
i.e. the determination of a single frequency-tuning estimate requires
several threshold measurements at various values of the masker
parameter (tone frequency, bandwidth, notch width, ripple spacing) to
obtain a function describing the masked threshold dependence on the
masker parameter; then, a resolution value can be computed from the
obtained function. These time-consuming methods are appropriate for
fundamental investigations of hearing in laboratory conditions; howev-
er, in clinical conditions where time is short, these methods are incon-
venient. 

Estimation of critical bands by comparison of AM and FM modulation
thresholds33 also requires a large body of measurements.

Contrary to those methods, the critical ratio is a one-point measure
that requires only one threshold measurement to obtain one resolution
value. This measure is a ratio of the masked threshold to the spectral
density of wide-band masking noise.34 However, the critical ratio is a
poor estimate of frequency selectivity because it confounds the fre-
quency tuning with the efficiency of signal detection in noise. It is
important that small changes in the signal detection ratio influence the
critical ratio as much as large changes in frequency resolution. For
example, a 3-dB or 10-dB shift corresponds to two-fold or ten-fold
changes of frequency resolution, respectively. Inaccuracy of threshold
determination within a few dB (which is quite possible in practical
measurements) produces the same dramatic error in estimation of the
frequency resolution. Modifications were suggested to improve the crit-
ical ratio method. Frequency resolution has been measured using
notched noise in which the masker level and notch width were kept
constant and only probe level was varied (the notched noise critical
ratio by Patterson et al.4), or the notch width was varied keeping both
probe and masker levels.11 These one-point measures are more sensi-
tive to frequency resolution than the standard critical ratio. However,
they imply a voluntarily chosen notch width or probe-to-masker ratio,
and results depend on these values. Another one-point measure bases
on the frequency spacing between tones at which roughness of the
sound disappears;35,36 however it requires a listener to be carefully
instructed of what sound quality must be detected and well trained. As
a result, none of the methods described above are widely used for prac-
tical needs.Apart from difficulties in practical use of the masking meth-
ods for frequency resolution measurements, there is one more funda-
mental problem. These methods provide estimates of frequency tuning
of the auditory filters. If the auditory system were linear, knowing the
frequency tuning of the filters would allow easy prediction of the
response to any complex sound signal. However, the auditory system is
not linear in many respects. Therefore, knowing the auditory filter
forms is not always sufficient to predict how well the auditory system is
capable of discriminating complex sound signals. 

Measurement of frequency-spectrum resolution using
complex-spectrum probes

Many of the problems listed above may be avoided by using sounds

with complex spectra as probes for frequency resolution measure-
ments. A typical version of such sounds is the comb-filtered (rippled)
noise (Figure 1). The frequency spectrum of the rippled noise contains
periodically alternating peaks and valleys. As mentioned above, this
kind of noise was used as one of the masker versions for measure-
ments of frequency tuning of the auditory filters.7,25-27 However, the
spectral grid of the rippled noise may also be used as a probe to esti-
mate directly the ability of the auditory system to discriminate complex
frequency spectra. The finer is the ripple spectrum pattern that can be
discriminated by the auditory system, the better the spectrum resolving
power (SRP). The rippled spectrum pattern can be quantitatively char-
acterized by ripple density (the number of ripples per frequency unit)
and ripple depth (deviation of the spectrum maxima and minima from
the middle level). In particular, the highest resolvable ripple density
may be adopted as a reliable quantitative measure of SRP.

For using the rippled spectrum as a probe, a reliable test is necessary
to show either a certain rippled spectrum structure is or is not resolv-
able. For this purpose, a ripple phase-reversal test was suggested.37 The
test principle is simple. Rippled noise of a certain ripple depth and den-
sity is presented to a listener. At a certain instant, the noise is replaced
by another one of the same intensity, ripple depth and density but of the
opposite position of spectral peaks and valleys (solid and thin lines in
Figure 1A). This is the phase reversal test. At the phase reversal
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Figure 1. Examples of rippled spectra used as probes for SRP
measurements. Spectra are centered at 2 kHz and enveloped by 1-
octave cosine function. Note that the ripples look equally spaced
on the log frequency scale which is characteristic of frequency-
proportional ripple spacing. A) Ripple relative density f/df = 6
(resolvable by normal human hearing), ripple depth 100%; solid
and thin lines represent two versions of the rippled spectrum
which replace one another in the phase reversal test. B) The same
as A, ripple density f/df = 18 (irresolvable by human hearing). C)
Ripple density  f/df = 6, ripple depth 10% (irresolvable by human
hearing).



instant, the listener detects some change in the noise timbre. It is only
possible if the listener discriminates the fine spectrum structure. If the
ripples are spaced too densely (Figure 1B) or their depth is too low
(Figure 1C) to be discriminated, the phase reversal cannot be detected
because the noise before and after the switch is the same in all
respects except the peak and valley positions. Thus the highest ripple
density at which the phase reversal is detectable can be taken as a
measure of SRP. A more detailed study may include variation of both
the ripple density and depth (spectral contrast). In such a way, contrast
thresholds at various ripple densities can be found using the phase-
reversal test.

This method features a few advantages as compared to the majority
of masking methods. i) It yields a one-point measure, since only one
limit of the ripple pattern resolution has to be found to obtain one SRP
value. ii) It does not confound the frequency tuning with the signal
detection efficiency. iii) It provides resolution of complex spectra as a
result of all transforms, both linear and non-linear, of the signal in the
auditory system. iv) The listener does not need to be experienced or
carefully instructed since his only task is to report any detectable
change in the probe noise.

Various versions of rippled noise were used to measure SRP.
Originally, it was the wide-band rippled noise with equally spaced rip-
ples, i.e., the frequency intervals between the adjacent ripples were of
a constant value df. To a large extent, it happened because such kind of
rippled noise could be easily generated by mixing a noise with its
delayed version. If the delay is dt, then the mixing results in a rippled
frequency spectrum with the ripple spacing of df = 1/dt. Respectively,
the ripple density (the number of ripples per frequency unit) is d = 1/df
= dt. The noise with equally spaced spectral ripples produces specific
psychoacoustical effects, in particular a pitch sensation depending on
the ripple spacing – the time-separation pitch.38-41 This version of rip-
pled noise in conjunction with phase reversal test was used in early
attempts to measure SRP in normal listeners.37

However, probes with equally spaced ripples are not the best for test-
ing SRP because frequency representation in the cochlea is closer to
frequency-proportional rather than to frequency constant: representa-
tion of each frequency-proportional band (e.g., octave) occupies almost
equal part of the cochlea (in humans, around 4 mm per octave).32

Therefore, probes with frequency-proportional ripple spacing are more
adequate for testing SRP. In a frequency-proportional ripple pattern,
absolute ripple spacing df and density d vary across the spectrum band,
so for this pattern, more convenient measures of ripple spacing and
density are their relative (dimensionless) measures which are con-
stant across the spectrum band: relative spacing df/f and relative den-
sity D = f/df , respectively. The modern digital technologies make it pos-
sible to synthesize signals of any arbitrarily defined spectra, in partic-
ular probes with either equal or frequency-proportional spaced ripples.

Spectrum resolving power estimates based on rip-
pled-spectrum probes

Using various versions of rippled-spectrum probes in conjunction
with the phase-reversal test yields basic data on the spectrum-pattern
resolution. Majority of the data was obtained in a group of 5 to 8 listen-
ers 25 to 55 years old who had normal hearing thresholds and no signs
of hearing decrease. In those studies, a two-alternative forced-choice
procedure was used. Each trial consisted of two stimuli (intervals I and
II in Figure 2) with an interval between them. Two trial types alternat-
ed randomly: either the first stimulus within the trial contained sever-
al ripple phase reversals while the second one was constant (Figure
2A), or vice versa (Figure 2B). The listener was instructed to respond,
which of the two noise bursts contained any periodical changes of
noise timbre.

First of all, the ripple-density resolution limit was found as a func-

tion of mean probe frequency.42 The measurements have shown that
when the modulation depth of a rippled spectrum is 100% (i.e., the
power in spectral valleys decreases to zero), the highest ripple density
that can be discriminated by normal listeners ranges from 11 relative
units at a mean frequency of 1 kHz to almost 16 units at 8 kHz; i.e., the
threshold intervals between ripples range from 1/11 to 1/16 of the cen-
ter ripple frequency, respectively (Figure 3.1). At lower (less than 1
kHz) frequencies, not the relative but the absolute ripple density reso-
lution limit is nearly constant at a value of 16-20 ripple/kHz (constant
ripple spacing threshold of 50-60 Hz) (Figure 3.2). 

These data can be compared with data on frequency tuning obtained
by classic masking methods. Computation presented by Supin et al.,42

has shown that if the auditory system were linear, the auditory filters
of equivalent rectangular bandwidth of 11-12% (as follows from an
equation presented31 should provide a ripple-density resolution limit of
6-8 units (Figure 3.3). Thus, the actual ripple-density resolution limit
of 11-15 units is almost twice higher than predicted by the auditory fil-
ter frequency tuning. This disagreement, being one of many manifes-
tations of the non-linearity of the auditory system, clearly indicates the
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Figure 2. Temporal diagram if spectrum resolving power test
using the ripple phase reversal test. I-II) two successive intervals
of stimulus; solid and thin lines indicate probe signals with oppo-
site peak-valley positions of spectral ripples, 1-2) periods of alter-
native presentation of these two spectra. A-B) diagrams of trials
with opposite orders of presentation of stimuli with and without
ripple phase reversals.

Figure 3. Spectrum resolving power dependence on probe center
frequency. 1) experimental data (probe level 70 dB SPL). 2) slope
corresponding to a constant absolute ripple density of 16
cycles/kHz. 3) linear prediction of spectrum resolving power
based on frequency tuning dependence on center frequency,
according to Glasberg and Moore (1990).
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importance of direct measurements of SRP.
Apart from ripple density, the ripple depth (spectral contrast) is an

important parameter determining discrimination of complex spectra.
Originally, discrimination of spectra of varying contrasts was investi-
gated using spectral profiles composed of a number of harmonic com-
ponents.43,44 It was found that non-uniformity of a spectrum is
detectable if a deviation of components from the mean spectrum level
exceeds – 24.5 dB, which corresponds to RMS deviation of ±6% or peak
deviation of around 10%. Similar results were obtained with the use of
rippled-spectrum probes of varying ripple depth and using the ripple
phase reversal test.45 At low ripple densities, the ripple depth threshold
was about 10% in the spectrum magnitude domain, which corresponds
to about 20% in the power domain. With an increase in the ripple den-
sity, ripple depth thresholds increase until they reach the highest pos-
sible value of 100%, i.e., the ripple density resolution limit is achieved
(Figure 4). The results may be satisfactorily explained by a model
implying that the contrast of the internal spectrum representation in
the auditory system decreases with increasing the ripple density;
therefore, the ripple density, the higher ripple depth is necessary to
make the internal spectrum representation exceeding the contrast
threshold.

One more important issue is how the spectrum pattern resolution
depends on sound level. Measurements of the auditory filters by mask-
ing methods have shown that the filter bandwidth increases (the filter
acuteness decreases) with increasing sound level.4,22,46 This occurs
because the ratio between the more acute active mechanism of fre-
quency tuning (based on electrokinetic activity of the outer hire cells)
and less acute passive mechanism (based on hydromechanical proper-
ties of the cochlea) is level-dependent. It might be expected that this
property of auditory filters should manifest itself in the ability to dis-
criminate complex sound spectra. However, in conditions of negligible
background noise, direct measurements of SRP by rippled-spectrum
probes have shown no decrease of rippled-spectrum resolution with
probe level increasing47 (Figure 5). 

At a first sight, this result seems paradoxical, however it is easily
explainable. Indeed, the change of the ratio between the active and pas-
sive mechanisms of frequency tuning results not in widening of the fil-
ter peak (reflecting the active tuning mechanism) but in widening of
the filter tail (reflecting the passive mechanism).48,49

However, it is the peak that transfers the major part of the signal
power. Therefore, while the tail remains at least 10-15 dB below the
peak, the tail widening negligibly influences the transfer of complex
spectrum patterns. Quantitative analysis of the process has been pre-
sented in the original paper describing this effect.47

Effects of background noise on spectrum pattern res-
olution

In natural conditions, a sound signal almost never appears in
absolute silence. The presence of other sounds may significantly influ-
ence the signal detection and recognition. These sounds overlapping
the target signal may be considered as background (masking) noise. To
a large extent, the deteriorated signal recognition may be a result of
poorer spectrum pattern discrimination. This was demonstrated by
direct measurements of SRP in background of masking noise. The
measurements have shown that the presence of masking noise results
in poorer spectrum pattern discrimination. This effect depends on i)
relation between the probe and masker frequency bands, ii) masker-to-
probe ratio, and iii) overall masker + probe level.47,50,51

When the frequency bands of the probe and masker coincide (on-fre-
quency masker), the masker produces almost no effect while the
masker level is below the probe level (negative masker/probe dB
ratios). SRP does not differ from the no-masker condition and remains
nearly independent of the probe level (Figure 6A). When the masker

level approaches the probe level (zero masker/probe dB ratio), small
SRP reduction becomes noticeable, however SRP is still negligibly
dependent on the probe level. When the masker probe exceeds the
probe level (positive masker/probe dB ratios), SRP steeply falls down,
mostly at high probe levels (+5-dB masker/probe ratio in Figure 6A).
The spectrum pattern discrimination becoming entirely impossible at
masker/probe dB ratios of +10 dB and higher. 

When the masker frequency band is below the probe band (the low-
frequency masker, Figure 6B), SRP depends on the probe level and
masker/probe ratio in a quite different manner. SRP decreases with
increasing the probe level. At high probe levels, a small but noticeable
SRP reduction appears at a very low masker/probe ratio, below –20 dB.
As the masker/probe ratio increases, the deteriorating effect of the
masker increases: SRP decreases with increasing the probe level, and
the higher the masker/probe ratio, the lower SRP and steeper its
decrease with increasing the probe levels. At high masker/probe ratios
and high probe levels (more than 80 dB SPL at a 10-dB masker/probe
ratio, more than 50 dB SPL at a 20-dB ratio) the spectrum-pattern dis-
crimination becomes completely impossible). Contrary to the on- and
low-frequency maskers, the high-frequency masker produces very
small effect on the spectrum pattern discrimination: SRP remains
nearly independent of the probe level being almost the same as in the
no-masker condition. Only at high masker/probe ratios (20-30 dB) and
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Figure 4. Ripple depth threshold dependence on ripple density at
various probe center frequencies, from 0.5 to 8 kHz, as indicated
in the legend. Probe level 70 dB SPL.

Figure 5. Spectrum resolving power dependence on probe level at
three probe center frequencies (1, 2, and 4 kHz, as indicated in
the legend).



lowest probe levels (40 dB SPL) does SRP slightly decrease (Figure 6C).
Traditionally, the effect of decreased spectrum pattern resolution

produced by background noise was considered a result of superimposi-
tion of the noise on the probe signal, thus being a case of the classical
energetic masking. This superimposition reduces the contrast of the
internal spectrum representation of the probe, thus degrading the
spectrum discrimination.46 Measurements with rippled-spectrum
probes of various contrasts have confirmed that reduction of the ripple
depth (spectral grid contrast) results in reduction of the resolvable rip-
ple density.45

It should be noted that superimposition of the probe and masker
takes place not only with on-frequency maskers but also with low-fre-
quency maskers due to the effect of upward spreading of masking. This
effect appears due to the asymmetric form of the auditory filters with
low-frequency tails.31,52,53 Participation of the upward spreading of
masking may explain why low-frequency but not high-frequency
maskers effectively influence SRP. However, not all masking effects can
be explained in this simple manner. In particular, at some combina-
tions of levels of the probe and masker, low-frequency maskers produce
more effective deterioration of SRP than the on-frequency masker of

the same level.50 This effect is well visible in Figure 6 at all
masker/probe ratios of 0 dB and below if to compare SRP values in
graphs A (on-frequency masking) and B (low-frequency masking). This
result cannot be explained by the upward spreading of masking only,
because the effect of the upward spreading masking can never exceed
the effect of the on-frequency masking. Therefore, the high effective-
ness of low-frequency maskers indicates that apart from classical ener-
getic masking, some additional non-energetic mechanisms are
involved in deterioration of SRP. The nature of these mechanisms is
not investigated yet.  We can just hypothesize that they present a kind
of lateral suppression or inhibition. The presence of non-energetic
masking influencing discrimination of complex auditory stimuli,
including speech, has been known and mostly interpreted in terms of
informational masking.54-56 The idea of informational masking implies
that the addition of a masker (either on- or off-frequency) make the
discrimination of particular components of a complex signal more dif-
ficult due to informational competition. As shown by the data reviewed
above, reduction of the spectrum discrimination ability is also an
important factor of both on- and off-frequency masking.

Dichotic and binaural release of spectrum resolving
power from masking

It has been shown long ago that spatial separation of the signal and
masker sources results in release from masking. A number of experi-
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Figure 6. Spectrum resolving power dependence on probe level at
various masker/probe ratios. Diotic presentation of the probe and
masker. Probe center frequency 2 kHz. Masker/probe ratios (dB)
are indicated in the legends; Cont – control (no masker). A) On-
frequency masker (the same center frequency as the probe). B)
Low-frequency masker (masker center frequency ¾ octaves below
the probe). C) High-frequency masker (masker center frequency
¾ octaves above the probe).

Figure 7. The same as Figure 5, dichotic presentation of the probe
and masker (the probe in the left, the masker in the right ear).
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ments have shown that the presence of a masker in one ear has little
or no impact on a listener’s ability to recognize a target speech signal
presented in the other ear.57-61 In free-field conditions, a similar effect
known as the spatial release from masking appears when sources of
the probe and masker are spatially separated.62-71 A key part in this
effect was assigned to interaural level difference (ILD) resulting in pre-
dominant presentation of the target signal in one ear and the noise in
the other ear. Apart from ILD-based release from masking, there are
releasing effects based on interaural phase relations. If a stimulus is
presented in both ears in-phase and masker is presented counter-
phase, or vice versa, the masking effect is weaker than when both the
stimulus and masker are presented in the same mode: ether in-phase,
or counter-phase, or monaurally.72-79 This effect is known as the binau-
ral masking level difference (BMLD). In the free field, BMLD may
appear because of the phase difference of signals reaching the left and
right ear. These findings mostly address the energetic masking that
appears when the spectral bands of the signal and masker overlap.
However, spatial release from masking including both ILD and BMLD
effects characteristic of informational masking too.55,80-85 Recent inves-
tigations have shown that the release of SRP is an important factor of
both ILD-based and BMLD-based release from masking.86 In conditions
of dichotic presentation (the probe in one ear and the masker in the
other ear), SRP remained almost the same as in control no-masker con-
ditions, even at very high masker/probe ratios (Figure 7). Thus, almost
complete ILD-based release from masking took place both for on-fre-
quency and off-frequency maskers. When the probe was presented bin-
aurally in-phase and the masker – binaurally counter-phase, smaller
but noticeable BMLD-based release from low-frequency masking took
place.

Implications to practical audiology
In addition to classic masking methods of measurement of frequen-

cy tuning in the auditory system, the data reviewed above present a
method of SRP measurements based on the use of complex spectrum
probes. This method may be helpful in a number of respects, in partic-
ular, for practical audiology because of its features as follows. i) The
method privides direct estimates of complex spectrum-pattern resolu-
tion which not always can be predicted from frequency tuning of the
auditory filters (e.g., effects of sound level in the presence and absence
of background noise, the degree of deterioration effects of on-frequen-
cy and off-frequency maskers, the degree of dichotic and spatial release
from masking, etc.). ii) The method may be appropriate for individual
diagnostics, being less time consuming than majority of masking
methods. The method is little time consuming because it is a one-point
method (one determination of a ripple resolution limit for obtaining
one estimate of the spectrum resolution), contrary to majority of multi-
point masking methods (several masked threshold determinations for
obtaining one estimate of the filter tuning).

Nevertheless, using the ripple-spectrum probes for practical needs of
audiology is still limited. Rippled-spectrum signals have been used to
assess effectiveness of cochlear implants, in particular, basing on lis-
tener’s ability to discriminate ripple spectra of opposite ripple phas-
es.87-90 Comparison of normal-hearing, impaired-hearing, and
cochlear-implant listeners revealed significant correlations between
the ripple-pattern resolution and the speech recognition. Those studies
were performed using classic experimental protocols when the listener
has to discriminate a difference between two or three noise bursts with
different ripple phases. The method described above may help for wider
using of rippled-spectrum signals as reliable spectrum-resolution tests.
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