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Sequence variants in the PTCHT gene associate
with spine bone mineral density and osteoporotic
fractures
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Bone mineral density (BMD) is a measure of osteoporosis and is useful in evaluating the risk
of fracture. In a genome-wide association study of BMD among 20,100 Icelanders, with
follow-up in 10,091 subjects of European and East-Asian descent, we found a new BMD locus
that harbours the PTCHT gene, represented by rs28377268 (freq. 11.4-22.6%) that associates
with reduced spine BMD (P=1.0x10~", p= —0.09). We also identified a new spine BMD
signal in RSPO3, rs577721086 (freq. 6.8%), that associates with increased spine BMD
(P=6.6x10"19, B=0.14). Importantly, both variants associate with osteoporotic fractures
and affect expression of the PTCHT and RSPO3 genes that is in line with their influence on
BMD and known biological function of these genes. Additional new BMD signals were also
found at the AXINT and SOST loci and a new lead SNP at the ENT locus.
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steoporosis is a common disease and a major public

health problem worldwide with over 9 million

osteoporosis-related fractures occurring per year! and
associated morbidity and mortality. Osteoporosis is characterized
by low bone mineral density (BMD), microarchitectural
deterioration of bone tissue and susceptibility to fractures.
BMD is the single best predictor of osteoporotic fractures®
and is a valuable tool in evaluating the risk of fractures. There is
abundant evidence for a genetic contribution to variation in BMD
with heritability estimates between 0.6 and 0.8 (ref. 4). Clearly,
environmental and medical factors also influence BMD.

Genome-wide association (GWA) studies (GWAS) of common
sequence variants in large sample sets have in recent years lead
to the discovery of numerous common sequence variants
that associate with variation in BMD and predispose to
osteoporosis® 14, The most recent large-scale meta-analysis
found 64 independent BMD association signals at 56 loci to
meet the criteria of significance!®. Fourteen of these signals
also associate with osteoporotic fractures (P<5 x 10~%),
underscoring the complex relationship between BMD and
fracture risk. These established associations are with common
sequence variants of small effect on BMD. Many more common
sequence variants of similar and smaller effects are expected to be
found in future GWAS of larger sample sizes. Whole-genome
sequencing (WGS) offers an opportunity to identify and test
effects of low frequency (<5% and >1%) and rare (<1%)
variants on various traits and diseases. Recent whole-genome
sequencing efforts have found both low frequency and rare BMD
associations with large effects that is, in the ENI (ref. 14) gene, by
quantitative analysis of BMD, and in the LGR4 (ref. 15), and
COLIA2 (ref. 16) genes using low BMD as a dichotomous trait.

Many of the established association signals are near or within
genes of the WNT/B-catenin signalling pathway, which is
considered to be one of the main pathway controlling bone
mass. Inactivation of the pathway results in low BMD and
osteoporosis while activating mutations lead to high BMD’.
Established associations are also observed at genes involved in
endochondral ossification, mesenchymal stem cell differentiation,
and the RANK/RANKL/OPG pathway!?.

Despite the large number of sequence variants that associate
with BMD they only explain about 6% of the variance in BMD!?.
Here we sought to identify additional sequence variants that
influence BMD variation through a GWAS that included 21.5
million sequence variants that had been imputed into about
20,000 Icelanders with BMD measurements at the spine and the
hip and with a follow-up in 10,091 subjects of European and
East-Asian descent. We found a new BMD locus that harbours
the PTCHI gene, the receptor for the three hedgehog (Hh)
morphogens (SHH, IHH and DHH). The minor allele of
rs28377268 (freq. 11.4-22.6%) located in intron 15 of PTCHI
associates with reduced BMD at the spine (P=1.0 x 1011,
f=—0.09) and an increase in osteoporotic fractures
(P=8.5x10"% OR=1.09) and correlates strongly with 10%
increased PTCH1 expression (P=8.2 X 10 ~19). These data are
consistent with Ptchl haploinsufficiency (Ptchl +/=) mice that
are characterized by an increase in bone mass. We also identified
a new spine BMD signal in RSPO3 (rs577721086, fre(}. 6.8%) that
associates with increased spine BMD (P=6.6 x 10~ !0, =0.14)
and decreased risk of osteoporotic fractures (P=2.0 x 10 ™%,
OR = 0.86) and correlates strongly with 40% increased expression
of the RSPO3 gene (P=1.3 X 10~ 17). Additional new BMD
signals were found at the AXINI and SOST loci and a new
lead single-nucleotide polymorphism (SNP) at the ENI loci.
Of note is particularly the strong association of rs71382995
(freq. 9.6%) in SOST with vertebral fractures (P=4.3 x 10~ and
OR = 0.56).

2

Results

Genome-wide association analysis. To search for sequence
variants that associate with BMD we performed a GWAS of
variants that were found in the whole-genomes of 2,636
Icelanders'®. We imputed the identified SNPs and indels by
long-range phasing!®? into an Icelandic data set genotyped with
Ilumina SNP chips (104,220 Icelanders) and used Icelandic
genealogical information to calculate genotype probabilities of
294,212 close relatives of those genotyped. From this set we
selected those with BMD measurements at the spine, 20,132 in
total, or BMD measurements at the hip, 20,162 in total. We then
examined association between variation in BMD and the 21.5
million sequence variants found through WGS that passed
stringent quality control!8,

In addition to significant associations (P<1 x 10~ 8) with
variants that have previously been reported to associate with
BMD’!* (Fig. 1) we found a significant association at a new
locus on 9q22.23 within the PTCHI (patched homologue 1) gene
that associates with spine BMD (P=2.7x10~°, f= —0.10;
Figs 1a and 2a).

The 9q22.3 PTCHI locus. In an attempt to validate the 9q22.23
signal we genotyped the most strongly associated SNP,
rs79057214 (freq. 13.3%), in two sample sets of Northern
European descent; the Danish PERF (Prospective Epidemiological
Risk Factor) study21 and the Australian DOES (Dubbo
Osteoporosis Epidemiology Study) study??, and in two East-
Asian populations; KOR-amc (Asan Medical Center) study?’
from Korea and Chinese samples from Hong Kong®*. We also
genotyped a highly correlated SNP, rs28377268 (freq. 15.7%,
r*=0.79 with 1579057214 in Iceland and r*=0.86 with
rs79057214 in HaploRegv3), as it is predicted to reside in
numerous functional elements?>2° (Fig. 2b and Table 1). Both
markers associate with reduced spine BMD in the replication
samples with slightly stronger association for rs28377268-T,
yielding an overall P=2.1 x 10~ 1, B = —0.101 for rs79057214-T
and P=1.0x 10", f= —0.088 for rs28377268-T, when all
samples were analysed together (Table 2). Hence, hereafter
we focus on rs28377268. This signal at the PTCHI locus
also associates with hip BMD, however, the association is
weaker (P=1.8 x 10~ % versus P=1.0 x 10~ ''; Supplementary
Table 1), demonstrating some skeletal site specificity for this
locus. Analysis of other variants at the PTCHI locus conditioning
on rs28377268 did not identify other independent spine or hip
BMD association signals.

The spine BMD-associated markers at this locus reside within
and surround the PTCH]I gene (Fig. 2a). Two exonic markers are
among the top markers; a synonymous variant in the PTCHI
gene, rs1805155 (P=1.1x10"7, r»=0.74 with rs28377268),
and a 3’ variant, rs16909865 (P=9.0x 10~7, **=0.39 with
rs28377268). However, through conditional analysis we show that
neither of these putative functional variants account for the
rs28377268 association (Supplementary Table 2).

We next analysed the effect of rs28377268-T on osteoporotic
fractures in 10,389 cases and 264,522 control samples from
Iceland, Denmark, Australia, Korea and China. In accordance
with association with reduced BMD, rs28377268-T associates
with increased risk of osteoporotic fracture (P =0.00085,
OR=1.09 for any osteoporotic fracture) (Table 3). When the
different fracture sites were analysed independently the largest
effect was with vertebral fracture in line with the strongest effect
on spine BMD (Supplementary Table 3).

Rs28377268 is in intron 15 of the PTCHI gene and based on
functional prediction®>%® rs28377268 overlaps promoter histone
marks in 50 organs, enhancer histone marks in 34 organs, sites
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Figure 1 | Manhattan plot of discovery genome-wide association study.
The P values ( — logyg) are plotted against their respective positions on each
chromosome. P=5 x 10~ 8 is indicated by the horizontal pink line. The
plots were created using ggman: an R package for visualizing GWAS results
using Q-Q and Manhattan plots*. (a) Results for spine BMD. The P values
of the associations are given within brackets at each locus: 1p36.12
(P=1.08x10~8), 1p31.3 (P=111x10~17), 2q14.2 (P=2.28 x 10~ 10),
3p22.1 (P=128 x10~9), 4922.1 (P=1.41x 10~ 12), 6g25.1
(P=1.03x10"18), 7g213 (P=1.08 x 10~ %), 892412 (P=3.08 x 10~ ™),
9g22.23 (P=2.68 x10 ~9) new locus, 10g22.3 (P=212 x 10~8), 12913.13
(P=3.47 x10~8) and 13q14 (P=1.94 x 10 ~2%). (b) Results for hip BMD.
The P values of the associations are given within brackets at each locus:
1p36.12 (P=8.93 x 107 10), 1p31.3 (P=838 x 10~ ™), 2q14.2

(P=9.36 x10~4), 3p22.1 (P=3.62 x 10~ 8), 5q14.3 (P=2.23 x10~9),
60251 (P=7.14x10"12), 79213 (P=1.48 x 10~ ), 8q24.12
(P=252x10719), 13q14 (P=3.54 x 10~ ), and 17¢21.31
(P=356x10"8),

for binding of 81 proteins and DNase hypersensitivity site in
osteoblasts and 101 other cell types and is thus a strong candidate
for the causative BMD variant at this locus (Table 1). Since
rs28377268 overlaps potential transcriptional regulatory elements
we analysed the effect of 528377268 on expression of PTCHI in
our available RNA expression data sets from white blood cells and
adipose tissue of Icelanders. Although these tissues are not
directly relevant to bone, a correlation of the variant with
expression may indicate a putative mechanism of the variant.
Rs28377268 was strongly correlated with expression of the
PTCHI gene in blood (P=82x 1019, but only weakly in
adipose tissue (P =0.040). The allele that associates with reduced
BMD correlates with 10% increased expression of the gene in
white blood cells (Fig. 2c).

A large GWAS study on height has reported four independent
height signals at the PTCHI locus®’. Of these four, one
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Figure 2 | Regional association plot for the 9922.23 PTCHT1 locus,
potential functional elements and genotype-dependent expression.
(@) Regional association plot for the 9922.23 PTCHT locus. P values
(—1og10) of SNP association with spine BMD in the Icelandic discovery
samples are plotted against their positions at the 9g22.23 locus. SNPs are
coloured to reflect their linkage disequilibrium (LD) with rs28377268 in the
data set. The red line indicates recombination rates, based on the Icelandic
recombination map for males and females combined®’, with the peaks
indicating recombination hotspots defining LD blocks in Icelanders. Known
genes in the region are shown underneath the plot, taken from the UCSC
genes track in the UCSC Genome Browser. All positions are in NCBI Build
36 coordinates. The plot was created using a stand-alone version of
LocusZoom software?8. (b) Functional annotation of potential functional
elements in the region. Transcription factor binding sites and DNase
hypersensitive areas from the ENCODE data is shown*344 and enhancer
and promoter states from the Roadmap consortium2°. Location of
rs28377268 is indicated by a green vertical line. (¢) Genotype-dependent
gene expression or the PTCHT gene in blood samples. The P value is derived
from regression of the MLR on the carrier status of rs28377268, adjusting
for age and sex, and differential cell counts.

(rs4448343) also associates with BMD in Iceland, albeit much
weaker than rs28377268, and the association did not remain after
adjusting for rs28377268 (Supplementary Table 4). In contrast,
rs28377268 associates strongly with height and after adjusting for
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Table 1 | Overlap of rs28377268 at the 9922.23—PTCH1 locus and rs577721086 at the 6q22.33 RSPO3 locus with potential
regulatory regions.

CHR Marker ENSR number ENCODE ChIP-Seq ENCODE DNasel HS Enhancer Chromatin  Promoter Chromatin
transcription factors bound site (cell types) state roadmap state roadmap

chré rs577721086 ENSR00001226472 22 104 7 71

chr9 rs28377268 ENSRO0001309093 81 102 34 50

ENSR number, Ensembl Regulatory feature number, ENCODE, Encyclopedia of DNA Elements, ChIP-Seq, chromatin immunoprecipitation sequencing, DNasel, Deoxyribonuclease I.

Overlap of genomic position of rs577721086 and rs28377268 with Ensembl ENSR number are shown, as well as number of cell types overlapping transcription factors binding sites as determined by
ChlIP-Seq and open chromatin state of the chromosome as DNasel hypersensitivity sites*344. Enhancer and promoter chromatin segmentation states using the 25 state HMM from the Roadmap
consortium?® are also shown.

Table 2 | Association of new signals with spine BMD and hip BMD.

Region, SNP EA/OA Freq. % Icelandic discovery Replication sets All sets combined

set
P value Effect P value Effect P value Effect (95% CI) P het

Spine bone mineral density: N=20,132 N=10,092 N=30,224
9¢22.23—PTCH]1

rs28377268 /G 1571  3.0x10-° —0102 0.00034 —0.068 1.0x10-" —0.088 (—0.112, —0.062) 0.36
6q22.33—RSPO3

rs577721086* /T 675 25x10~7 0133 0.00066 0149 66x10~10 0.137 (0.094, 0.181) 0.53
16p13.3—AXIN1

rs117208012 T/C 349 46x10~7 —0175 0.00020 —0223 46x10-10 _0187 (—0.246, —0.128) 0.77
17g21.31—SOST

rs71382995 A/G 956 1.9x10~7 0.115  0.0088 0101 6.0x10~° 0.112 (0.074, 0.149) 0.048
2q14.2—EN1

rs115242848 T/C 122 23x10°9 0371 0.001 0318 11x10~12 0.357 (0.259, 0.455) 0.39
Hip bone mineral density: N=20,162 N=10,037 N=30,199
17g21.31—SOST

rs71382995 A/G 956 33x10~7 0109 0.00029 0140 4.8x10~10 0.116 (0.080, 0.153) 0.32
2q14.2—EN1

rs115242848 T/C 122 94x10"" 0421 014 0140 82x10~ 1B 0.348 (0.253, 0.444) 0.040

BMD, bone mineral density; Freq., frequency in the Icelandic samples; N, total number of individuals in the BMD analyses; SNP, single-nucleotide polymorphism; 95% Cl, 95% confidence interval of the
effect.

The estimated effects, expressed as standardized values (s.d. above or below the population average) per copy of the SNP allele, and P values are derived from a linear regression of the age-, sex- and
weight-adjusted BMD values on the SNP status. All P values are corrected for relatedness using the method of genomic controls. EA designate the effect allele and OA the other allele. Results are shown
for the Icelandic discovery set, the combined replication sets, and the overall results for the discovery and replication samples combined.

*A surrogate marker, rs72959041, was used instead of rs577721086 for genotyping the replication samples (2= 0.94 in all sample sets based on a sequenced subset of all samples) because a functional

assay could not be made for rs577721086.

the four reported height signals we still detect an association
(Supplementary Table 4). Rs28377268 thus associates both with
BMD and height.

Additional new BMD signals at known loci. To look for
additional new BMD signals we investigated previously reported
loci>'* for independent signals through conditional analyses;
conditioning on all reported signals/markers at reported loci.
We found new suggestive associations with BMD (P<1 x 10 ~°)
that were not tagged by reported markers at the 6q22.33 (RSPO3)
and the 16p13.3 (AXINI) loci that associated with spine BMD,
and at the 17q21.31 (SOST) locus that associated with both spine
and hip BMD. Furthermore, we identified a new lead SNP at the
recently reported 2q14.2 (ENI)'* locus. We genotyped these
markers in the samples from Denmark, Australia, Hong Kong
and Korea for replication.

4

The 6q22.33 RSPO3 locus. At the RSPO3 locus (Fig. 3a) we
found rs577721086-C (freq. =6.75%) located one base pair
upstream of the transcriptional start site that associates with
increase in sgine BMD independently of previously reported
markers!'>!>28 (Supplementary Table 5), with P=6.6 x 10~ 10,
f=0.137, when all samples were analysed together (Table 2).
This SNP overlaps a DNase hypersensitivity site found in 104 cell
types, including osteoblasts (Fig. 3b, Table 1). A considerably
weaker association was observed with hip BMD (P=0.023,
f=0.05) indicating skeletal site specificity (Supplementary
Table 6). In line with association of rs577721086-C with
increase in BMD, we found that rs577721086-C protects
against osteoporotic fractures (P=0.00020, OR=0.73 for any
osteoporotic fracture; Table 3, Supplementary Table 7 for separate
skeletal sites).

Analysis of the Icelandic white blood cell and adipose tissue
expression data showed that rs577721086-C is correlated with
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Table 3 | Association with osteoporotic fractures.
Region, SNP EA/OA Freq. % Icelandic discovery set Replication sets All sets combined
P value OR P value OR P value OR (95% CI) P het

Any osteoporotic fracture: N=7,836/261,563 N=1,982/1,790 N=10,389/264,522
9q22.23—PTCH1

rs28377268 T/G 15.71 0.0023 1.09 0.17 1.08 85x10~4 1.09 (1.04, 1.15) 0.57
6q22.33—RSPO3

rs577721086* c/T 6.75 0.0093 0.89 0.0012 0.73 2.0x10~4 0.86 (0.79, 0.93) 0.17
16p13.3—AXIN1

rs117208012 T/C 3.49 0.22 118 0.072 134 0.053 117 (1.00, 1.36) 0.62
17921.31—SOST

rs71382995 A/G 9.56 63x10~4 0.81 0.00010 0.71 5.4x107 0.78 (0.71, 0.86) 0.16
2q14.2—ENT

rs115242848 T/C 1.22 0.015 0.66 0.0m 0.53 54x10~4 0.61 (0.46, 0.81) 0.79
Freq., frequency in the Icelandic samples; N, number of fractured cases/and controls; OR, odds ratio; SNP, single-nucleotide polymorphism. 95% Cl, 95% confidence interval of the OR.
All P values are corrected for relatedness using the method of genomic controls. EA designate the effect allele and OA the other allele. Results are shown for the Icelandic discovery set, the combined
replication sets, and the overall results for the discovery and replication samples combined. See Supplementary Tables for association with fractures at different skeletal sites.
*A surrogate marker, rs72959041, was used instead of rs577721086 for genotyping the replication samples (2 = 0.94 in all sample sets based on a sequenced subset of all samples) because a functional
assay could not be made for rs577721086.

40% increased expression of RSPO3 in adipose tissue samples
(P=3.2x 10~ ; Fig. 2c), whereas the gene is not expressed in
blood. No other marker in the RSPO3 region is more strongly
associated with RSPO3 expression.

A common signal at the RSPO3 locus has been reported to
associate with high-density lipoprotein cholesterol (HDL-C) and
triglyceride levels?® that is not correlated with the spine BMD
signal represented by rs577721086-C (Supplementary Table 8).
Screening our lipid data we show that rs577721086-C also
associates with HDL and triglyceride both in Iceland and samples
from the Netherlands (combined analysis, P=6.2x 10~
B=—007 and P=50x10"8% =007, respectively).
Furthermore, in Iceland the strongest association at this
locus with BMD, HDL and triglyceride is represented by
rs577721086-C  (Supplementary Table 8). These data
demonstrate a pleiotropic effect of the RSPO3 locus on spine
BMD and HDL-C/triglyceride levels.

The 16p13.3 AXINI locus. At the AXINI locus we found a new
low frequency signal that was not tagged by the previously
reported rs9921222 (ref. 13) SNP (MAF 43%), represented by
rs117208012 (freq. 3.5%; Supplementary Table 9). Rs117208012-T
associated with spine BMD with P=4.6 x 10 =10, f= —0.187 in
all sample sets combined (Table 2). Much weaker association was
observed with hip BMD and fractures (Supplementary Table 10,
Table 3).

The 17q21.31 SOST locus. At the SOST locus the new
independent signal, rs71382995-A (freq. 9.6%), associates with
increase in both hip BMD (P=4.8 x 10~ 1%, =10.116) and spine
BMD (P=6.0 x 10~ °, $=0.112) when all samples are analysed
together (Table 2, Supplementary Table 11). It is not correlated
with previously reported markers at this locus”!> and is still
nominally associated when conditioned on those markers
(Supplementary Table 12). Association with reduced risk of
fractures was also observed for this SNP, P=5.4x 10 ~7 and
OR =0.78 for all osteoporotic fractures (Table 3), also consistent
with the direction of effect on BMD. Of note is particularly the
strong association with vertebral fractures with P=4.3 x 10 ~°
and OR=0.56 (Supplementary Table 13).

The 2p14.2 ENI locus. Recently, three independent signals at the
EN1 (ref. 14) locus were found to associate with hip BMD
(represented by rs55983207, freq. 5.0%) and spine BMD
(represented by rs11692564, freq. 1.6% and rs6542457, freq.
5.8%). Both rs55983207 and rs11692564 associate in the Icelandic
BMD data sets (P =2.8 x 10 ~ !0 for hip BMD and 6.8 x 10 ~7 for
spine BMD, respectively), whereas rs6542457 does not associate
(P>0.05) (Supplementary Table 14). Using the Icelandic
data and conditioning on two of these SNPs (rs55983207 and
rs11692564) revealed an additional low-frequency SNP,
rs115242848 (freq. 1.2%), that associates with both hip BMD
(P=9.4x 10" and spine BMD (P=2.3x 1010 Table 2,
Supplementary Table 15). This SNP tags substantially better the
low-frequency signal at this locus previously reported by
rs11692564 (ref. 14; Supplementary Table 14), and hence, may be
considered a new lead SNP at the locus. Overall, when combining
the Icelandic data and that of the replications sets, rs115242848
associated with hip BMD with P=28.2x 10~ 13, f=0.348 and
with spine BMD with P=1.1 x 10~ !2, f=10.357 (Table 2) and
with osteoporotic fractures (P=0.00054, OR=0.61; Table 3,
Supplementary Table 16).

Discussion

We here report a new spine BMD locus harbouring the PTCH1
gene, and new BMD signals at three previously reported loci
(RSPO3, AXINI and SOST). Importantly, three of these signals, at
PTCHI1, RSPO3 and SOST, associate with the clinically relevant
phenotype of osteoporotic fractures in line with their effect on
BMD. At both the PTCHI and RSPO3 loci the associated variants
are non-coding and affect expression of PTCHI and RSPO3 thus
modulating the Hedgehog and the Wnt signalling pathways.
Furthermore, we find a new lead low-frequency SNP at the newly
reported ENT locus!?.

Rs28377268 in the PTCH1 gene is moderately common (15.7%
in the discovery sample set) yet not detected in previous analyses
because it, or an equivalent marker, was not present on the
genotyping platforms or the imputed data sets (Hap Map or
1000Gphasel) used in these analyses. The same holds for
rs577721086 in the RSPO3 gene and the variants in AXINI and
SOST that were not detected in the conditional analyses across the
loci reported in Estrada et al.'® The latter three signals are all
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Figure 3 | Regional association plot for the 6q22.33 RSPO3 locus,
potential functional elements and genotype-dependent expression.

(a) Regional association plot for the 6g22.33 RSPO3 locus. P values
(—1log10) of SNP association with spine BMD in the Icelandic discovery
samples are plotted against their positions at the 6q22.33 locus. SNPs are
coloured to reflect their linkage disequilibrium (LD) with rs577721086 in
the data set. The red line indicates recombination rates, based on the
Icelandic recombination map for males and females combined®’, with the
peaks indicating recombination hotspots defining LD blocks in Icelanders.
Known genes in the region are shown underneath the plot, taken from the
UCSC genes track in the UCSC Genome Browser. All positions are in NCBI
Build 36 coordinates. The plot was created using a stand-alone version of
LocusZoom software?8. (b) Functional annotation of potential functional
elements in the region. Transcription factor binding sites and DNase
hypersensitive areas from the ENCODE data is shown*3%4 and enhancer
and promoter states from the Roadmap consortium?. Location of
rs577721086 is indicated by a green vertical line. (¢) Genotype-dependent
gene expression of the RSPO3 gene. P value is derived from regression of
the MLR on the carrier status of rs577721086, adjusting for age and sex.

under 10% in frequency (6.8%, 3.5% and 9.6%, respectively). The
rs115242848 SNP at the ENI locus is rarer with a frequency of
1.2%, yet very well imputed in our data set (imputation
info =0.995) because of our ability to use long-range phased
haplotypes in the imputation. In our data set rs115242848

6

captures the previously reported signal of rs11692564 (ref. 14) at
the ENI locus considerably better than rs11692564. This
discrepancy between this study and that of Zheng et al'* is
likely a reflection of difference in imputation quality as variants
found in <2% frequency are more difficult to impute in outbred
population.

The PTCHI gene encodes the receptor (Ptchl) for sonic
hedgehog (SHH), indian hedgehog (IHH) and desert hedgehog
(DHH). On hedgehog binding, Ptch1 repression of the G-protein-
coupled receptor Smoothened (Smo) is released and the
hedgehog-signalling cascade is activated. In mice, it has been
shown that the hedgehog-Patched1 signalling plays essential roles
in many developmental processes, including osteoblastogenesis
and chondrocyte differentiation®. This pathway is also involved
in homeostatic osteoblast activity and in regulation of bone
remodelling®!. Ptchl haploinsufficiency (Ptchl*/~) mice have
increased bone mass as a result of reduced suppression of
Smo by Ptch. Furthermore, both systemic interference with
Hh signalling®® and haploinsufficiency of Glil (Glil /),
a transcriptional activator induced by Hh signalling, led to
decreased bone mass in mice®>. The correlation we observe in our
data set between increased expression of the PTCHI gene and
association with lowered BMD is consistent with the mouse work;
increased levels of PTCHI1 represses SMO and Hh signalling
which in turn results in reduced bone mass. It is not clear whether
this is primarily a developmental effect or one that is relevant
through adult life.

We observe a pleiotropic effect of the rs28377268 SNP in the
PTCHI gene; independent associations with height and with
BMD, both traits that reflect aspects of bone biology. The
additional height signals that are found at the PTCHI locus?’,
however, do not show this pleiotropy in our data set. This
difference may mirror differences of spatial and temporal control
of PTCHI expression and the hedgehog signalling pathway, on
one hand bone growth, reflected by association with height and
on the other hand bone development/maturation/homeostasis,
reflected by association with BMD. The signal tagged by
1528377268 influences both.

Association with BMD near the DHH gene, encodin% one of
the ligands for PTCHI1, has previously been reported!®. This
association was also much stronger for spine BMD than femoral
neck BMD, in line with what we observe for the PTCHI
association in our data set. The importance of the hedgehog
signalling pathway in bone development and homeostasis has
been well established by functional studies in mice. Its importance
in regulation of bone mass in the general human population is
now also supported by the association signals at both a hedgehog
ligand (DHH) and its receptor (PTCH1).

RSPO3 is a secreted agonist/enhancer of the Wnt/B-catenin
signalling pathway that is considered one of the main regulator of
bone mass. RSPO3 binding to Lgr4 enhances Wnt signal strength
and duration®*. Inactivation of the Wnt/B-catenin pathway
results in low BMD and osteoporosis while activating mutations
lead to high BMD!”. The increase in expression of RSPO3
by rs577721086-C allele, hence, activation of the pathway,
is consistent with the association of the SNP with increase
in BMD.

Both the AXINI and SOST genes encode regulators of the
WNT signalling pathway!’; AXIN1 as a component of the
beta-catenin destruction complex and SOST as an extracellular
antagonist.

In summary, we report a new spine BMD locus harbouring the
PTCHI gene, and new BMD signals at three previously reported
loci (RSPO3, AXINI and SOST). Importantly, three of these
signals associate with the clinically relevant phenotype of
osteoporotic fractures. Of particular interest is the GWS
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association of our marker in SOST with vertebral fractures.
At both the PTCHI and RSPO3 loci the associated variants are
non-coding that effect expression of PTCHI and RSPO3, thus
modulating the Hedgehog and the Wnt signalling pathways,
respectively, both of which have been shown in functional mouse
studies to be central to bone development.

Methods

Study populations. The Icelandic samples have previously been described in
detail’>. The BMD (DEXA, Hologic QDR4500A) values at the hip (total hip) and
lumbar spine were age and weight corrected and standardized in each gender
separately. Fracture assessment were as previously described>”!%, excluding
high-trauma fractures, corticosteroid users, early menopause and fractures of the
hands, feet and skull. The control groups were individuals who had not suffered
low-trauma fracture. All participants gave informed consent and the study was
approved by the Data Protection Commission of Iceland (DPC) and the National
Bioethics Committee of Iceland.

The Danish samples are postmenopausal women in the age range 55-86 years,
taking part in the Prospective Epidemiological Risk Factor (PERF study)?!. The study
was approved by the Ethics Committee of Copenhagen County and was in
accordance with the principles of the Helsinki Declaration. The Australian samples
were derived from the Dubbo Osteoporosis Epidemiology Study (DOES)??, including
subjects in the age range 60-99 years. All are of Caucasian ethnicity. The study was
approved by the St Vincent’s Ethics Review Committee (Sydney). The Chinese Hong
Kong samples are comprised of two samples of different sex, the Mr OS and Ms OS
studies, aged 65 years and above®®. The study was approved by the Clinical Research
Ethics Committee of the Chinese University of Hong Kong. The Korean samples are
postmenopausal women who visited the Osteoporosis Clinic of Asan Medical Center
(AMC, Seoul, Korea)?3. The study was approved by the AMC Ethics Review
Committee (Seoul). All participants in these studies provided informed consent, and
we obtained approval from all Institutional Review Board to carry out the study.

The Dutch study subjects were recruited within a project entitled ‘Nijmegen
Biomedical Study’ (NBS). Individuals from the NBS were invited to participate in a
study on gene-environment interactions in multifactorial diseases. The details of
this study were reported previously>. The study protocol of the Nijmegen
Biomedical Study was approved by the Institutional Review Board of the Radboud
University Medical Center and all study subjects gave written informed consent.

Genotyping and association analysis. Genotyping and imputation methods and
the association analysis method in the Icelandic samples were as described!®.

In short, we sequenced the whole genomes of 2,636 Icelanders using Illumina
technology to a mean depth of at least x 10 (median x 20). SNPs and indels were
identified and their genotypes called for all samples simultaneously using the
Genome Analysis Toolkit (GATK version 2.2-13)%”. Genotype calls were improved
by using information about haplotype sharing, taking advantage of the fact that all
the sequenced individuals had also been chip-typed and long-range phased. A total
of 19,689,642 SNPs and 1,441,572 indels that met stringent quality criteria were
identified in the 2,636 sequenced Icelanders. These variants were then imputed into
104,220 Icelanders who had been genotyped with various Illumina SNP chips and
their genotypes phased using long-range phasing'®2. Genealogical deduction of
obligate carrier status of 294,212 untyped relatives of chip-typed individuals further
increased the sample size for association analysis and increased the power to detect
associations. Individuals who have BMD measurements at the hip or the spine,
those who had suffered low-trauma fractures and age- and sex-matched controls
were derived from the chip-typed individuals and untyped relatives. Association
testing for case—control analysis was performed using logistic regression,

and a generalized form of linear regression was used to test for association of
quantitative traits.

The whole data set of Icelanders includes a large fraction of the Icelandic
population, hence, many of those are related, including those 20,100 in the BMD
GWA study. To account for the relatedness and stratification we applied the
method of genomic control®%. The inflation /, in the y?-statistic in each GWA was
estimated on the basis of a subset of about 300,000 common variants, and P values
were adjusted by dividing the corresponding y?-values by this factor. For the traits
reported here, the estimated inflation factors were 1.23 for hip BMD, 1.23 for spine
BMD, 1.14 for skull BMD, 1.34 for any osteoporotic fracture, 1.11 for vertebral
fractures, 1.20 for hip fractures and 1.27 for forearm fracture, 1.67 for height,
1.40 for triglycerides and 1.58 for HDL cholesterol.

Single-SNP genotyping was carried out on the Centaurus (Nanogen)
platform3®, and by Sanger sequencing (RSPO3_ rs577721086). A functional
single-SNP genotyping assay could not be made for rs577721086. We, therefore,
genotyped a surrogate marker, rs72959041, in the replication samples. We assessed
the correlation between rs577721086 and rs72959041 in the replication sample sets
by Sanger sequencing approximately 800 individuals from each set; the correlation
(r?) between 15577721086 and 1572959041 was 0.94 in all sets.

Meta-analysis. Results from multiple case-control groups were combined using a
Mantel-Haenszel model*” in which groups were allowed to have different

population frequencies for alleles and genotypes but were assumed to have
common relative risks (a fixed-effect model). Heterogeneity in the effect estimate
was tested assuming that the estimated ORs for different groups followed

a log-normal distribution and using a likelihood ratio y>-test with degrees of
freedom equal to the number of groups compared minus one.

Expression analysis. We investigated the expression of PTCHI and RSPO3 in a
data set that included RNA samples from the white blood cells of 1,002 Icelandic
individuals and from adipose tissue of 673 individuals*!. Most of these
individuals—973 with white blood cell samples and 646 with adipose tissue
samples—had imputed genotypes for the 21.5 million variants identified in
whole-genome sequencing. Correlation between expression and the genotypes of
the variants was tested by regressing measured MLR (mean log expression ratio)
values on the number of copies of the risk-associated allele an individual carried.
Effects from age and sex were taken into account by including these variables as
explanatory variables. For white blood cells, we also adjusted for differential blood
cell count, as these variables correlated strongly with the expression of a large
fraction of the genes measured*!. All P values were adjusted for the relatedness of
the individuals by simulating genotypes through Icelandic genealogy as previously
described*?. Resulting adjustment factors for the y2-statistic were 1.08 and 1.06 for
adipose and whole blood, respectively. The RSPO3 gene was expressed below
reliable detection limits in white blood cells. In adipose tissue, the gene was
expressed at high levels. The PTCHI gene is expressed at a moderate level in
both adipose and in white blood cells.

Assessment for potential overlap with regulatory regions. To identify the
BMD-associated variants that might have regulatory effects we took the strongest
signals and for each of the variants and searched for overlaps with known
regulatory regions as follows: First we used ENSEMBL to determine whether the
variant had been assigned a regulatory region ENSR number. Then we examined
the ENCODE data and looked for any evidence of ChIP-Seq transcription factor
binding and DNasel hypersensitivity sites*>*4. We also looked for enhancer and
promoter chromatin segmentation states using the 25 state HMM from the
Roadmap consortium?®. Then we looked for correlations between DNasel
hypersensitive sites and local gene expression using results described by

Sheffield et al.%®
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