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Histone H4 lysine 16 acetylation breaks the genome’s silence
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Abstract

Acetylation at histone H4 lysine 16 is involved in many cellular processes in organisms as diverse
as yeast and humans. A recent biochemical study pinpoints this particular acetylation mark as a
switch for changing chromatin from a repressive to a transcriptionally active state.
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Eukaryotic DNA is packaged with proteins into substructures

that are themselves packed into higher-order 30-nm fibers -

the DNA-protein polymer called chromatin. The fundamental

repeating unit in chromatin is the nucleosome, which con-

sists of 146 bp of DNA wrapped around an octamer of histone

proteins [1]. This ‘core’ octamer contains two histone H2A-

H2B dimers, and a histone H3-H4 tetramer [1,2]. The

compact architecture of chromatin naturally presents a sig-

nificant barrier to all cellular events that require the underly-

ing DNA and the accessibility of DNA is dynamically

regulated through several distinct, but not mutually exclu-

sive, mechanisms in order for transcription, DNA repair,

replication and recombination to take place [3]. One of the

most extensively studied mechanisms for altering chromatin

structure is the posttranslational covalent modification of the

histone amino-terminal tails. One particular modification,

histone acetylation, has been known to correlate with tran-

scriptional regulation for more than 40 years [4]. Histone

acetylation generally makes chromatin accessible to the tran-

scription-activating machinery, resulting in gene expression

[5,6]. One exception, the acetylation of histone H4 at lysine

12, has been found in regions of silent heterochromatin;

therefore histone acetylation is not always associated with

active transcription [7,8]. Overall, the acetylation state of his-

tones seems to regulate the interconversion of active and

repressive chromatin structure [9], but the molecular mecha-

nism underlying the effects of histone acetylation on the state

of chromatin is still poorly understood.

Model choices 
The effects of histone acetylation on transcription can be

explained by two different but not mutually exclusive models

[10]. In the first, the acetylation of histone tails at specific

lysine residues may directly interfere with DNA-histone,

histone-histone, and even internucleosomal interactions,

resulting in chromatin decondensation and transcriptional

activation. In the second, the acetylation mark serves as a

signal for chromatin modifiers to bind and modulate tran-

scription. A few years ago, Dorigo et al. [11] demonstrated

that the histone H4 tail, especially amino acids 14-19, is

essential for chromatin-fiber compaction. As the acetylation

of histone H4 lysine 16 (H4 Lys16) is the only known modifi-

cation in this region, it was reasonable to speculate that it

affected the higher-order structure of chromatin.

A recent study by Shogren-Knaak et al. [12] now directly

implicates acetylation of H4 Lys16 as the central switch for

controlling higher-order chromatin structure. Using a chemi-

cal ligation technique, they generated histone H4 homo-

geneously acetylated at lysine 16. When assembled into

nucleosomal arrays, the presence of acetylated H4 Lys16

inhibited the formation of higher-order 30-nm chromatin

fibers as well as the fiber-fiber interactions. This relaxation of

compacted chromatin structure is a unique effect of histone

acetylation that is thought to have a role in chromatin decon-

densation and transcription activation. In addition to its

effects on higher-order structure, acetylated H4 Lys16 also



inhibited the activity of the Drosophila chromatin assembly

and remodeling enzyme ACF on the chromatin fiber. The work

by Shogren-Knaak et al. [12] thus shows that acetylated H4

Lys16 not only contributes to the decondensation of com-

pacted chromatin, but also that it can modulate the associa-

tion of a specific remodeling enzyme with chromatin,

providing further important details about how the state of

chromatin is significantly changed by a single histone modifi-

cation.

The recent findings by Shogren-Knaak et al. [12] regarding the

specific structure of chromatin acetylated on H4 Lys16 corre-

lates with other functions of H4 Lys16 acetylation studied in

different organisms. Among various acetylatable lysines iden-

tified to date, histone H4 Lys16 is functionally unique in many

ways. The special role of H4 Lys16 acetylation is clearly

demonstrated in budding yeast (at silencing boundaries)

[13,14], fruit flies (in dosage compensation) [15], and human

cancer cells (in which H4 Lys16 acetylation is lost) [16].

Histone H4 Lys16 acetylation in yeast, flies and
human cancer 
In the budding yeast Saccharomyces cerevisiae, acetylation

at H4 Lys16 is essential to maintain the proper boundaries of

repression at all silent loci, including the HML and HMR

mating-type loci, telomeres and rDNA arrays [17]. Tran-

scriptionally repressed heterochromatin is hypoacetylated at

H4 Lys16 as the result of the presence of Sir2, a histone

deacetylase specific for H4 Lys16 [18]. Thus, acetylation of

H4 Lys16 may prevent the ectopic spreading of heterochro-

matin. Indeed, the anti-silencing function of H4 Lys16 acety-

lation has been demonstrated by Kimura et al. [13] and Suka

et al. [14] in studies that focused on telomeric regions. In

yeast, the trimeric SAS complex is exclusively responsible for

acetylating histone H4 at Lys16 [19]. Mutation at H4 Lys16,

as well as deletion of sas2, the gene encoding the catalytic

acetylase subunit in SAS, causes the Sir silencing proteins

(Sir2, Sir3, and Sir4) to propagate from the telomeres

farther into non-silenced euchromatic regions [13,14]. This

phenomenon is consistent with microarray data showing

that transcription of telomere-proximal genes was repressed

in yeast carrying the mutation Lys16 to Arg in H4, or a sas2

deletion. The repression is presumably due to deacetylation

of histone tails by Sir2 [13,20]. Thus, it appears that compe-

tition between two functionally opposing histone-modifica-

tion complexes sets up a dynamic acetylation state for H4

Lys16 that determines the heterochromatin-euchromatin

boundary at telomeres. Several independent investigations

have concluded that Lys16 is the most highly acetylated site

in yeast histone H4 [21-24]. Specifically, the recent study by

Shogren-Knaak et al. [12] provides a direct link between

acetylated H4 Lys16 and chromatin structure in yeast. 

Dosage compensation in male Drosophila presents another

good example of how the specific acetylation of H4 Lys16

affects transcription and chromatin packaging. Male flies

double the transcriptional activity of their single X chromo-

some to compensate for the fact that female flies carry two

copies of the X chromosome [15]. This enhancement of tran-

scription in the male X chromosome is achieved specifically

by the male-specific lethal (MSL) complex, which contains a

catalytic subunit, MOF, that acetylates histone H4 at Lys16

[25]. In female flies, the assembly of MSL is impaired, which

results in hypoacetylation of H4 Lys16. In male flies, MSL

binds to the X chromosome at hundreds of loci, and has a

binding pattern similar to that of acetylated H4 Lys16 as

confirmed by polytene chromosome immunostaining [26].

Once the MSL complex acetylates H4 Lys16, the X chromo-

some acquires a ‘diffuse’ appearance, which is reminiscent of

decondensed chromatin and agrees with the recent yeast

data [12,27]. Therefore, acetylated H4 Lys16 appears to

‘open up’ the Drosophila male X chromosome to make it

more accessible to transcription, which is an important part

of the dosage compensation mechanism in the fly.

In human cells, the acetylation state of H4 Lys16 has

recently been noted as an epigenetic hallmark for certain

types of cancers [16]. Abnormalities in DNA methylation

status have been a major focus of cancer epigenetics for

many years. Previous research has shown the association of

DNA methylation with inaccessible chromatin and several

histone-modification machineries [28,29]. The direct effect

of global histone modifications in carcinogenesis, however,

is still elusive. Work from Esteller’s group [16,30] shows that

specific monoacetylation of H4 Lys16 is lost in several

human cancer cell lines and two primary tumors (lymphoma

and colorectal adenocarcinoma). In contrast, there is no dif-

ference in the acetylation level at all the other lysine residues

(Lys5, Lys8, and Lys12) in the amino-terminal tail of histone

H4, suggesting a unique role for H4 Lys16 acetylation in pre-

venting cell transformation. It is possible that H4 Lys16

acetylation at tumor suppressor genes protects them from

being transcriptionally repressed in normal cells. Interest-

ingly, the change in H4 Lys16 acetylation in cancer cells cor-

relates well with the characteristic hypomethylation of

repetitive DNA sequences. Therefore, the process of carcino-

genesis includes epigenetic modifications at both the DNA

and histone level. Still, the molecular basis of how the loss of

H4 Lys16 acetylation results in cellular transformation is

still poorly understood, but it may point to new uses for

histone deacetylase inhibitors in cancer treatment. In addi-

tion, this specific acetylation marker could be used in the

future as a tool [31] for cancer prediction and diagnosis.

H4 Lys16 acetylation is a unique feature that plays a vital

role in the maintenance of chromatin structure [12]. To date,

it is the only histone modification mark that can be directly

linked to changes in chromatin folding [11,12,32]. Consider-

ing the variety of other types of histone modifications, it is

unlikely that acetylation of H4 Lys16 acts alone in maintain-

ing decondensed chromatin structure. Nevertheless, the
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unique effect of acetylated H4 Lys16 on genome-wide

chromatin dynamics makes it a vital epigenetic modification

for the regulation of gene transcription.
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