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Background: Neratinib is in Phase 3 clinical trials but, unfortunately, the development of resistance is inevitable. Here, we
investigated the effects of acquired neratinib resistance on cellular phenotype and the potential mechanism of this resistance.

Methods: Neratinib-resistant variants of HER2-positive breast cancer cells were developed and their cross-resistance investigated
using cytotoxicity assays. Similarly, sensitivity of trastuzumab-resistant and lapatinib-resistant cells to neratinib was assessed.
Cellular phenotype changes were evaluated using migration, invasion and anoikis assays. Immunoblotting for HER family
members and drug efflux pumps, as well as enzyme activity assays were performed.

Results: Neratinib resistance conferred cross-resistance to trastuzumab, lapatinib and afatinib. Furthermore, the efficacy of
neratinib was reduced in trastuzumab- and lapatinib-resistant cells. Neratinib-resistant cells were more aggressive than their drug-
sensitive counterparts, with increased CYP3A4 activity identified as a novel mechanism of neratinib resistance.

Conclusions: The potential of increased CYP3A4 activity as a biomarker and/or target to add value to neratinib warrants
investigation.

Targeted therapies have substantially improved treatment of
HER2-overexpressing cancers. These include trastuzumab (Vogel
et al, 2002), pertuzumab (Agus et al, 2005) and lapatinib (Burris
et al, 2005), with neratinib, afatinib and T-DM1 currently under-
going clinical trials. Neratinib is an irreversible EGFR, HER2 and
HER4 inhibitor (Bose and Ozer, 2009). A Phase 1 trial of neratinib
showed an acceptable safety profile with anti-tumour activity
observed for advanced solid tumours (Wong et al, 2009). Phase 2
data showed substantial clinical activity in terms of progression-
free survival and reduced tumour burden (Burstein et al, 2010).
Swaby et al (2009) indicates that dual administration of neratinib
with trastuzumab is well-tolerated and produces a clinical
response. Other trials investigating neratinib efficacy are also
underway.

Innate and acquired resistance and cross-resistance to anti-
cancer medication dominates as the main reason that anti-cancer
drugs fail in the clinic (Gottesman, 2002; Raguz and Yagüe, 2008;
Germano and O’Driscoll, 2009; Tan et al, 2010). Continued efforts
to decipher the mechanism(s) of resistance are necessary to predict
and circumvent this problem.

An understanding of the ability of cancer cells to acquire
neratinib resistance and the associated effects on cell behaviour is
lacking. After developing novel neratinib-resistant cell variants of
HER2-positive breast cancer cell lines, here, we investigated if
neratinib-resistant cells are cross-resistant to other drugs typically
used for breast cancer; explored phenotypic changes that may have
developed with neratinib resistance; and elucidated mechanisms
that may be responsible for neratinib resistance.
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MATERIALS AND METHODS

Cell culture. HCC1954 and EFM192A HER2-positive breast
cancer cell lines (termed HCC1954-Par and EFM192A-par)
were obtained from ATCC and Leibniz-Institut DSMZ, respec-
tively, and were cultured in RPMI-1640 (Sigma-Aldrich, St Louis,
MO, USA) with 10% FBS (Gibco, Carlsbad, CA, USA) and 1%
L-glutamine (Sigma-Aldrich). HCC1954 neratinib-resistant
(HCC1954-NR) and EFM192A neratinib-resistant (EFM192A-
NR) variants were established by continuous exposure to
increasing concentrations of neratinib (5–250 nM for HCC1954-NR
cells, 5–80 nM for EFM192A-NR cells) for several months.
Lapatinib-resistant HCC1954 and SKBR3 cells (SKBR3-LR,
HCC1954-LR) and trastuzumab-resistant SKBR3 (SKBR3-TR)
cells were established as we previously described (Rani et al,
2014). Anti-cancer drugs were obtained from Sequoia Research
(Pangbourne, UK) and St James’s Hospital. Ketoconazole was
purchased and obtained from Sigma-Aldrich.

Toxicity assays. The IC50 values of neratinib, afatinib,
lapatinib, trastuzumab and docetaxel for all cell variants
were determined. Using 96-well plates (Sigma-Aldrich),
HCC1954-Par, HCC1954-NR and HCC1954-LR were seeded
at 3� 103cells per well; EFM192A-Par and EFM192A-NR, at
5� 103cells per well; and SKBR3-LR and SKBR3-TR cells at
1� 104 cells per well. After 24 h, cells were exposed to relevant
drugs (Supplementary Material) for 5 days. The effect on cells
was assessed using acid phosphatase assay (Breslin and
O’Driscoll, 2016).

Migration assays. HCC1954-Par and HCC1954-NR were seeded
at 1� 105 cells in RPMI (with 1% FBS) in cell culture inserts
(BD Biosciences, Oxford, UK) in 24-well plates (Sigma-Aldrich).
About 400 ml of complete RPMI was placed under inserts. Cells
were allowed to migrate for 24 h before evaluating as previously
described (O’Brien et al, 2015). As EFM192A variants did not
migrate through inserts, as an alternative cells were seeded at
5� 105 cells per well in 24-well plates and wound-scratch assays
performed as previously described (O’Brien et al, 2015). For the
equivalent wound healing assay with the HCC1954-Par and
HCC1954-NR cell variants, cells were seeded at 2� 104 cells per
well in 24-well plates.

Invasion assays. Performed as for migration assays, but inserts
were first coated with extracellular matrix (Sigma-Aldrich)

(Corcoran et al, 2012) and cells were allowed to invade over
48 h.

Anoikis assays. All cell variants were seeded at 5� 104 cells
per ml into poly-HEMA-coated (Sigma-Aldrich) 24-well plates; with
95% ethanol-coated wells as controls. After 48 h, 100ml
of alamar blue (BioRad, Hercules, CA, USA) was added for 5 h
before reading at 570 nm.

Immunoblots. Cell pellets were lysed using cell extraction buffer
(Invitrogen, Carlsbad, CA, USA) supplemented with protease
inhibitor cocktail (Roche, Basel, Switzerland). Protein was
quantified using Bio-Rad protein assay (Bio-Rad, Hercules, CA,
USA). About 30–50 mg protein was separated using SDS gels and
transferred onto PVDF (Bio-Rad). Blots were incubated overnight
with primary antibodies at 4 1C: HER2 (Calbiochem, San Diego,
CA, USA); EGFR, HER3 and HER4 (Cell Signalling, Beverly, MA,
USA); PGP, BCRP, CYP3A4 (Santa Cruz, Dallas, TX, USA) and
b-actin (Sigma-Aldrich). Appropriate secondary antibodies were
applied for 1 h at room temperature before developing using
Immobilon Western Chemiluminescent HRP substrate (Millipore,
Billerica, MA, USA).

CYP3A4 activity. HCC1954-Par and HCC1954-NR were seeded
at 3� 103 cells per well, and EFM192A-Par and EFM192A-NR
were seeded at 5� 103 cells per well in 96-well plates. Forty-eight
hours post seeding, P450-Glo CYP3A4 (Promega, Madison, WI,
USA) assay was performed by removing medium, adding
Luciferin-IPA solution, and incubated at 37 1C for 1 h before
adding 50ml of luciferin detection reagent. After 20 min at room
temperature, solution from each well was transferred to a white
opaque 96-well plate and read using a Mithras LB-940 (Berthold
Technologies, Bad Wildbad, Germany). To block CYP3A4 activity,
HCC1954-NR cells were seeded at 3� 103 cells per well and
EFM192A-NR cells were seeded at 5� 103 cells per well in 96-well
plates. After 24 h, cells were exposed to 40 nM ketoconazole alone
or in combination with neratinib (325 nM for HCC1954-NR cells;
46.7 nM for EFM192A-NR cells) treatments for 5 days. The effect
on cells was assessed using acid phosphatase assay.

RESULTS

Neratinib-resistant variants. Once established as neratinib-resis-
tant, HCC1954-NR and EFM192A-NR cells were 6.5–6.8-fold
increase in resistance, respectively, compared with their age-

Table 1. IC50 values for HER2-targeted drugs and docetaxel in HCC1954-Par, HCC1954-NR, EFM192A-Par and EFM192A-NR
cells with corresponding fold difference, showing that neratinib-resistant cells are also cross-resistant to other HER2-targeted
drugs, but not docetaxel

IC50 and fold difference for HCC1954 and EFM192A parent and neratinib-resistant cell variants

Drug HCC1954-Par HCC1954-NR Fold difference P-value
Neratinib 49 nM 325 nM 6.5±0.4 1.08� 10�4

Afatinib 103 nM 3.6 mM 37±7.2 0.008

Lapatinib 273 nM 2.7 mM 10±0.8 3.7� 10�7

Trastuzumab Innate resistance Innate resistance NA NA

Docetaxel 0.6 nM 0.65 nM 1.08±0.04 0.15

Drug EFM192A-Par EFM192A-NR Fold difference P-value

Neratinib 6.8 nM 46.7 nM 6.8±0.3 5.1� 10�5

Afatinib 151.3 nM 5.1 mM 34.6±4.4 0.002

Lapatinib 50 nM 7.97 mM 162.9±22 4� 10� 6

Trastuzumab 4500 mg ml-1 4500mg ml-1 NA NA

Docetaxel 2.6 nM 2.7 nM 1.03±0.07 0.692

Abbreviations: IC¼ inhibitory concentration; NA¼not applicable, as both the parent and neratinib-resistant variants were insensitive to trastuzumab.
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matched controls. The age-matched control cells are HCC1954-Par
and EFM192A-Par cells, which were routinely cultured in parallel
with their counterparts that were developing neratinib resistance
(Table 1).

Cross-resistance. Both HCC1954-NR and EFM192A-NR cells
showed substantial cross-resistance to afatinib and lapatinib,
compared with their age-matched controls (Table 1). EFM192A-
Par and EFM192A-NR are insensitive to trastuzumab, that is, both
variants maintained 480% viability in 500 mg ml-1 trastuzumab.
Cross-resistance to docetaxel did not occur.

Considering cross-resistance to neratinib of lapatinib-resistant
and trastuzumab-resistant cells (Table 2), HCC1954-LR and
SKBR3-LR cells demonstrated B2-fold and 15-fold cross-
resistance to neratinib compared with respective parent cells,
whereas SKBR3-TR cells exhibited 3.3-fold increase in neratinib
resistance.

Increased cell aggression. HCC1954-NR cells were significantly
more migratory than HCC1954-Par by 1.3-fold (when assessed
using transwell assays). Using the wound healing assay,
HCC1954-NR cells demonstrated 21% increased wound closure
when compared with HCC1954-Par (Figure 1A), whereas
EFM192A-NR demonstrated 17% increased wound closure
compared with EFM192A-Par cells (Figure 1A). HCC1954-NR
cells were also 1.3-fold more invasive than HCC1954-Par cells
(Figure 1B). Furthermore, HCC1954-NR cells were more
resistant to anoikis with only 2.8±0.2% of HCC1954-NR cell
death, compared with 12±1.7% of HCC1954-Par cells. Similarly
for EFM192A-NR cells, where only 24.7±1.1% of EFM192A-NR
cells died compared with 33.7±0.8% of EFM192A-Par cells
(Figure 1C).

Effects on drug targets and transporters. Drug targets and drug
transporters are often altered in drug-resistant cells. As indicated in
Figure 2, expression of the entire EGFR family was significantly
reduced in both neratinib-resistant variants compared with drug-
sensitive parents; if expressed at all. On the basis of the
densitometry analysis of n¼ 3 independent immunoblots for each
protein and where total expression in parental cells was always set
at an arbitrary value of 1, EGFR was decreased in HCC1954-NR
cells to 0.66±0.05, whereas EGFR is undetected in EFM192A cells.
HER2 expression was decreased to 0.45±0.07 in HCC1954-NR
cells and 0.59±0.14 in EFM192A-NR cells. HER3 was decreased to
0.75±0.04 in HCC1954-NR cells and 0.71±0.03 in EFM192A-NR
cells. Finally, HER4 was undetectable in HCC1954 variants and
was decreased to 0.52±0.08 in EFM192A-NR cells compared with
controls.

P-glycoprotein (PGP) expression was significantly decreased in
HCC1954-NR and EFM192A-NR compared with control cells; by
0.36±0.07 and 0.42±0.04, respectively. Breast cancer-resistant
protein (BCRP) expression was also decreased in HCC1954-NR
and EFM192A-NR cells to 0.72±0.05 and 0.74±0.04, respectively.

CYP3A4 activity. Although CYP3A4 protein expression levels
did not change significantly between the drug-resistant and
drug-sensitive counterparts (Supplementary Figure 1), CYP3A4
activity was significantly increased in both the neratinib-resistant
cell line variants (Figure 3A). Specifically, the HCC1954-NR cells
had 2.9±0.3-fold increased CYP3A4 activity when compared
with HCC1954-Par cells. Similarly, EFM192A-NR cells displayed
1.5±0.2-fold increased CYP3A4 activity compared with
EFM192A-Par control cells. Efforts to block CYP3A4 activity –
using ketoconazole at a final concentration of 40 nM – to
establish if this could help to at least partially restore neratinib
sensitivity. Ketoconazole alone had no effects on cell viability
but, when added with neratinib, ketoconazole induced a small
(4.4% for HCC1954-NR; 17.4% for EFM192A-NR) but signifi-
cant restoration of neratinib sensitivity (Figure 3B).

DISCUSSION

It is estimated that B70% of breast cancer patients with HER2-
overexpressing tumours are either innately resistant or acquire
resistance to HER2-targeted drugs (Arribas et al, 2011). So,
although data from clinical trials of neratinib indicates that many
patients are gaining initial benefit, there is a gap in available
information on the effects of neratinib resistance in cells; when
that, inevitably, develops. For this reason, studies performed over
the past number of years have been trying to understand the
mechanism(s) of neratinib resistance, in order that it may be
predicted, prevented or reversed. In 2012, using SKBR3 as a cell
line model and what they described as a genome-wide functional
RNAi screen, Seyhan et al (2012) reported on multiple genes whose
inhibition was associated with neratinib resistance. In 2014, from
pre-clinical in vitro and in vivo studies and analysis of B3500
patients’ specimens, we identified Neuromedin U as associated
with poor outcome for patients with HER2-overexpresing tumours
and our pre-clinical studies indicated overexpression of NmU to be
significantly associated with resistance to a range of HER2-targeted
drugs including neratinib (Rani et al, 2014). In efforts to establish
how Neuromedin U expression might be controlled, we found loss
of miR-630 (predicted to control Neuromedin U expression) to be
associated with increased expression of Neuromedin U and with
resistance to the HER2-targeted drugs including neratinib
(Corcoran et al, 2014). In an effort to further elucidate other
mechanisms of neratinib resistance, the studies described here were
performed.

Neratinib-resistant cells developed here were found to be cross-
resistant to all other HER2-targeting drugs investigated. Interest-
ingly, this cross-resistance is bi-directional, as both lapatinib- and
trastuzumab-resistant cells are also cross-resistant to neratinib.
Trends observed here have also been observed in clinical trials as
Burstein et al (2010) found that drug-naive patients responded
better to neratinib than patients previously treated with trastuzu-
mab. Similarly, Awada et al (2013) reported that patients with
prior exposure to lapatinib did not respond to neratinib as well as
those who had no prior lapatinib exposure. Therefore, based on
this novel cell line data it could be hypothesised that, unfortu-
nately, in the case of neratinib resistance, if a patient was to suffer
disease progression while being treated with neratinib, the efficacy
of other HER2 drugs is compromised by the previous exposure to
neratinib.

Table 2. IC50 values for neratinib in HCC1954-Par and -LR,
SKBR3-Par, -LR and -TR cells with corresponding fold
difference values, showing that cells with acquired resistance
to lapatinib and trastuzumab are also cross-resistant to
neratinib

Sensitivity of lapatinib resistance and trastuzumab resistance
cells to neratinib

Neratinib (IC50)
Fold

difference P-value

HCC1954-Par HCC1954-LR

53 nM 91 nM 1.7±0.1 0.001

SKBR3-Par SKBR3-LR

4.7 nM 69.3 nM 15.3±3.2 0.002

SKBR3-Par SKBR3-TR

4 nM 15 nM 3.3±0.2 2.4�10� 4

Abbreviation: IC¼ inhibitory concentration.
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In addition to cross-resistance to HER2-targeting drugs,
HCC1954-NR and EFM192A-NR cells also developed a more
aggressive phenotype, being more migratory and invasive, with
increased ability to avoid anoikis. Such increased cell aggression
has also been observed by ourselves and others in association with
drug resistance in other cancer types and is associated with a poor
prognosis for patients (Kleer et al, 2003; Lee et al, 2012); but never
previously associated with neratinib.

To elucidate the mechanism that facilitates neratinib resistance,
we first explored associations between neratinib resistance and
neratinib’s targets. All EGFR family members targeted by neratinib
were reduced in the drug-resistant variants. In addition, HER3 (not
targeted by neratinib but heterodimerises with HER2 (Fichter et al,
2014)) was also reduced. These observations are contrary to typical
HER2 drug resistance, where EGFR and HER2 are increased in
association with lapatinib (Corcoran et al, 2014; McDermott et al,
2014) and trastuzumab resistance (Browne et al, 2011). The
decrease in expression of drug targets is potentially due to the
irreversible binding nature of neratinib. This theory is supported
by the findings of Azuma et al (2014) whose afatinib-resistant PC9
lung cancer cells had downregulated EGFR, HER2 and HER3 in
comparison with drug-naive control cells.

In addition, we assessed drug efflux pumps, PGP and BCRP.
P-glycoprotein is one of the most common mediators of drug
resistance (Gottesman, 2002; Germano and O’Driscoll, 2009). In

contrast to classical drug resistance, neratinib-resistant cells show
downregulation of PGP. This may be because neratinib inhibits
PGP activity and can reverse multidrug resistance in PGP
overexpressing MCF7 and KBv200 cells (Zhao et al, 2012). This
trend has also been observed with lapatinib (Dai et al, 2008), which
was also found to reduce PGP activity; but never previously with
neratinib. Overexpression of BCRP is associated with breast cancer
drug resistance (Doyle and Ross, 2003). However, similarly to PGP,
BCRP’s reduced expression, here, suggests that it does not have a
functional role in neratinib resistance.

CYP3A4, a cytochrome P450 metabolising enzyme, plays a role
in the metabolism of approximately half of all drugs (Guengerich,
1999), including neratinib (Abbas et al, 2011). Abbas et al (2011)
demonstrated that co-administration, to healthy adults, of
ketoconazole (CYP3A4 inhibitor) with neratinib increased ner-
atinib’s peak plasma concentrations. Although this was not
investigated in association with cancer, it suggested to us that
alterations of CYP3A4 activity may also alter the availability of
neratinib in drug resistance. Supporting this hypothesis, we
observed increased CYP3A4 activity with neratinib resistance,
suggesting that the increased CYP3A4 activity enhances neratinib
metabolism and thereby drives neratinib resistance. Furthermore,
initial efforts to block this increased CYP3A4 activity with
ketoconazole in the neratinib-resistant variants showed a sig-
nificant, albeit limited, restoration of neratinib sensitivity. Future
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studies optimising the ketoconazole concentration and sequencing
time of ketoconazole prior to neratinib may achieve a more marked
re-sensitisation to neratinib.

This first study of neratinib resistance shows that its development
confers resistance to a range of HER2 drugs. P-glycoprotein and
BCRP apparently do not play functional roles in this resistance. The

reduced/loss of expression of HER2 family members – thus their
reduced availability for drug targeting – may be a contributing factor.
Of particular interest, however, is the increased CYP3A4 activity.
Further investigations of CYP3A4 activity as a possible predictive
biomarker of response and as a target to circumvent resistance (and
thus add value to neratinib) are now warranted.
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